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The antisynchronization behavior of chaotic systems with parametric uncertainties and external
disturbances is explored by using robust active sliding mode control method. The sufficient condi-
tions for achieving robust antisynchronization of two identical chaotic systemswith different initial
conditions and two different chaotic systems with terms of uncertainties and external disturbances
are derived based on the Lyapunov stability theory. Analysis and numerical simulations are shown
for validation purposes.

1. Introduction

Chaotic nonlinear systems appear ubiquitously in nature and can occur inman-made systems.
These systems are recognized by their great sensitivity to initial conditions. Many scientists
who are interested in this field have struggled to achieve the synchronization or antisyn-
chronization of different chaotic systems, mainly due to its potential applications especially
in chemical reactions, power converters, biological systems, information processing,
secure communications, and so forth [1–7]. But due to its complexities, such tasks are always
difficult to achieve. It is much more attractive and challenging to realize the synchronization
or antisynchronization of two different chaotic systems especially if terms of uncertainty are
considered. A wide variety of approaches have been proposed for the synchronization or
antisynchronization of chaotic systems, which include generalized active control [8–10], non-
linear control [11, 12], adaptive control [13–17], and sliding mode control [18, 19]. Most of
the above-mentioned works did not consider the uncertainty of parameters and its effects
on the systems. The aim of this paper is to further develop the state observer method for



2 Journal of Applied Mathematics

constructing antisynchronized slave system for chaotic systemswith parametric uncertainties
and external disturbances by using a robust active sliding mode method.

The outline of the rest of the paper is organized as follows. Firstly, in Section 2 we
present a novel active sliding mode controller design and analysis. Section 3 presents a brief
description of the two systems, Next, in Section 4, the active sliding mode control method
is applied to antisynchronize two identical chaotic systems with different initial conditions
and terms of uncertainties and external disturbances. In Section 5, we apply our method to
antisynchronize two different chaotic systems, namely, the chaotic Lü and Genesio systems.
Finally, Section 6 provides a summary of our results.

2. Active Sliding Mode Controller Design and Analysis

Design procedure of the active sliding mode controller which is a combination of the active
controller and the sliding mode controller is given first, and then the stability issue of the
proposed method is discussed.

2.1. Active Sliding Mode Controller Design

Consider a chaotic system described by the following nonlinear differential equation:

ẋ = (A1 + ΔA1)x + f1(x) +D1(t), (2.1)

where x(t) ∈ Rn denotes the system’s n-dimensional state vector, A1 ∈ Rn×n represents the
linear part of the system dynamics, and f1 : Rn → Rn is the nonlinear part of the system,
ΔA1 ∈ Rn×n is the matrix of uncertainties, and D1(t) ∈ Rn is a vector representing external
disturbances. Relation (2.1) represents the master system. The controller u(t) ∈ Rn is added
into the slave system, so it is given by

ẏ = (A2 + ΔA2)y + f2
(
y
)
+D2(t) + u(t), (2.2)

where y(t) ∈ Rn is the slave system’s n-dimensional state vector,A2 ∈ Rn×n and f2 : Rn → Rn

play similar roles as A1 and f1 for the master system, ΔA2 ∈ Rn×n is the matrix uncertainties,
and D2(t) ∈ Rn is a vector representing external disturbances. If A1 = A2 and f1(·) = f2(·),
then x and y are the states of two identical chaotic systems. Otherwise they represent the
states of two different chaotic systems. The antisynchronization problem is to design the con-
troller u(t) ∈ Rn which antisynchronizes the states of the master and slave systems. The
dy-nam-ics of the antisynchronization errors can be expressed as

ė = (A2 + ΔA2)y + f2
(
y
)
+ (A1 + ΔA1)x + f1(x) +D1(t) +D2(t) + u(t)

= (A2 + ΔA2 + ΔA1)e +D1(t) +D2(t) + F
(
x, y

)
+ u(t),

(2.3)

where e = y+x and F(x, y) = f2(y)+f1(x)+(A1− (A2+ΔA2))x−ΔA1y. Our goal is to design
the controller u(t) ∈ Rn such that

lim
t→∞

‖e‖ = lim
t→∞

∥∥y
(
t, y0

)
+ x(t, x0)

∥∥ = 0, (2.4)



Journal of Applied Mathematics 3

where ‖ · ‖ is the Euclidean norm. As the trajectories of the chaotic systems are always bound-
ed, then one can assume uncertainties to be bounded, so, in general,

|ΔA1| < ρ, |ΔA2| < μ,

|D1| < δ, |D2| < ε,
(2.5)

where ρ, μ, δ, and ε are positive constants. According to the active control design procedure,
one uses the control input u(t) to eliminate the nonlinear part of the error dynamics. In other
words, the input vector is considered as

u(t) = H(t) − F
(
x, y

)
. (2.6)

The error system (2.3) is then rewritten as

ė = (A2 + ΔA2 + ΔA1)e +D1(t) +D2(t) +H(t). (2.7)

Equation (2.7) describes the error dynamics with a newly defined control input H(t). There
are many possible choices for the controlH(t). Without loss of generality, we choose the slid-
ing mode control law as follows:

H(t) = Kw(t), (2.8)

whereK = [k1, k2, k3]
T is a constant gain vector andw(t) ∈ R is the control input that satisfies

w(t) =

{
w+(t), s(e) ≥ 0,
w−(t), s(e) < 0,

(2.9)

and s = s(e) is a switching surface which prescribes the desired dynamics. The resultant error
dynamics is then

ė = (A2 + ΔA2 + ΔA1)e +D1(t) +D2(t) +Kw(t). (2.10)

In what follows, the appropriate sliding mode controller will be designed according to the
sliding mode control theory.

2.1.1. Sliding Surface Design

The sliding surface can be defined as follows:

s(e) = Ce, (2.11)

where C = [c1, c2, c3] is a constant vector. The equivalent control approach is found by the
fact that ṡ(e) = 0 is a necessary condition for the state trajectory to stay on the switching
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surface s(e) = 0. Hence, when in sliding mode, the controlled system satisfies the following
conditions:

s(e) = 0, (2.12)

ṡ(e) = 0. (2.13)

Now, using (2.10), (2.11), and (2.12), one can obtain

ṡ(e) =
∂s(e)
∂e

ė = C[(A2 + ΔA2 + ΔA1)e +D1(t) +D2(t) +Kw(t)] = 0. (2.14)

Solving (2.14) for w(t) results in the equivalent control weq(t)

weq(t) = −(CK)−1C[(A2 + ΔA2 + ΔA1)e(t) +D1(t) +D2(t)], (2.15)

where the existence of (CK)−1 is a necessary condition. Replacing for w(t) in (2.10) from
weq(t) of (2.15), the state equation in the sliding mode is determined as follows:

ė =
[
I −K(CK)−1C

]
[(A2 + ΔA2 + ΔA1)e +D1(t) +D2(t)]. (2.16)

As long as the system (2.10) has all eigenvalues with negative real parts, it is asymptotically
stable.

2.1.2. Design of the Sliding Mode Controller

We assume that the constant plus proportional rate reaching law is applied. The reaching law
can be chosen such that

ṡ = − qs
|s| + γ

− rs, (2.17)

where γ is a positive real number. The gains q > 0 and r > 0 are determined such that the
sliding condition is satisfied and the sliding mode motion occurred. From (2.10) and (2.11),
it can be found that

ṡ = C[(A2 + ΔA2 + ΔA1)e +D1(t) +D2(t) +Kw(t)]. (2.18)

Now, from (2.17) and (2.18), the control input is determined as

w(t) = −(CK)−1
[
C(rI + (A2 + ΔA2 + ΔA1))e(t) + CD1(t) + CD2(t) +

qs

|s| + γ

]
. (2.19)
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2.1.3. Stability Analysis

To check the stability of the controlled system, one can consider the following Lyapunov can-
didate function:

V =
1
2
s2. (2.20)

The time derivative of (2.21) is

V̇ = ṡs = − qs2

|s| + γ
− rs2. (2.21)

Since s2/(|s| + γ) > 0, r > 0 and q > 0, we have V̇ = ṡs < 0; therefore, V̇ (e) is negative
definite. This property implies boundedness of the sliding surface s. The error dynamics can
be obtained using (2.19) in (2.10):

ė =
[
(A2 + ΔA2 + ΔA1) −K(CK)−1C(rI + (A2 + ΔA2 + ΔA1))

]
e

−K(CK)−1C[D1(t) +D2(t)] −K(KC)−1
qs

|s| + γ
.

(2.22)

As a linear system with bounded input (−K(CK)−1q for s ≥ 0 and K(CK)−1q for s < 0), the
error system is asymptotically stable if and only if [(A2 +ΔA2 +ΔA1)−K(CK)−1C(rI + (A2 +
ΔA2 + ΔA1))] has negative eigenvalues. Because of the special structure for matrix A2 in the
given chaotic systems, one of the eigenvalues is always −r and therefore is stable. The two
other eigenvalues are independent from r and determined by the other control parameters
that is, K and C. The latter two eigenvalues can be negative or positive depending on K and
C values. By appropriate choices of r,K, and C, one is able not only to stabilize the error
system but also to adjust the rate of the error convergence. The parameter q can be used to
enhance the robust property expected from a sliding mode controller.

3. Systems Description

The Lü attractor, which connects the Lorenz attractor [20] andChen and Ueta attractor [21,
22] and represents the transition from one to another, was proposed and analyzed by lü et al.
[23]. The Lü chaotic system is described by the following system of differential equations:

ẋ = a
(
y − x

)
,

ẏ = −xz + cy,

ż = xy − bz,

(3.1)
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where x, y, and z are state variables and a, b, and c are positive parameters. This system is
dissipative for c < a+b and has a chaotic attractor when a = 36, b = 3, and c = 20. The Genesio
system was introduced by Genesio and Tesi in [24]. It is given by

ẋ = y,

ẏ = z,

ż = −cx − by − az + x2,

(3.2)

where x, y, and z are state variables, and a, b, and c are the positive real constants satisfying
ab < c. Throughout this paper, we set a = 1.2, b = 2.92, and c = 6 such that the system
exhibits chaotic behavior.

4. Active Sliding Mode Antisynchronization between
Two Identical Systems

In order to observe synchronization behavior between two identical chaotic systems via
active sliding mode control, we consider two examples, the first one is Lü system in (3.1) and
the second example is Genesio system which is described in (3.2).

4.1. Active Sliding Mode Antisynchronization between
Two Identical Lü Systems

For the Lü system, let us consider that

ΔA =

⎛

⎝
0 1 0

−0.8 0 −1
0 0 −3

⎞

⎠, D(t) =

⎛

⎝
0.1 cos(50t)
−0.1 cos(50t)
0.1 sin(50t)

⎞

⎠. (4.1)

The master system and the slave system can be written as the following respectively:

ẋ1 = a
(
y1 − x1

)
+ y1 + 0.1 cos(50t),

ẏ1 = −x1z1 + cy1 − 0.8x1 − z1 − 0.1 cos(50t)

ż1 = x1y1 − bz1 − 3z1 + 0.1 sin(50t),

, (4.2)

and the slave system can be written as

ẋ2 = a
(
y2 − x2

)
+ y2 + 0.1 cos(50t) + u1,

ẏ2 = −x2z2 + cy2 − 0.8x2 − z2 − 0.1 cos(50t) + u2,

ż2 = x2y2 − bz2 − 3z2 + 0.1 sin(50t) + u3,

(4.3)
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where u1, u2, u3 are three control functions to be designed in order to determine the control
functions and to realize the active sliding mode antisynchronization between the systems in
(4.2) and (4.3). We add (4.2) and (4.3) to get

ė1 = a(e2 − e1) + e2 + 0.2 cos(50t) + u1,

ė2 = ce2 − 0.8e1 − e3 − x1z1 − x2z2 − 0.2 cos(50t) + u2,

ė3 = −(b + 3)e3 + x2y2 + x1y1 + 0.2 sin(50t) + u3,

(4.4)

where e1 = x2 + x1, e2 = y2 + y1, and e3 = z2 + z1. Our goal is to find proper control functions
ui (i = 1, 2, 3) such that system equation (4.3) globally antisynchronizes system equation (4.2)
asymptotically; that is,

lim
t→∞

‖e‖ = 0, (4.5)

where e = [e1, e2, e3]
T . Without the controls (ui = 0, i = 1, 2, 3), the trajectories of the two sys-

tems equations (4.2) and (4.3), will quickly separate with each other and become irrelevant.
However, when controls are applied, the two systems will approach synchronization for any
initial conditions by appropriate control functions. if the control parameters are chosen as
C = (0, 1, 1), K = (1, 1, 0)T , and r = 1, q = 30, and γ = 0.01, then the switching surface

s(e) = e2 + e3,

w(t) = −
[
(a + 1)e2 + (−b − 4)e3 − 0.2 cos(50t) + 0.2 sin(50t) + s +

30s
|s| + 0.01

]
,

(4.6)

so the controllers are:

u1 = −e1 −
[
(a + 1)e2 + (−b − 4)e3 − 0.2 cos(50t) + 0.2 sin(50t) + s +

30s
|s| + 0.01

]
,

u2 = x1z1 + x2z2 + 0.8e1 + e3

− 1
2

[
(a + 1)e2 + (−b − 4)e3 − 0.2 cos(50t) + 0.2 sin(50t) + s +

30s
|s| + 0.01

]
,

u3 = −x1y1 − x2y2 + 3e3.

(4.7)

Applying controller (4.7) to the slave system then the slave system in (4.3) can synchronize
master system equation (4.2) asymptotically. To verify and demonstrate the effectiveness of
the proposed method, we discuss the simulation result for the active sliding mode antisyn-
chronization between two identical Lü systems. For these simulations, the fourth-order
Runge-Kutta method is used to solve the systems with time step size 0.001. We assumed that
the initial conditions, (x1(0), y1(0), z1(0)) = (2, 2, 20) and (x2(0), y2(0), z2(0)) = (−3,−1,−1).
Hence the error system has the initial values e1(0) = −1, e2(0) = 1, and e3(0) = 19. The
systems parameters are chosen as a = 36, b = 3,c = 20 in the simulations such that Lü system
exhibit chaotic behavior. Antisynchronization of the systems equations (4.3) and (4.2) via
active sliding mode controllers in (4.7) is shown in Figure 1. Figures 1(a)–1(c) display the
state trajectories of master system (4.2) and slave system (4.3). Figure 1(d) displays the error
signals e1, e2, e3 of the Lü system under the controller equations (4.7).
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Figure 1: State trajectories of drive system (4.2) and response system (4.3), (a) signals x1 and x2; (b) signals
y1 and y2; (c) signals z1 and z2;(d) the error signals e1, e2, e3 between two identical Lü systems with
different initial conditions under the controller (4.7).

4.2. Active Sliding Mode Antisynchronization between
Two Identical Genesio Systems

For the Genesio system, let us consider that

ΔA =

⎛

⎝
0.5 0 0
0 −0.3 0

−0.5 0 0

⎞

⎠, D(t) =

⎛

⎝
0.1 cos(100t)
0.1 sin(100t)
0.1 sin(100t)

⎞

⎠. (4.8)
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The master system and the the slave system can be written as the following;
respectively,

ẋ1 = y1 + 0.5x1 + 0.1 cos(100t),

ẏ1 = z1 − 0.3y1 + 0.1 sin(100t),

ż1 = −cx1 − by1 − az1 + x2
1 − 0.5x1 + 0.1 sin(100t),

(4.9)

and the slave system can be written as

ẋ2 = y2 + 0.5x2 + 0.1 cos(100t) + u1,

ẏ2 = z2 − 0.3y2 + 0.1 sin(100t) + u2,

ż2 = −cx2 − by2 − cz2 + x2
2 − 0.5x2 + 0.1 sin(100t) + u3,

(4.10)

where u1, u2, u3 are three control functions to be designed in order to determine the control
functions and to realize the active sliding mode antisynchronization between the systems in
(4.9) and (4.10). We add (4.9) and (4.10) to get

ė1 = e2 + 0.5e1 + 0.2 cos(100t) + u1,

ė2 = e3 − 0.3e2 + 0.2 sin(100t) + u2,

ė3 = −(c + 0.5)e1 − be2 − ae3 + x2
1 + x2

2 + 0.2 sin(100t) + u3,

(4.11)

where e1 = x2 + x1, e2 = y2 + y1 and e3 = z2 + z1. Our goal is to find proper control functions
ui (i = 1, 2, 3) such that system equation (4.10) globally antisynchronizes system equation
(4.9) asymptotically, that is,

lim
t→∞

‖e‖ = 0, (4.12)

where e = [e1, e2, e3]
T . Without the controls (ui = 0, i = 1, 2, 3), the trajectories of the two

systems, (4.9) and (4.10), will quickly separate with each other and become irrelevant.
However, when controls are applied, the two systems will approach synchronization for any
initial conditions by appropriate control functions. if the control parameters are chosen as
C = (6, 0,−1), K = (1, 0, 0)T and r = 1, q = 60, and γ = 0.01, then the switching surface

s(e) = 6e1 − e3,

w(t) = −1
6

[
−6ce1 − (1 − a)e3 + 1.2 cos(100t) − 0.2 sin(100t) + s +

60s
|s| + 0.01

]
,

(4.13)

so the controllers are

u1 = −0.5e1 − 1
6

[
− 6ce1 − (1 − a)e3 + 1.2 cos(100t) − 0.2 sin(100t) + s +

60s
|s| + 0.01

]
,

u2 = 0.3e2,

u3 = +0.5e1 − x2
1 − x2

2.

(4.14)
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Applying controller (4.14) to the slave system then the slave system, in (4.10) can synchronize
master system equation (4.9) asymptotically. In the following, we discuss the simulation
results of the proposed method. For these simulations, the fourth-order Runge-Kutta method
is used to solve the systems with time step size 0.001. We assumed that the initial conditions,
(x1(0), y1(0), z1(0)) = (2, 2, 2) and (x2(0), y2(0), z2(0)) = (−2,−3,−3). Hence the error system
has the initial values e1(0) = 0, e2(0) = −1 and e3(0) = −1. The systems parameters are
chosen as a = 1.2, b = 2.92, and c = 6 in the simulations such that both systems exhibit
chaotic behavior. Antisynchronization of the systems equations (4.10) and (4.9) via active
sliding mode controllers in (4.14) are shown in Figure 2. Figures 2(a)–2(c) display the state
trajectories of master system (4.9) and slave system (4.10). Figure 2(d) display the error
signals e1, e2, e3 of Genesio system under the controller equations (4.14).

5. Active Sliding Mode Antisynchronization between
Two Different Systems

In this section the antisynchronization behavior between two different chaotic systems via ac-
tive sliding mode control is investigated, the Lü system in (3.1) is assumed as the master sys-
tem and the Genesio system in (3.2) is taken as the slave system. If we take:

ΔA1 =

⎛

⎝
0 4 0
0 1 0
0.5 0 0

⎞

⎠, ΔA2 =

⎛

⎝
−2 0 5
0 −1 0
1 0 0

⎞

⎠,

D1(t) =

⎛

⎝
−0.1 cos(10t)
−0.1 cos(10t)
−0.2 sin(10t)

⎞

⎠, D2(t) =

⎛

⎝
0.1 cos(10t)
−0.1 cos(10t)
0.2 sin(10t)

⎞

⎠.

(5.1)

Here is the master and slave systems; respectively,

ẋ1 = a
(
y1 − x1

)
+ 4y1 − 0.1 cos(10t),

ẏ1 = −x1z1 + cy1 − y1 − 0.1 cos(10t),

ż1 = x1y1 − bz1 + 0.5x1 − 0.2 sin(10t),

(5.2)

ẋ2 = y2 − 2x2 + 5z2 + 0.1 cos(10t) + u1,

ẏ2 = z2 − y2 + u2 − 0.1 cos(10t),

ż2 = −cx2 − by2 − cz2 + x2
2 + x2 + 0.2 sin(10t) + u3.

(5.3)

We add (5.2) to (5.3) to get

ė1 = e2 + a1
(
y1 − x1

) − y1 + 4y1 − 2x2 + 5z2 + u1,

ė2 = e3 + c1y1 − x1z1 − z1 + y1 − y2 − 0.2 cos(10t) + u2,

ė3 = −c2e1 − b2e2 − a2e3 + x2
2 − b1z1 + x1y1 + c2x1 + b2y1 + a2z1 + 0.5x1 + x2 + u3,

(5.4)
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Figure 2: State trajectories of drive system (4.9) and response system (4.10), (a) signals x1 and x2; (b)
signals y1 and y2; (c) signals z1 and z2; (d) the error signals e1, e2, e3 between two identical Genesio
systems with different initial conditions under the controller (4.14).

where e1 = x2 + x1, e2 = y2 + y1, and e3 = z2 + z1. So we are aiming to find proper control
functions ui (i = 1, 2, 3) such that system equation (5.3) globally antisynchronizes system
equation (5.2) asymptotically; that is,

lim
t→∞

‖e‖ = 0, (5.5)

where e = [e1, e2, e3]
T .
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If the control parameters are chosen as C = (0, 1,−1), K = (0, 1, 0)T , and r = 1, q = 10
and γ = 0.01 then the switching surface

s(e) = e2 − e3, (5.6)

w(t) =
[
(5 − b2)e2 − (6 − a2)e3 − 0.2 cos(10t) + s +

10s
|s| + 0.01

]
, (5.7)

using (5.7)we get

u1 = y1 − a1
(
y1 − x1

) − 2x1 + 4y2 + 5z1,

u2 = x1z1 − c1y1 + z1 − y1 + y2 −
[
(5 − b2)e2 − (6 − a2)e3 − 0.2 cos(10t) + s +

10s
|s| + 0.01

]
,

u3 = −x1y1 − c2x1 − b2y1 − b2y1 − a2z1 + b1z1 − x2
2 + x1 + 0.5x2.

(5.8)

Applying controllers in (5.8), slave system equation (5.3) can antisynchronize master system
equation (5.2) asymptotically. To verify and demonstrate the effectiveness of the proposed
method, we discuss the simulation result for the active sliding mode antisynchronization
between the Lü system and the Genesio system. In the numerical simulations, the fourth-
order Runge-Kutta method is used to solve the systems with time step size 0.001. For this
numerical simulation, we assumed that the initial conditions (x1(0), y1(0), z1(0)) = (−3, 2,−8)
and (x2(0), y2(0), z2(0)) = (2, 3,−2). Hence the error system has the initial values e1(0) =
−1, e2(0) = 5, and e3(0) = −10. The system parameters are chosen as a1 = 36, b1 =
3, c1 = 20, and a2 = 1.2, b2 = 2.92, c2 = 6 in the simulations such that both systems
exhibit chaotic behavior. Antisynchronization of the systems equations (5.2) and (5.3) via
active sliding mode control law in (5.8) are shown in Figure 3. Figures 3(a)–3(c) display
the state trajectories of master system (5.2) and slave system (5.3). Figure 3(d) displays the
error signals e1, e2, e3 of the Lü system and the Genesio system under the controller equations
(5.8).

6. Concluding Remark

In this paper, we have applied the antisynchronization to some chaotic systemswith paramet-
ric uncertainties and external disturbances via active slidingmode control. We have proposed
a novel robust active sliding mode control scheme for asymptotic chaos antisynchronization
by using the Lyapunov stability theory. Finally, the numerical simulations proved the robust-
ness and effectiveness of our method.
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Figure 3: State trajectories of drive system (5.2) and response system (5.3), (a) signals x1 and x2; (b) signals
y1 and y2; (c) signals z1 and z2; (d) the error signals e1, e2, e3 between the Lü system and the Genesio
system under the controller (5.8).
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