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It is well known that Itô’s formula is an essential tool in stochastic analysis. But it cannot be used for
general stochastic Volterra integral equations (SVIEs). In this paper, we first introduce the concept
of quasi-Itô process which is a generalization of well-known Itô process. And then we extend Itô’s
formula to a more general form applicable to some kinds of SVIEs. Furthermore, the stability in
probability for some SVIEs is analyzed by the generalized Itô’s formula. Our work shows that the
generalized Itô’s formula is powerful and flexible to use in many relevant fields.

1. Introduction

Nowadays, more and more people have realized that stochastic differential equation (SDE)
is an important subject which provides more realistic models in many areas of science and
applications, such as in biomathematics, filtering problems, physics, stochastic control, and
mathematical finance. It is known that Itô SDEs of the form

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t), (1.1)

have been used and applied broadly, and their fundamental theories have been well
developed [1–3].

In [1–4] and many other references, we see that Itô’s formula plays a key role in the
study of stochastic analysis. It is applied in the studying of stochastic control, stochastic
neural network, backward SDEs, and numerical solutions of SDEs. Itô’s formula can be seen
as a stochastic version of chain rule in calculus. It is very useful in evaluating Itô integral,
in investigating the existence and uniqueness, the stability and the oscillation of solutions to
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SDEs, and so does in many other aspects of stochastic calculus [5–15]. Hence, we can imagine
that if there was no Itô’s formula, many known results might be very difficult to get.

Here, and throughout this paper, what we mentioned is all in a complete filtered
probability space (Ω,F,F,P) on which an m-dimensional Brownian motion W(·) is defined
with F = {Ft}t≥0 being its natural filtration augmented by the P-null sets in F. The
mathematical expectation with respect to the given probability measure P is denoted by E(·).
For convenience, we state Itô’s formula in [1] as follows.

Definition 1.1. A d-dimensional Itô process is anR
d-valued continuous adapted process x(t) =

(x1(t), . . . , xd(t))
T on t ≥ 0 of the form

x(t) = x(0) +
∫ t

0
f(s)ds +

∫ t

0
g(s)dW(s), (1.2)

where f = (f1, . . . , fd)
T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We will say that x(t)

has a stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt + g(t)dW(t). (1.3)

Two natural questions are whether the compound function V (x(t), t) is an Itô process,
if x(t) is an Itô process and V ∈ C2,1(Rd ×R

+;R), And if it is, what is its stochastic differential?
This leads to the following very famous Itô’s formula.

Theorem 1.2. Let x(t) be a d-dimensional Itô process on t ≥ 0 with the stochastic differential (1.3),
and V ∈ C2,1(Rd × R

+;R). Then V (x(t), t) is an Itô process with the stochastic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1
2
trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt

+ Vx(x(t), t)g(t)dW(t) a.s.

(1.4)

From Theorem 1.2, it is easy to see that the differential form of the Itô process is more
convenient to apply than its integral form. To describe the realistic world better, it is natural to
extend SDE (1.1) to a more general case as the following stochastic Volterra integral equation
(SVIE):

x(t) = ϕ(t, ω) +
∫ t

t0

f(x(s), t, s, ω)ds +
∫ t

t0

g(x(s), t, s, ω)dW(s), (1.5)

where ϕ(t, ω) is a continuous stochastic process. It is easy to see that SDE (1.1) is a special case
of SVIE (1.5). Many scholars have given some results for SVIE (1.5) (see [16, 17]). However,
it is noted that the solutions decided by (1.5) are not Itô processes; hence they do not satisfy
the conditions in Theorem 1.2. So the Itô’s formula cannot be used for these SVIEs. It is one
of the reasons that many basic theories of SVIEs have not been accomplished.

Motivated by the previous discussions, in this paper, we extend Itô’s formula to a
more general form applicable to SVIEs, by employing the technique in stochastic analysis.
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Based on the generalized Itô’s formula and Lyapunovmethod, the stochastic stability to some
kinds of SVIEs is investigated. Consequently, some sufficient conditions, which ensure the
global stochastic asymptotic stability of the trivial solution, are established. By constructing
an appropriate Lyapunov function, a condition ensuring global stochastic asymptotic stability
of a linear SVIE is given. Our work shows that the generalized Itô’s formula is powerful and
flexible to use. Obviously, it can also be used in many other relevant fields.

2. Quasi-ItÔ Process and Generalized Itô’s Formula

In this section, we begin with introducing the concept of quasi-Itô process. Set Δ = {(t, s) :
0 ≤ s ≤ t < ∞}. Let C2,1(Rd × R

+;R) stand for the family of all real-valued functions V (x, t)
defined on R

d ×R
+ such that they are continuously twice differentiable at x and once at t. For

any p ∈ [1,∞), we define

Lp
(
R

+;Rd×m
)
=

{
ϕ : R

+ ×Ω −→ R
d×m | ϕ(·) is measurableFt-adapted and

∫T

0

∣∣ϕ(t)∣∣pdt <∞ a.s. for every T > 0

}
,

L
(
R

+,Lp
(
(0, t);Rd×m

))
=
{
ψ : Δ ×Ω −→ R

m×d | ψ(t, ·) ∈ Lp
(
(0, t);Rd×m

)}
.

(2.1)

Definition 2.1. A d-dimensional quasi-Itô process is an R
d-valued continuous adapted process

x(t) = (x1(t), . . .,xd(t))
T on t ≥ 0 of the form

x(t) = ϕ(t) +
∫ t

0
f(t, s)ds +

∫ t

0
g(t, s)dW(s), (2.2)

where f = (f1, . . . , fd)
T ∈ L(R+,L1((0, t);Rd)), g = (gij)d×m ∈ L(R+,L2((0, t);Rd×m)), for

all s ≥ 0, f(·, s) and g(·, s) are continuous, and ϕ(t) is an Ft-adapted continuous stochastic
process.

We will say that x(t) has quasistochastic differential dx(s) or Dx(s) for t ≥ 0 given by

dx(s) = dϕ(s) + f(t, s)ds + g(t, s)dW(s), (2.3)

or

Dx(s) = f(t, s)ds + g(t, s)dW(s), (2.4)

in which Dx(s) = dx(s) − dϕ(s).

Remark 2.2. Definition 2.1 is well defined under the condition that
∫ t
0 g(t, s)dW(s) is

continuous for t. The proof of the continuity of
∫ t
0 g(t, s)dW(s) is similar to Theorem 1.5.13

in [1]. Here we do not verify it. But in the proof we will need two approximation theorems
as follows.
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Lemma 2.3 (see [2, page 116]). Letting g : R
d ×Ω → R be B(Rd) × F-measurable, then g could

be approximated pointwise by bounded functions of the form

m∑
k=1

φk(x)ψk(ω). (2.5)

Lemma 2.4. Let φ(t, s) : R
2 → R be B(R2)-measurable, and for all s ≥ 0, g(·, s) is continuous;

then φ(t, s) is approximated by functions on the form

m∑
k=1

g1
k(t)g

2
k(s), (2.6)

where g1
k
(t) is continuous and g2

k
(s) is B(R1)-measurable for every k ∈ {1, 2, . . . , m}.

Similar to Theorem 1.2, it again raises the following question. If x(t) is a quasi-Itô
process and V ∈ C2,1(Rd × R

+;R), then whether the compound function V (x(t), t) is a quasi-
Itô process. And if it is, then what is its quasistochastic differential? We now have the result
which is a well generalization of Itô’s formula.

Theorem 2.5. Let x(t) be a d-dimensional quasi-Itô process on t ≥ 0 with the quasistochastic
differential

dx(s) = dϕ(s) + f(t, s)ds + g(t, s)dW(s), (2.7)

or

Dx(s) = f(t, s)ds + g(t, s)dW(s), (2.8)

with Dx(s) = dx(s) − dϕ(s). Here f , g are defined as Definition 2.1, ϕ(t) is a continuous stochastic
process, and for every t ∈ [0,∞), ϕ(t) is F0-measurable. Let V ∈ C2,1(Rd × R

+;R) and

h(t, s) = ϕ(t) +
∫ s

0
f(t, r)dr +

∫s

0
g(t, r)dW(r), t ∈ [0,+∞). (2.9)

Then V (x(t), t) is a quasi-Itô process with the quasistochastic differential given by

dV (x(s), s)

= dV
(
ϕ(s), 0

)

+
[
Vt(h(t, s), s) + Vx(h(t, s), s)f(t, s) +

1
2
trace

(
gT (t, s)Vxx(h(t, s), s)g(t, s)

)]
ds

+ Vx(h(t, s), s)g(t, s)dW(s) a.s.,

(2.10)
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or

DV (x(s), s) =
[
Vt(h(t, s), s) + Vx(h(t, s), s)f(t, s) +

1
2
trace

(
gT (t, s)Vxx(h(t, s), s)g(t, s)

)]
ds

+ Vx(h(t, s), s)g(t, s)dW(s) a.s.
(2.11)

with DV (x(s), s) = dV (x(s), s) − dV (ϕ(s), 0).

Proof. Setting t∗ ∈ [0,∞) is arbitrary and

y(t) = ϕ(t∗) +
∫ t

0
f(t∗, s)ds +

∫ t

0
g(t∗, s)dW(s)a.s. (2.12)

By Itô’s formula, we can derive that for any t ≥ 0,

V
(
y(t), t

)
= V

(
ϕ(t∗), 0

)

+
∫ t

0

[
Vt
(
y(s), s

)
+ Vx

(
y(s), s

)
f(t∗, s) +

1
2
trace

(
gT (t∗, s)Vxx

(
y(s), s

)
g(t∗, s)

)]
ds

+
∫ t

0
Vx

(
y(s), s

)
g(t∗, s)dW(s) a.s.

(2.13)

So V (y(t∗), t∗) = V (x(t∗), t∗). Setting t = t∗, then we have

V (x(t∗), t∗) = V
(
ϕ(t∗), 0

)

+
∫ t∗

0

[
Vt
(
y(s), s

)
+Vx

(
y(s), s

)
f(t∗, s)+

1
2
trace

(
gT (t∗, s)Vxx

(
y(s), s

)
g(t∗, s)

)]
ds

+
∫ t∗

0
Vx

(
y(s), s

)
g(t∗, s)dW(s)

= V
(
ϕ(t∗), 0

)

+
∫ t∗

0

[
Vt(h(t∗, s), s) + Vx(h(t∗, s), s)f(t∗, s)

+
1
2
trace

(
gT (t∗, s)Vxx(h(t∗, s), s)g(t∗, s)

)]
ds

+
∫ t∗

0
Vx(h(t∗, s), s)g(t∗, s)dW(s).

(2.14)

Since t∗ is arbitrary, (2.10)must be required. The proof is complete.
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Remark 2.6. When ϕ(t), f(t, s) and g(t, s), are independent of t, that is, when ϕ(t) =
x(0), f(t, s) = f(s) and g(t, s) = g(s), then it is easy to check that

h(t, s) = x(0) +
∫s

0
f(r)dr +

∫s

0
g(r)dW(r) = x(s), (2.15)

and the generalized Itô’s formula becomes classical Itô’s formula.

Example 2.7. Suppose that

x(t) = m(t) +
∫ t

0
tW(s)ds +

∫ t

0
e− cos t−s/2+W(s)dW(s), (2.16)

wherem(t) is a continuous function.

We find y(t) = x2(t). Here we have

h(t, s) = m(t) +
∫ s

0
tW(r)dr +

∫s

0
e− cos t−r/2+W(r)dW(r)

= m(t) + tW(s) + e− cos t−s/2+W(s) − e− cos t,

(2.17)

where W(s) �
∫s
0 W(r)dr. Let V (x, t) = x2. Then Vt = 0, Vx = 2x, Vxx = 2. So by (2.11) we

obtain

Dy(t) =
[(

2m(t) + 2tW(s) + 2e− cos t−s/2+W(s) − 2e− cos t
)
tW(s) + e−2 cos t−s+2W(s)

]
ds

+ 2
(
m(t) + tW(s) + e− cos t−s/2+W(s) − e− cos t

)
e− cos t−s/2+W(s)dW(s).

(2.18)

Therefore,

x2(t) =
∫ t

0

[(
2m(t) + 2tW(s) + 2e− cos t−s/2+W(s) − 2e− cos t

)
tW(s) + e−2 cos t−s+2W(s)

]
ds

+
∫ t

0

[
2
(
m(t) + tW(s) + e− cos t−s/2+W(s) − e− cos t

)
e− cos t−s/2+W(s)

]
dW(s) + e2t.

(2.19)

Sometimes function ϕ(t, ω) is required to be Ft-adapted instead of F0-measurable. We
suppose that C is the set of all absolutely continuous Ft-adapted processes. That is, if φ ∈ C,
then φ(t, ω) is absolutely continuous for almost all ω ∈ Ω and φ(t, ω) is Ft-measurable for
any t ≥ 0.

Theorem 2.8. Let x(t) be a d-dimensional quasi-Itô process on t ≥ 0 with the quasistochastic
differential

dx(s) = dϕ(s) + f(t, s)ds + g(t, s)dW(s), (2.20)
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or

Dx(s) = f(t, s)ds + g(t, s)dW(s), (2.21)

with Dx(s) = dx(s) − dϕ(s). Here f , g are defined as Definition 2.1 and ϕ ∈ C. Let V ∈ C2,1(Rd ×
R

+;R) and

h(t, s) =
∫s

0

(
ϕ′(r) + f(t, r)

)
dr +

∫s

0
g(t, r)dW(r) , t ∈ [0,+∞). (2.22)

Then V (x(t), t) is a quasi-Itô process with the quasistochastic differential given by

dV (x(s), s) =
[
Vt
(
h(t, s), s

)
+ Vx

(
h(t, s), s

)(
ϕ′(s) + f(t, s)

)

+
1
2
trace

(
gT (t, s)Vxx

(
h(t, s), s

)
g(t, s)

)]
ds

+ Vx
(
h(t, s), s

)
g(t, s)dW(s) a.s.

(2.23)

Proof. It is easy to see that

dx(s) =
(
ϕ′(s) + f(t, s)

)
ds + g(t, s)dW(s) � f(t, s)ds + g(t, s)dW(s). (2.24)

Let

h(t, s) =
∫s

0
f(t, r)dr +

∫ s

0
g(t, r)dW(r), t ∈ [0,+∞). (2.25)

From Theorem 2.5 we have

dV (x(s), s) =
[
Vt
(
h(t, s), s

)
+ Vx

(
h(t, s), s

)(
ϕ′(s) + f(t, s)

)

+
1
2
trace

(
gT (t, s)Vxx

(
h(t, s), s

)
g(t, s)

)]
ds

+ Vx
(
h(t, s), s

)
g(t, s)dW(s) a.s.

(2.26)

The proof is complete.

Example 2.9. Let

x(t) = esinW(t) +
∫ t

0
tW(s)ds +

∫ t

0
e− cos t−s/2+W(s)dW(s). (2.27)
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Find y(t) = x2(t). Here we have

h(t, s) =
∫ s

0

(
tW(r) +W(r)esinW(r) cosW(r)

)
dr +

∫s

0
e− cos t−r/2+W(r)dW(r)

= tW(s) + esinW(s) + e− cos t−s/2+W(s) − e− cos t.

(2.28)

So by Theorem 2.8, we obtain

x2(t) =
∫ t

0

[
2
(
tW(s) + esinW(s) + e− cos t−s/2+W(s) − e− cos t

)

×
(
tW(s) +W(r)esinW(r) cosW(r)

)
+ e−2 cos t−s+2W(s)

]
ds

+
∫ t

0

[(
2tW(s) + 2esinW(s) + 2e− cos t−s/2+W(s) − 2e− cos t

)
e− cos t−s/2+W(s)

]
dW(s).

(2.29)

3. Stability in Probability of SVIEs

In this section, we use the generalized Itô’s formula to investigate the stability for the d-
dimensional SVIE:

x(t) = ϕ(t, ω)x0 +
∫ t

t0

f(x(s), t, s, ω)ds +
∫ t

t0

g(x(s), t, s, ω)dW(s). (3.1)

Assuming further that ϕ(t, ω) is Ft0 -measurable, ϕ(t0, ω) = 1 and

f(0, t, s) = 0, g(0, t, s) = 0, (t, s) ∈ Δ a.s. (3.2)

Hence, (3.1) has solution x(t) ≡ 0 corresponding to initial value x(t0) = 0. This solution is
called trivial solution. For any η ∈ C([t0,∞);Rd), define

h
(
η, t, s

)
= η(s) + ϕ(t, ω)x0 − ϕ(s,ω)x0,

LV (
η, t, s

)
= Vt

(
h
(
η, t, s

)
, s
)
+ Vx

(
h
(
η, t, s

)
, s
)
f
(
η(s), s, ω

)

+
1
2
trace

[
gT

(
η(s), s, ω

)
Vxx

(
h
(
η, t, s

))
g
(
η(s), s, ω

)]
.

(3.3)

Then by Theorem 2.5,

V (x(t), t) = V
(
ϕ(t, ω)x0, t0

)
+
∫ t

t0

LV (x, t, s)ds +
∫ t

t0

Vx(h(x, t, s), s)g(x(s), s, ω)dW(s) a.s.

(3.4)
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Let K denote the family of all continuous nondecreasing functions μ : R
+ → R

+ such that
μ(0) = 0 and μ(x) > 0 if x > 0. For h > 0, let Sh = {x ∈ R

d : |x| < h}. A continuous function
V (x, t) defined on Sh×[t0,∞) is said to be positive definite if V (0, t) = 0, and, for some μ ∈ K,

V (x, t) ≥ μ(|x|) ∀(x, t) ∈ Sh × [t0,∞). (3.5)

A function V (x, t) is said to be decrescent if V (x, t) ≤ μ(|x|), (x, t) ∈ Sh × [t0,∞) for some
μ ∈ K. A function V (x, t) defined on R

d × [t0,∞) is said to be radially unbounded if
lim inf|x|→∞,t≥t0V (x, t) = ∞.

Definition 3.1. (1) The trivial solution of (3.1) is said to be stochastically stable if for every pair
ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, t0) > 0 such that

P(|x(t; t0, x0)| < r, t ≥ t0) ≥ 1 − ε, (3.6)

whenever |x0| < δ.
(2) The trivial solution of (3.1) is said to be stochastically asymptotically stable if it is

stochastically stable, and, moreover, for every ε ∈ (0, 1), there exists a δ0 = δ0(ε, t0) > 0 such
that

P

(
lim
t→∞

x(t; t0, x0) = 0
)

≥ 1 − ε, (3.7)

whenever |x0| < δ0.
(3) The trivial solution of (3.1) is said to be globally stochastically asymptotically stable

if it is stochastically stable, and, moreover, for all x0 ∈ R
d

P

(
lim
t→∞

x(t; t0, x0) = 0
)

= 1. (3.8)

Lemma 3.2. If there exists an ε > 0, such that |ϕ(t, ω)| > ε, t ∈ [t0,∞) a.s. Then for any x0 ∈ R
d

and x0 /= 0, one has

P(|x(t; t0, x0)|/= 0, t ≥ t0) = 1. (3.9)

Similar to the proof of Lemma 3.2 in [2, pp. 120], it is easy to get the lemma. Here we
do not recount it.

Theorem 3.3. Suppose that there exists aK > 0, such that |ϕ(t, ω)| ≤ K a.s. If there exists a positive
definite function V (x, t) ∈ C2,1(Sh × [t0,∞);R+), such that for any (x, t, s) ∈ C([t0,∞);Rd) × Δ,
there is

LV (x, t, s) ≤ 0. (3.10)

Then the trivial solution to (3.1) is stochastically stable.
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Proof. From the definition of the positive definite function, we know that V (0, t) = 0, and there
exists nonnegative nondecreasing function μ(x), such that V (x, t) ≥ μ(|x|) for any (x, t) ∈
Sh × [t0,∞). Choose any ε ∈ (0, 1), r > 0. Without loss of generality, we assume that r < h.
Since V (x, t) is continuous and V (0, t0) = 0, we could find δ = δ(ε, r, t0) > 0, such that for any
t ∈ [t0,∞), ω ∈ Ω there is

1
ε
sup
x∈Sδ

V
(
ϕ(t, ω)x, t0

)
< μ(r). (3.11)

Define x(t) = x(t; t0, x0). Choose any x0 ∈ Sδ. Let τ be the first time of x(t) going out the ball
Sr , that is, τ = inf{t ≥ t0 : x(t)∈Sr}. By Theorem 2.5, for any t ≥ t0, there is

V (x(τ ∧ t), τ ∧ t) = V
(
ϕ(τ ∧ t, ω)x0, t0

)
+
∫ τ∧t

t0

LV (x, τ ∧ t, s)ds

+
∫ τ∧t

t0

Vx(h(x, τ ∧ t, s), s)g(x(s), s, ω)dW(r).

(3.12)

Taking the expectation for both sides, and using LV (x, t, s) ≤ 0, we get

EV (x(τ ∧ t), τ ∧ t) ≤ EV
(
ϕ(τ ∧ t, ω)x0, t0

)
. (3.13)

On the other hand, we have

EV (x(τ ∧ t), τ ∧ t) = E
[(
I{τ≤t} + I{τ>t}

)
V (x(τ ∧ t), τ ∧ t)]

≥ E
[
I{τ≤t}V (x(τ ∧ t), τ ∧ t)]

≥ μ(r)E[I{τ≤t}]
= μ(r)P(τ ≤ t),

(3.14)

So combining (3.11) and (3.14), it follows that

P(τ ≤ t) ≤ EV
(
ϕ(τ ∧ t, ω)x0, t0

)
μ(r)

< ε. (3.15)

Letting t → ∞, we obtain

P(τ ≤ ∞) < ε, (3.16)

that is,

P(|x(t; t0, x0)| < r, t ≥ t0) > 1 − ε. (3.17)

The proof is complete.
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Theorem 3.4. Suppose that the conditions in Lemma 3.2 hold. If there exists a positive definite
function V (x, t) ∈ C2,1(Sh × [t0,∞);R+), which has infinitesimal upper bounded and

μ1(|x|) ≤ V (x, t) ≤ μ2(|x|), (x, t) ∈ Sh × [t0,∞),

LV (x, t, s) ≤ −μ3(|x(t)|), (x, t, s) ∈ C
(
[t0,∞);Rd

)
×Δ,

(3.18)

in which μ2(x) is concave function. Then the trivial solution to (3.1) is stochastically asymptotically
stable.

Proof. It is clear that the conditions in Theorem 3.3 are satisfied. Hence, the solution to (3.1)
is stochastically stable. So it is only necessary to show that for any ε ∈ (0, 1), there exists a
δ = δ0(ε, t0) > 0, such that for any |x0| < δ0,

P

(
lim
t→∞

x(t; t0, x0) = 0
)

≥ 1 − ε (3.19)

holds. Fixing ε ∈ (0, 1), in view of Theorem 3.3, there exists a δ0 = δ0(ε, t0) > 0, such that
|x0| < δ0 holds provided only that

P

{
|x(t; t0, x0)| < h

2
, t ≥ t0

}
≥ 1 − ε

4
. (3.20)

Fix x0 ∈ Sδ0 , and denote x(t) = x(t; t0, x0). Choose any 0 < β < |x0| and 0 < α < β. Define
stopping time

τα = inf{t ≥ t0 : |x(t)| ≤ α}, τh = inf
{
t ≥ t0 : |x(t)| ≥ h

2

}
. (3.21)

From Theorem 2.5, for any t ≥ t0, there is

0 ≤ EV (x(τα ∧ τh ∧ t), τα ∧ τh ∧ t)

= EV
(
ϕ(τα ∧ τh ∧ t, ω)x0, t0

)
+ E

∫ τα∧τh∧t

t0

LV (x, τα ∧ τh ∧ t, s)ds

≤ EV
(
ϕ(τα ∧ τh ∧ t, ω)x0, t0

) − μ3(α)E(τα ∧ τh ∧ t − t0).

(3.22)

Therefore

E(τα ∧ τh ∧ t − t0) ≤
EV

(
ϕ(τα ∧ τh ∧ t, ω)x0, t0

)
μ3(α)

. (3.23)

So

P(t ≤ τα ∧ τh) ≤
EV

(
ϕ(τα ∧ τh ∧ t, ω)x0, t0

)
μ3(α)(t − t0) . (3.24)
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Letting t → ∞, it yields

P(τα ∧ τh <∞) = 1. (3.25)

Clearly, from (3.20) it follows that P(τh <∞) ≤ ε/4. Therefore

1 = P(τα ∧ τh <∞) ≤ P(τα <∞) + P(τh <∞) ≤ P(τα <∞) +
ε

4
. (3.26)

So

P(τα <∞) ≥ 1 − ε

4
. (3.27)

Choose sufficiently large θα, such that

P(τα < θα) ≥ 1 − ε

2
. (3.28)

Then

P(τα < τh ∧ θα) ≥ P({τα < θα} ∩ {τh = ∞}) ≥ P(τα < θα) − P(τh = ∞) ≥ 1 − 3ε
4
. (3.29)

Again define two stopping times as

σ =

{
τα, τα < τh ∧ θα,

∞, otherwise,
and τβ = inf

{
t > σ : |x(t)| ≥ β}. (3.30)

By reason that

x(t) = ϕ(t, ω)x0 +
∫ t

t0

f(x(s), t, s, ω)ds +
∫ t

t0

g(x(s), t, s, ω)dW(s)

= ϕ3(t, r, x0, ω) +
∫ t

r

f(x(s), t, s, ω)ds +
∫ t

r

g(x(s), t, s, ω)dW(s), t ≥ r,
(3.31)

in which

ϕ3(t, r, x0, ω) = ϕ(t, ω)x0 +
∫ r

t0

f(x(s), t, s, ω)ds +
∫ r

t0

g(x(s), t, s, ω)dW(s). (3.32)

From Theorem 2.5, it follows that for any t ≥ θα, there is

EV
(
x
(
τβ ∧ t

)
, τβ ∧ t

) ≤ EV
(
ϕ3

(
τβ ∧ t, σ ∧ t, x0, ω

)
, σ ∧ t). (3.33)
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Note that if ω ∈ {τα ≥ τh ∧ θα}, then

V
(
x
(
τβ ∧ t

)
, τβ ∧ t

)
= V

(
ϕ3

(
τβ ∧ t, σ ∧ t, x0, ω

)
, σ ∧ t). (3.34)

Consequently,

E
(
I{τα<τh∧θα}V

(
x
(
τβ ∧ t

)
, τβ ∧ t

)) ≤ E
(
I{τα<τh∧θα}V

(
ϕ3

(
τβ ∧ t, σ ∧ t, x0, ω

)
, σ ∧ t)). (3.35)

From the total probability formula, it yields that

E
(
I{τα<τh∧θα}V

(
x
(
τβ ∧ t

)
, τβ ∧ t

)) ≥ E
(
I{τα<τh∧θα}V

(
x
(
τβ ∧ t

)
, τβ ∧ t

) | τβ ≤ t
)
P
(
τβ ≤ t

)
≥ μ1

(
β
)
P
(
τβ ≤ t

)
.

(3.36)

Since μ2(·) is a concave function, and by (3.18), we have

E
(
I{τα<τh∧θα}V

(
ϕ3

(
τβ ∧ t, σ ∧ t, x0, ω

)
, σ ∧ t)) ≤ E

(
I{τα<τh∧θα}μ2

(∣∣ϕ3
(
τβ ∧ t, σ ∧ t, x0, ω

)∣∣))
≤ Eμ2

(∣∣ϕ3
(
τβ ∧ t, τα, x0, ω

)∣∣)
≤ μ2

(
E
∣∣ϕ3

(
τβ ∧ t, τα, x0, ω

)∣∣).
(3.37)

From (3.31) it follows that

E
∣∣ϕ3

(
τβ ∧ t, τα, x0, ω

)∣∣ − E|x(τα)| ≤ E
∣∣ϕ(τβ ∧ t, ω)x0 − ϕ(τα, ω)x0∣∣. (3.38)

From Lemma 3.2, it is known that limα→ 0 τα = ∞. Hence limα→ 0 τβ = ∞. Letting α → 0 and
taking the limit for (3.38), there is

lim
α→ 0

[
E
∣∣ϕ3

(
τβ ∧ t, τα, x0, ω

)∣∣ − E|x(τα)|
]
= 0. (3.39)

Thus we could choose sufficiently small ε1 > 0, α1 > 0, such that μ2(α1 + ε1)/μ1(β) < ε/4 and

E

∣∣∣ϕ3

(
τβα1 ∧ t, τα1 , x0, ω

)∣∣∣ − E|x(τα1)| ≤ ε1 (3.40)

hold. That is,

E

∣∣∣ϕ3

(
τβα1 ∧ t, τα1 , x0, ω

)∣∣∣ ≤ E|x(τα1)| + ε1 = α1 + ε1. (3.41)

Combining (3.35), (3.36), (3.37), and (3.41), it follows that for sufficiently large t there is

P
(
τβ ≤ t

) ≤ μ2(α1 + ε1)
μ1
(
β
) <

ε

4
. (3.42)
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Letting t → ∞, it yields that P(τβ ≤ ∞) < ε/4. In view of (3.29), it deduces that

P
({
τβ = ∞} ∩ {σ <∞}) ≥ P(τα < τα ∧ θ) − P

(
τβ <∞) ≥ 1 − ε, (3.43)

which shows that

P

(
ω : lim sup

t→∞
|x(t)| ≤ β

)
≥ 1 − ε. (3.44)

By the arbitrariness of β, we have

P

(
ω : lim sup

t→∞
|x(t)| = 0

)
≥ 1 − ε. (3.45)

The proof is complete.

Theorem 3.5. Suppose that the conditions in Theorem 3.4 are satisfied and V (x, t) is radially
unbounded. Then the trivial solution to (3.1) is globally stochastically asymptotically stable.

Proof. In view of Theorem 3.4, it is known that the trivial solution to (3.1) is stochastically
asymptotically stable. Therefore it is only necessary to explain that for any x0 ∈ R

d, there is

P

(
lim
t→∞

x(t; t0, x0) = 0
)

= 1. (3.46)

Choose any x0 ∈ R
d and ε ∈ (0, 1). Denote x(t) = x(t; t0, x0). From that V (x, t) is radially

unbounded and that ϕ(t, ω) is bounded, we could find a sufficiently large h > |x0|, such that

inf
t≥t0,|x|≥h

{
EV

(
ϕ(t, ω)x0, t0

)
EV (x, t)

}
≤ ε

4
. (3.47)

Define stopping time τh = {t > t0 : |x(t)| ≥ h}. Then from Theorem 2.5 and conditional
property formula, we could prove that for any t > t0, there is

EV (x(τh), τh)P(τh ≤ t) ≤ EV (x(τh ∧ t), τh ∧ t) ≤ EV
(
ϕ(τh ∧ t, ω)x0, t0

)
. (3.48)

Therefore

P(τh < t) ≤
EV

(
ϕ(τh ∧ t, ω)x0, t0

)
EV (x(τh), τh)

≤ ε

4
. (3.49)

Letting t → ∞, it yields that P(τh <∞) ≤ ε/4, that is:

P(|x(t; t0, x0)| ≤ h, t ≥ t0) ≥ 1 − ε

4
. (3.50)
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In the following, applying the method in Theorem 3.4, we obatin that

P

(
lim
t→∞

x(t; t0, x0) = 0
)

≥ 1 − ε. (3.51)

Hence, by the arbitrariness of ε, (3.46) holds. It completes the proof.

To illustrate the theorem developed in this section, an example now is discussed.

Example 3.6. Consider a scale linear SVIE:

x(t) = ϕ(t, ω)x0 +
∫ t

0
a(t)b(s)x(s)ds +

∫ t

0
a(t)c(s)x(s)dW(s), t ∈ [0,∞), (3.52)

in which a(t)b(t) < 0, t ≥ 0, ϕ(0, ω) = 1.
Letting y(t) = a−1(t)x(t), ϕ1(t, ω) = a−1(t)ϕ(t, ω), then (3.52) is changed into

y(t) = ϕ1(t, ω)x0 +
∫ t

0
a(s)b(s)y(s)ds +

∫ t

0
a(s)c(s)y(s)dW(s) , t ∈ [0,∞). (3.53)

By Lemma 2.3, it follows that

h(t, s) = y(s) + ϕ1(t, ω)x0 − ϕ1(s,ω)x0. (3.54)

Setting V (x, t) = x2, then

LV (
y(s), t, s

)
= 2a(s)b(s)y2(s) +

(
ϕ1(t, ω) − ϕ1(s,ω)

)
a(s)b(s)x0y(s) + |a(s)c(s)|2∣∣y(s)∣∣2.

(3.55)

If a−1(t)ϕ(t, ω) is increasing and bounded almost surely and 2|b(s)| ≥ |a(s)‖c(s)|2, then
LV (y(s), t, s) < 0. From Theorem 2.5, the solution to (3.52) is stochastically stable.

Setting V (x, t) = x1/2, then

LV (
y(s), t, s

)
=

1
2
[
y(s) + ϕ1(t, ω)x0 − ϕ1(s,ω)x0

]−1/2
a(s)b(s)y(s)

− 1
8
[
y(s) + ϕ1(t, ω)x0 − ϕ1(s,ω)x0

]−3/2
a2(s)b2(s)y2(s).

(3.56)

If a−1(t)ϕ(t, ω) is increasing and bounded almost surely, and a−1(t) = −b(t), then
LV (y(s), t, s) ≤ −y(s)1/2/2. In view of Theorem 3.3, for any x0 > 0, there is

P

(
lim
t→∞

x(t; t0, x0) = 0
)

= 1. (3.57)
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Remark 3.7. The generalized Itô’s formula provides a powerful tool to deal with SVIEs. But
we also remind of its complexity, which will bring some difficulties when the almost sure
exponential stability and the moment exponential stability for SVIEs are discussed. In this
point, we shall go on to discuss in another papers.
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