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A sparse linear system constitutes a valid model for a broad range of physical systems, such
as electric power networks, industrial processes, control systems or traffic models. The physical
magnitudes in those systems may be directly measured by means of sensor networks that, in
conjunction with data obtained from contextual and boundary constraints, allow the estimation
of the state of the systems. The term observability refers to the capability of estimating the
state variables of a system based on the available information. In the case of linear systems,
diffierent graphical approaches were developed to address this issue. In this paper a new unified
graph based technique is proposed in order to determine the observability of a sparse linear
physical system or, at least, a system that can be linearized after a first order derivative, using a
given sensor set. A network associated to a linear equation system is introduced, which allows
addressing and solving three related problems: the characterization of those cases for which
algebraic and topological observability analysis return contradictory results; the characterization
of a necessary and sufficient condition for topological observability; the determination of the
maximum observable subsystem in case of unobservability. Two examples illustrate the developed
techniques.

1. Introduction

The state variables that characterize a physical system are estimated by means of the data
available at any given time. This data can be generated from a sensor network spread out
over an area or from contextual and boundary constraints. In general, the known system
variables are said to be sensed or measured variables whether they are sensed with a real
device or their magnitudes are obtained in a sort of virtual sensors. The remaining variables
are considered nonsensed or unmeasured variables. In such a context, the observability issue
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arises when we would like to know if the sensing system is enough to be able to determine
the state of the system, that is, the system state variables.

This paper deals with a scenario where a well-known model describes the behavior
of a physical system in terms of relationships between system variables and parameters.
The system must be linear or linearized after a first-order derivative. In this context, a given
sensing network is considered, and the system observability analysis is addressed.

The term observability was introduced in the realm of linear dynamical control
systems [1]. It stems from the capability of estimating the state of a system based on the infor-
mation available. Although observability is essentially a numerical and algebraic problem,
some techniques based on topology and graph theory have been developed to provide
solutions in this area.

Due to the fact that observability and the problems related to it were studied in differ-
ent engineering disciplines, the technical terminology is not totally uniform. As a result, some
terms are more widely used in some areas and not in others and, in a few cases, different terms
describe the same thing in different fields.

Five examples are described below pursuing the following aims: on one hand, illus-
trating how observability and other related problems constitute research topics in different
physical, engineering, and industrial areas, where a sensor network is designed in order to
analyze a given system; on the other, showing the multiple points of view from which these
issues can be addressed and, in particular, how topological and graph-based approaches were
developed in some cases.

The term sensor network comprises a broad spectrum of engineering and physical
systems and, in particular, the topic of wireless sensor networks has led to issues that, in
one way or another, are related to observability. This is the case of coverage, optimal node
placement, and the minimum number of nodes required to achieve connectivity. In [2], it is
shown that a graph model can be used to describe those systems, and some graph approaches
have been developed in order to provide an answer to the challenges posed.

Whithin the sphere of linear control systems, the controllability problem was addressed
from a graph-theoretic approach. A graph associated to a system was defined in [3] and
conclusions related to several system properties are derived from the analysis of such a graph.
A survey of the techniques proposed in the literature for structured linear systems can be
found in [4]. More recently, a graph approach to observability analysis is proposed in [5, 6].

High-voltage electric power networks constitute another field, where observability has
been an important issue in system analysis for decades [7, 8]. It is worth mentioning that the
approach to the problem in [9] where the authors characterize what they call topological
observability through the existence of certain graphs that, defined in the electrical network,
obey constraints derived from the sensing network. However, these graph techniques do not
allow the inclusion of measurements that are currently being considered, such as current and
phasor measures.

Observability has also been a motivation for research in traffic models in topics related
to the origin/destination trip matrix estimation challenge. This is the case of [10], where
the authors adapt topological techniques developed for electric power networks to this new
context. Although this issue is more complex than the description made by the authors in
their paper, it has been taken as an example to illustrate the techniques proposed in the
present work as will be shown in a later section.

Material and energy balances that must take place in industrial processes are analyzed
in [11]. There, its authors distinguish up to four categories of balancing equations, depending
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on whether they consider or not materials, chemical reactions, energy, and entropy. They
study the solvability of the resulting equations, for which a set of sensed variables is taken
into account. The observability and redundancy of measurements as well as the errors in the
measured values are included in the dissertation. Statistical techniques are used to estimate
the state of the system by reconciliation. In the case of linear systems, a parallelism is
established between system and sensing observability conditions and the existence of certain
graphs defined from the process balancing flowsheet.

The common topic of the aforementioned scenarios, with regards to graph theory, is
that certain graph techniques were developed in all the cases because of the existence of
graphs or networks that characterized the systems with a given sensor set. Furthermore,
the equations that describe the networks are linear or linearized. In this paper, a new graph
technique is presented in order to characterize the observability of any linear physical system.
The implementation of such a technique imposes constraints on the problem, summarized
by the fact that the systems must be sparse and of large dimension. For any sparse and large
dimensional physical system, an associated network will be defined based, exclusively, on
structural considerations, that is, the topology of the equation system in its matrix form that
relates the sensed variables with the state variables. It will be demonstrated that the system
can be said to be topologically observable if there exists a certain graph within the associated
network.

Krumpholz et al. developed in [9] a topological approach for the observability issue in
the scope of electric power systems. Nevertheless, the problem related to the characterization
of those cases for which algebraic and structural techniques return contradictory results is not
studied. In this paper, the latter problem is solved, which has allowed carrying out a more
general demonstration of the necessary and sufficient condition for topological observability
than the one proposed by Krumpholz. Numerous techniques have been developed and
widely and successfully tested for decades [12–15] in the scope of topological observability
analysis in electric power systems. In this paper, a new graph approach is presented, which
allows addressing the observability of any linear physical system or, at least, a system lin-
earized after a first-order derivative, and not exclusively electric power systems. Boukhobza
et al. had already developed a graph-theoretic technique in order to determine the state
and input observability in structured linear systems [5]. Unlike that proposal, the approach
presented in this paper makes it possible to exploit techniques like those mentioned above
[12–15] to characterize concepts like parametric unobservability and to easily determine the
maximum observable subsystem.

The rest of the paper is organized as follows. Starting from a mathematical model,
some terms will be introduced concerning observability and sparse physical systems in
the next section. Section 3 is devoted to the bases of graph theory and the concepts used
throughout the paper. Once the theoretical assumptions have been described, an analogy
between linear equation systems and graph theory is established by means of a network
associated to the physical system and a given sensor set. Section 5 introduces the concept of
topological observability, which is characterized through the existence of a constrained graph
in the associated network. The following section is devoted to the cases where the system is
not observable and how the search for the maximum observable subsystem is addressed by
means of the same graph techniques. Section 7 includes two examples in order to illustrate the
techniques proposed in this paper, and how they can be implemented in absolutely different
real engineering scenarios. Finally, some conclusions are presented in Section 8.
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2. Mathematical Model

In order to determine the state of a system, S, consider a set of m variables ω that are sensed.
These variables can be expressed in terms of the n system state variables, ϕ:

ω = h
(
ϕ
)
+ ε, (2.1)

where ε represents a vector of errors due to the measurement acquisition process. In what
follows, this error vector will be ignored because of its irrelevance regarding observability
issues. Two different cases might be considered at this point, depending on the linearity of
the above equations. On one hand, assume those equations are linear. Then, S is a linear
system, and a matrix formulation can be proposed instead of (2.1):

ω = Hϕ, (2.2)

where H is a m × n characterization matrix of the system. On the other hand, consider that S
is a nonlinear system that can be linearized around a certain state ϕ0 and let J(ϕ0) be the m×n
jacobian matrix, thus:

Δω = J
(
ϕ0

)
Δϕ, (2.3)

where Δω = ω − h(ϕ0) and Δϕ = ϕ − ϕ0. Summarizing, both cases resemble an equation
system of the form:

z
m×1

= M
m×n
· x
n×1

, (2.4)

where z is a constant term vector that results from the m magnitudes sensed throughout the
system, x is the unknown vector that is directly related to the n state variables, and M is a
coefficient matrix. In what follows, and in order to simplify the explanation, we will refer
to z and x as the measurement and state variable column vectors, respectively. Also, zk will
denote a generic measured variable, and xi will be a generic state variable. The observability
issue arises when we would like to know if the m variables considered in the sensor set are
enough to determine the state of the system. It depends not only on how large the number of
measurements is but also on their nature, and how they are spread out over the system. From
an algebraic point of view, a system S is said to be observable if the system given by (2.4) is
solvable, that is, the equation system is consistent, and there exist at least n linear independent
equations. As Krumpholz et al. define in [9], the system is said to be algebraically observable
if and only if the rank of M is equal to n. A well-known problem comes up when the system
is ill-conditioned [16] and (2.4) must be solved or matrix M is manipulated. For such cases,
different numerical algorithms are proposed in the literature [17, 18]. In order to avoid this
problem, other authors [19] take advantage of symbolic methods for sparse matrices [20].
What this paper is related to are the cases, where the observability of a system such as the
one defined above can be addressed in terms of structural considerations, what is called
topological observability [9]. In order to introduce this topic, let us define some concepts
and hypotheses.
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Let S be an n-dimensional physical system that is going to be the object of our study,
and let a sensed variables set z be defined, where m magnitudes are measured over S.
Furthermore, let M be the m × n matrix associated to S, as defined in (2.4). We will say that
S is a sparse system if the behavior of S at any point can be justified exclusively by means of
the knowledge of the variables in an area based on a certain neighborhood relationship. This
is the case of a traffic model system where flow fluctuations in a certain region are strongly
dependent on what happens in that area, whereas the events that take place in other parts
show a weak dependence or absolute independence from them. One of the features that
characterize a sparse system is that matrix M is a sparse matrix. Then, some conclusions
can be established in terms of structural considerations of M, when the matrix dimensions
and the degree of sparsity are large enough. For this purpose, Bunch and Rose [21] define a
graph associated to a matrix M, where a nonzero element mij /= 0 of M represents an edge that
joins vertices i and j. Based on this, some properties can be studied in terms of graph theory
because of the duality between sparse linear systems and graphs.

The obvious solution of calculating the rank of matrix M may present problems and
may not be even possible in the case of ill-conditioned systems, as mentioned above. In
these cases, a topological-based approach becomes a good choice that presents a series of
additional advantages derived from the capability of graphs to answer questions related to
observability analysis, including the identification of the maximum observable subsystem
and optimal additional sensor placement. In short, in this paper we will introduce new
topological analysis techniques by means of certain graphs associated with sparse systems
in order to determine the topological observability of such systems.

3. Graph Theory

A graph is defined as a collection of nodes or vertices that are joined through the so-called
edges or branches. For the sake of homogeneity here we will use the term branches both for
general graphs and for the case of trees, which are basically graphs without loops. In the
scope of this work we are interested in defining graphs within a given network, which is
also a collection of nodes and branches. In other words, a network must be interpreted as the
context where any given graph is declared, in such a way that nodes and branches belonging
to a graph are also present in the network for which the graph is defined. Nevertheless, not
all the nodes and branches of the network are always present in a graph.

Definition 3.1. Let X = {X0, X1} be a network, where X0 and X1 are the sets of nodes and
branches, respectively; a graph G of X is defined as a set of nodes, G0 ⊆ X0, and a set of
branches, G1 ⊆ X1.

Thus, as in the case of networks, a graph can be denoted by a couple, as follows:

G =
{
G0 ⊆ X0, G1 ⊆ X1

}
. (3.1)

In what follows, it is assumed that X is a connected network, that is, a network where there
exists a path in X1 between every pair of nodes of X0. In the same way, a connected or
unconnected graph G of X can be defined. If a graph G of X is not connected, each connected
subgraph that makes it up is known as a connected component. When a connected graph
contains no loops, it is called a tree of X.
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Definition 3.2. A graph T of X is said to be a spanning tree if T contains no loops, and T0 = X0.

A directed graph results from the assignment of a direction to each branch in such a
way that a node is known as the source, while another node is the target of a directed link.

The matrix representation of any graph G is the node-to-branch incidence matrix,
A(G) = (akj). This is a matrix with as many rows as nodes are in the graph, and where the
number of columns is equal to the number of branches in the graph. The elements of A(G),
in the case of directed graphs, are defined as follows:

akj =

⎧
⎪⎪⎨

⎪⎪⎩

1 If node k is the source of the directed branch j,

−1 If node k is the target of the directed branch j,

0 If node k is not incident to branch j.

(3.2)

The rank of a graph G of X is defined as:

rank{G} = size
{
G0

}
− c, (3.3)

where size {G0} denotes the number of nodes in G, while c indicates the number of connected
components of G.

Definition 3.3. Let X be a connected network, a graph G of X is said to be of full rank if its
rank equals the maximum possible value, rank{G} = size{X0} − 1.

The rank of a graph G of X is, by definition, equal to the rank of its associated incidence
matrix A(G). If G is of full rank, the rank of A(G) equals the number of rows minus one. In
other words, one row of A(G) is linearly dependent on the others. That is the reason why a
reduced node-to-branch incidence matrix Ar(G) is defined, resulting from the elimination of
a row from A(G). The following expression summarizes all of the above:

rank{G} = rank{Ar(G)}. (3.4)

The selection of one node among others for which the associated row is erased is arbitrary. In
what follows, this node is going to be known as the reference node.

Definition 3.4. The closure [22] of a connected graph G in X is defined as a graph G, where

G
0
= G0 and G

1
is composed by all the branches in X1 that join pairs of nodes in G0.

4. Network Flow Analogy

Consider a set of linear independent variables, {x1, . . . , xn}, that determine the state of
a system S. Let z be a system variable whose magnitude may be expressed as a linear
relationship between the state variables, as follows (notation: in what follows, subscripts i
and j, 1 ≤ i, j ≤ n are used to refer to generic state variables and network nodes; subscript
s, 1 ≤ s ≤ n refers to a node that is known as source node; subscript k, 1 ≤ k ≤ m denotes
measurements and equations; subscript a, 1 ≤ a ≤ r refers to generic network branches;
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Figure 1: Elementary network.

subscript b under arrays or vectors denotes that those structures contain exclusively branch
parameters or variables):

z = α1x1 + · · · + αnxn =
n∑

i=1

αixi, (4.1)

where there is at least one value of i for which αi /= 0. Consider that αs, where 1 ≤ s ≤ n, is the
first nonzero coefficient in the above expression. In other words, αi = 0 for all 1 ≤ i < s. Then,
the expression can be rewritten as:

z = xs

n∑

i=s

αi −
n∑

i=s+1

(xs − xi)αi, (4.2)

which is consistent with the analogy to a flow network as shown in Figure 1. In it, a current
z is injected into the network through node s and flows to the remaining nodes, s + 1 to
n, according to the admittance values and potential differences of the branches connecting
them. Therefore, the following equality must hold:

z =
n∑

i=s

φsi = xsλss +
n∑

i=s+1

(xs − xi)λsi, (4.3)

where, for a generic node i, xi represents the potential level of the node with respect to a
zero potential reference node, GND in the figure; λsi = −αi represents the admittance that
characterizes a branch connecting node s to node i, so that φsi = (xs −xi)λsi is the current that
flows from node s to node i due to the potential difference (xs − xi) observed from node s to
node i; similarly, λss =

∑n
i=s αi is the admittance between node s and GND; hence, a current

φss = xsλss flows from node s to the reference node. The network in Figure 1 is defined as
the elementary network associated to the linear (4.3), which is known as the network nodal
equation at node s. The elementary network is a tree, and s is defined as the source node of
that tree, while the remaining nodes are considered target nodes.

Note that, on one hand, the elementary network in Figure 1 is characterized by the
nodal (4.3), where the flow φs =

∑n
i=s φsi injected in node s equals the z magnitude; on
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Figure 2: Associated network X resulting from the superposition of m elementary networks.

the other hand, a solution {xs, . . . , xn} to the elementary network in Figure 1 is consistent
with (4.1).

Let S be a system, where {z1, . . . , zm} is a set of m variables whose magnitudes may be
expressed as linear relationships of the form:

zk = αk1x1 + · · · + αknxn =
n∑

i=1

αkixi ∀1 ≤ k ≤ m. (4.4)

A network associated to a linear equation system such as the one shown above is defined
as the result of the superposition of the elementary networks associated to each zk for
all 1 ≤ k ≤ m. Then, the solvability of the linear equation system (4.4) is equivalent
to that of its associated network, since a particular solution {x1, . . . , xn} to the equation
system is consistent with the associated network. Figure 2 shows an example of an associated
network X as a result of considering all the elementary networks in their entirety, denoted by
E1, E2, . . . , Em. Let us take a look at a generic node in the figure, such as node number 4. It is
easy to see how the incident branches to node 4 are due to elementary networks associated to
variables for which 4 is the source node, such as Em, and those elementary networks including
4 as a flow target node, such as E1 and E2.

Let Ek be the elementary network associated to a generic variable zk defined in S as
shown in (4.4), where s is the source node. A branch admittance matrix of Ek is defined as a
diagonal matrix as follows:

Yb(Ek) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

n∑

i=s

αki 0

−αk,s+1
. . .

0 −αkn

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (4.5)

In what follows, it is assumed that all coefficients αki considered in the construction of a
matrix Yb(Ek), such as the one defined above, are nonzero. In other words, null coefficients,
αki, are removed from (4.4). Note that this constraint does not guarantee that all diagonal
elements in Yb(Ek) are nonzero because there might exist a case in which, for a certain k,
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the sum
∑n

i=1 αki equals zero. Those cases are related to the concept of parametric unobserv-
ability, and it will be introduced later.

Taking into account the contribution of all the variables {z1, . . . , zm} in S to the whole
associated network X, a branch admittance matrix of X is defined as a block diagonal matrix:

Yb(X) =

⎛

⎜
⎝

Yb(E1) 0
. . .

0 Yb(Em)

⎞

⎟
⎠. (4.6)

Then, the following equality is satisfied:

Φb(X) = YA(X) · x,
YA(X) = Yb(X) ·A�r (X),

(4.7)

where Ar(X) is the reduced node to branch incidence matrix of X; x = (xi) is the n × 1 nodal
potential vector, that is, the system state variable column vector; if r is the number of branches
in X, and they are numbered from 1 to r, Φb(X) = (φa) is the r × 1 branch flow vector, that is,
a column vector of magnitudes that flow through branches in X; YA(X) is a r × n matrix that
relates potentials xi at nodes in X with branch flows φa.

Equations (4.4) can be expressed in matrix form as follows:

z = M · x, (4.8)

where M = (αki) is defined as a m × n coefficient matrix, and where z = (zk) and x = (xi) are
column vectors. Note that each row k of M, that is, each variable zk considered in the system,
will result in an elementary network of X that is a tree because of the lack of loops. Therefore,
as any branch in X arises from the existence of a nonzero element in M, a m × r equation to
branch incidence matrix, B(X) = (bka), associated to X can also be defined as follows:

bka =

{
1 If branch a of X arises from row k of M,

0 otherwise.
(4.9)

The following equality holds:

M = B(X) · YA(X) = B(X) · Yb(X) ·A�r (X). (4.10)

Equation (4.7) characterizes network X as well as (4.8) characterizes system S from a
set of variables {z1, . . . , zm} and, therefore, from equalities (4.7) and (4.10) it can be concluded
that the study of the determinism of S is equivalent to the observability of X under constraints
related to the variables zk taken into account.

5. Topological Observability

Krumpholz et al. introduced in [9] the term parametric unobservability as a vague notion
needed to justify the concept of topological observability in electric power networks under
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certain assumptions. In this section, we present a formal description that allows defining and
characterizing parametric unobservability and demonstrates how topological observability
can be addressed by means of the existence of certain graphs under constraints.

Let S be a large n-dimensional sparse physical system, where a sensing system z
is defined by means of m measured variables, m ≥ n. Let M be the coefficient matrix,
as defined in (4.8), associated to S and the sensing system, and let X be the associated
network. It is important to note that M characterizes only those parts of the system related
to measurements, but not the whole physical system. In particular, it shows the relationship
between the sensor set considered and the state variables. Therefore, M might be a diagonal
or block diagonal matrix, without implying either the existence or nonexistence of decoupled
subsystems in S. Obviously, the observability analysis of decoupled subsystems, if they exist,
can be carried out independently.

The necessary and sufficient condition for algebraic observability of a system S and a
sensing configuration z, as proposed above, is

rank{M} = n. (5.1)

Let us consider an algebraically observable system S with respect to a sensor set z.
As M is an m × n matrix and m ≥ n, from (5.1), it follows that a collection of n linearly
independent rows of M can be found. Let zn be the subset of z corresponding to those linearly
independent rows of M. Therefore, an equation subsystem might be defined in S with respect
to zn, that should be characterized using an n × n coefficient matrix Mn and its associated
network Xn in such a way that:

zn = Mn · x, (5.2)

where zn ⊆ z, Xn ⊆ X, and the determinant |Mn|/= 0. zn is known as a critical sensing
configuration in the sense that the loss of any measurement in zn should derive in the loss
of the observability condition with respect to zn. For the same reason, system S is said to
be critically observable with respect to zn. The determinant |Mn| is calculated as a sum of
products, each coming from n elements in Mn, and no two coming from the same row or
column. Since Mn is a nonsingular matrix, at least one of these products must be nonzero.
Thus, without loss of generality, in what follows let a permutation of rows be considered
such that all the factors of the aforementioned nonnull product lie on the principal diagonal
of Mn. Note that any row permutation in Mn does not alter the associated network Xn.

It is clear that the first entry in Mn in the first row is nonnull and, therefore, there
exists in Xn a branch joining node 1 and the reference node. In the second row, there are two
possible cases: on one hand, if the diagonal element is the first nonzero element in that row,
there exists a branch in Xn joining node 2 and the reference node and, indirectly, the first
node too; on the other hand, if the diagonal element is not the first nonzero one, there is a
link in Xn between nodes 2 and 1. This argument can be repeated for the next row and up
to the last one. Eventually, a spanning tree of full-rank T of Xn is completed because of the
lack of loops and the inclusion of the totality of the nodes in the network. Furthermore, the
previous analysis leads exclusively to one branch in T from each row in Mn. In other words,
the n branches in T are derived from n different measurements in z. Since Xn results from the
superposition of n elementary networks, one for each sensed value, each branch in T belongs
to a different elementary network.
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In order to demonstrate that the existence of such a spanning tree is sufficient, under
certain conditions, for the observability of a system with respect to a sensing configuration,
a reverse path is considered in which branches are added recursively to a starting spanning
tree until the entire network is encompassed.

Consider a spanning tree T of Xn, where each one of the n branches of T belongs to a
different elementary network out of the n that form Xn. That is, each elementary network in
Xn has a branch and only one that belongs to T . From (4.10), it follows that a matrix M(T)
can be defined as:

M(T) = B(T) · YA(T), (5.3)

where B(T) is a selection of columns from B(Xn), while YA(T) is a selection of rows from
YA(Xn) corresponding to the n branches of T . Thus, B(T) is the n × n identity matrix because
the n branches of T belong to n different elementary networks and it follows that:

M(T) = YA(T). (5.4)

Note that as YA(T) has the same sparse pattern as A�r (T), and T is a spanning tree of Xn of
full rank, rank{YA(T)} = n. In other words, |M(T)|/= 0 because M(T) is nonsingular. Let k be
a generic row of M(T). The first nonzero entry in row k is in the same column, generically
represented by s, as the first nonzero element in row k of Mn. At this point, two cases might
take place: one in which column s is the only nonzero entry in row k, and another for which
there exists a second nonzero element in column l of row k in M(T). Since the determinant
of a square matrix can be calculated, according to Laplace’s formula, as a weighed sum of
cofactors or adjuncts along a row or a column, it follows that:

|M(T)| = mks · Cks +mkl · Ckl /= 0, (5.5)

where mks and mkl are the elements of M(T) in row k and columns s and l, respectively, and
Cks and Ckl are their cofactors. Taking into account the same notation as used in (4.4), if mks

is the only nonzero entry in row k, mks =
∑n

i=s αki; otherwise, mks = −mkl = αkl. In both cases,
the determinant must be different from zero.

Let T+1 be a graph of Xn that results from the union of T and one-branch a of Xn not in
T . Consider that the additional branch belongs to an elementary network Ek that corresponds
to row k of M(T) and whose source node is denoted by s. If matrix M(T+1) = (m+1

ki ) is defined
from T+1 in the same way as matrix M(T) was from T , then, two different cases may follow

(1) the additional branch a joins node s and the reference one. Therefore, as the admit-
tance of this branch is equal to λa =

∑n
i=s αki, the only entry that makes matrices

M(T) and M(T+1) different is:

m+1
ks = mks +

n∑

i=s

αki, (5.6)
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and, from (5.5), the determinant:

∣
∣∣M

(
T+1

)∣∣∣ = |M(T)| +
n∑

i=s

αki · Cks, (5.7)

that is equal to zero when:

λa =
n∑

i=s

αki =
|M(T)|
−Cks

; (5.8)

(2) the additional branch a joins node s and a node j, where s < j ≤ n. In this case, the
branch admittance equals λa = −αkj and both matrices M(T), and M(T+1) are equal
but for two entries in row k:

m+1
ks

= mks − αkj ,

m+1
kj = αkj ,

(5.9)

and, again, the determinant:

∣∣∣M
(
T+1

)∣∣∣ = |M(T)| + αkj ·
(
Ckj − Cks

)
, (5.10)

that vanishes when:

λa = −αkj =
|M(T)|

Ckj − Cks
. (5.11)

Consider T+r to be a graph of Xn that results from the addition to T of a number r of
branches of Xn not in T , and let the matrix M(T+r) be defined such that |M(T+r)|/= 0. Let T+r+1

be a graph of Xn formed after the inclusion in T+r of a branch a of Xn not in T+r , and consider
that the additional branch belongs to an elementary network Ek that corresponds to row k of
M(T+r) for which the source node is denoted by s. One of the next two cases will follow:

(1) the additional branch a joins nodes s and the reference one. The admittance of
branch a is equal to λa =

∑n
i=s αki and the determinant of M(T+r+1) is estimated

by:

∣∣∣M
(
T+r+1

)∣∣∣ = |M(T+r)| +
n∑

i=s

αki · C+r
ks, (5.12)

where C+r
ks is the cofactor of m+r

ks. The above determinant becomes null when:

λa =
n∑

i=s

αki =
|M(T+r)|
−C+r

ks

; (5.13)
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(2) the additional branch a joins node s and a node j, where s < j ≤ n. Then, the branch
admittance is equal to λa = −αkj , and the determinant of M(T+r+1) is given by:

∣
∣
∣M

(
T+r+1

)∣∣
∣ = |M(T+r)| + αkj ·

(
C+r

kj − C+r
ks

)
, (5.14)

where C+r
kj

and C+r
ks

are the cofactors of m+r
kj

and m+r
ks

, respectively. The determinant
will be null if:

λa = −αkj =
|M(T+r)|
C+r

kj − C+r
ks

. (5.15)

Note that (5.13) and (5.15) allow identifying a set of values of coefficients αki for which
the determinant |M(T+r+1)|might be canceled.

New branches can be added to the given graph, one by one, until the entire network
Xn is completed, after the inclusion of all the branches in Xn. Therefore, it is concluded by
induction that the determinant of matrix M(Xn) is nonzero if its entries αki, 1 ≤ k, i ≤ n, do
not meet any equality such as (5.8) and (5.13) for branches that join the reference node and
(5.11) and (5.15) otherwise.

Consider an example in which a collection of four sensed magnitudes z = (z1, . . . , z4)
�

are acquired from a four-dimensional physical system. As a result, an equal number of linear
equations that relate z and the state variables x = (x1, . . . , x4)

� are established, and a matrix
of coefficients M is given by:

⎛

⎜⎜
⎝

1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 1

⎞

⎟⎟
⎠

︸ ︷︷ ︸
M

4×4

=

⎛

⎜⎜
⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟
⎠

︸ ︷︷ ︸
B(X)
4×8

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0
−1 0 0 1
0 2 0 0
0 −1 1 0
3 0 0 0
−1 0 1 0
−1 0 0 1
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
YA(X)

8×4

. (5.16)

Figure 3(a) shows the resulting associated network, where the branch admittance
values are indicated as well as the sensed variables to which each branch is associated.
Figure 3(b) shows a spanning tree T of full rank, in which it can be noted that the four
branches that conform the tree are associated to four different measured variables. Then, it
follows that:

⎛

⎜⎜
⎝

2 0 0 0
0 −1 1 0
−1 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

︸ ︷︷ ︸
M(T)

=

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

︸ ︷︷ ︸
B(T)

⎛

⎜⎜
⎝

2 0 0 0
0 −1 1 0
−1 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

︸ ︷︷ ︸
YA(T)

, (5.17)
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Figure 3: Four-node network example.

where |M(T)|/= 0. The graphs in Figure 4 show how the entire network X can be reached from
T by the addition of each branch of X not belonging to T , and how, at each step r + 1, a new
M(T+r+1) is defined from the previous one M(T+r) after modifying one or two matrix entries,
depending on the case. It can be seen that it always follows that |M(T+r+1)|/= 0 except for the
exception cases defined in (5.8), (5.11), (5.13), and (5.15).

Note that this result was reached from the consideration of, on one hand, the network
topology and the number, nature, and location of sensors in the network and, on the other,
the network parameters. To deal with these two approaches, the concept of parametric
unobservability is introduced.

Definition 5.1. A large dimensional and sparse physical system S, for which a sensing system
z is defined, is said to be parametrically unobservable with respect to z if, in spite of the fact
that the ranks of matrices B(X) and YA(X) are equal to n, the rank of M is less than n due to
the value of one or more coefficients αki of M.

The relevance of this concept lies in the fact that, in large dimensional sparse physical
systems where the parameters are roughly estimated from empirical data or are subject to
environmental distortion, it is unlikely for parametric unobservability to occur [9]. In other
fields, such as structured linear systems, it is often necessary to work under the assumption
of a lack of knowledge of system parameters [4]. In these scenarios, the parametrically
unobservability should be associated with a particular set of parameter values. Thus, the
observability of a system is said to be true when it is so for almost all parameter values, that
is, for all of them except for a set of particular cases in the parameter space. Even though not
all physical systems may meet this requirements, there exist evidences that are true for real
cases. For example, electric power network analysis involves hundreds or even thousands of
state variables that are usually related to the voltage at network nodes. The system state [7]
can be estimated by means of the measurement of the power that flows into and through the
electric network and which is influenced only by neighboring node states. Thus, the resulting
system is clearly sparse, and circuit parameters are affected by environmental conditions
such as temperature and humidity as well as by the unreliability of parameter estimation.
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Figure 4: Four-node network example.

Another example is the case of traffic model analysis [10]. As explained later in the example
in this paper, vehicles usually move along a geographical area according to a set of established
origin/destination pairs. Traffic flows are sensed at routes in the network in order to estimate
the state of the system, that is, origin/destination pair traffic flows. As the network grows,
the sparsity becomes more plausible. Additionally, system coefficients are estimated, among
other factors, from probabilistic considerations related to the ability of people to opt for one
route or another. In brief, parametric unobservability is, in these two cases, highly improbable
despite being mathematically possible.
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On the basis of the large dimension, sparsity and parameterization uncertainty of such
systems, in order to address the observability issue a new strategy is proposed involving
exclusively structural and not numerical considerations. For this, a new observability defini-
tion should be provided.

Definition 5.2. Let S be a large dimensional sparse physical system, where a sensor network
z is considered; S with z is said to be topologically observable if S is algebraically observable
or parametrically unobservable with respect to z.

Summarizing, it has been demonstrated that the existence of a spanning tree of full-
rank T of X where the n branches of T belong to n different elementary networks of X

constitutes a necessary and sufficient condition for topological observability. In what follows,
any graph G of X with a number rG of branches that belong to rG different elementary
networks, that is, are associated to rG different measurements zk of z, is known as a measured
graph.

Theorem 5.3. Let S be a linear and large n-dimensional sparse physical system, where a sensing
system z is defined by means of a number ofmmeasured variables,m ≥ n; S is said to be topologically
observable with respect to z if and only if there exists a measured spanning tree T of X.

The analysis of the observability of a large dimensional sparse physical system S

with respect to a sensing system z from a topological point of view involves searching for
a measured spanning tree T of full rank among all possible graphs G of X constructed in
such a way that each elementary network that forms X contributes with and only with one
branch to G. If the number of sensed values m considered is larger than the dimension n of
system S, T will be included, if it exists, as part of a measured spanning graph G of X. In
what follows, it is assumed that any graph G of X is a measured graph.

There could be different ways to construct a spanning tree, and any one of them would
be valid [12–15]. However what is important here is the fact that the existence of a measured
spanning tree is a sufficient condition for the topological observability of a linear system.

Summarizing, taking as a basis the experience in observability analysis in electric
power systems, a generalization of the topological approach was developed to address this
issue in the scope of other linear, or linearized after a first order derivative, real engineering
physical systems. A necessary and sufficient condition for topological observability was
established by means of a graph theoretic approach. Finally, thanks to this approach, the
characterization of the cases where algebraic strategies do not lead to the same results as
those derived from structural analysis was carried out.

6. Maximum Observable Subsystem and Observability Islands

If the observability system test fails for a sensing configuration, it is said that the system is not
observable or unobservable. In such cases, the knowledge that might be acquired about one
or more parts of the system by all the measures considered should not be underestimated. If
a system is not observable, it may be possible to identify a subsystem for which the state can
be estimated, it is said that the subsystem is observable. A nondivisible observable subsystem
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is known as an observability island. The number of observability islands may vary and
depends on the associated network topology, the sensors considered and their location in
the network.

Consider an n-dimensional sparse physical system S and a sensing configuration z for
which an associated network X is defined. Let O be an observable island of S and z, and let
XO ⊆ X be its associated subnetwork; XO is known as an observable subnetwork.

A node belonging to XO is said to be an observable node, and a branch belonging to
XO is an observable branch. A measured spanning graph G of XO is known as an observable
graph. Nodes and branches that do not belong to any observable subnetwork are said to be
unobservable.

Let Y be a measured graph of X; a measure zk associated to a branch of Y is said to
be wholly contained [22] in Y if the elementary network associated to zk is contained in the
closure of Y in X. By extension, a measure is said to be wholly contained in a subnetwork XO

if its associated elementary network is included in the closure of XO in X.

Any measurement zk considered in O is wholly contained in XO. Hence, the state of
an observability island may be estimated by means of a wholly contained sensor set.

The union of all the observability islands in a system S derives in a maximum
observable subsystem while the union of all their associated observable subnetworks in
X results in the maximum observable subnetwork. This subnetwork is maximum because
it comprises the largest possible number of observable nodes and, if it exists, it is unique
[22].

Consider a system S that is not observable for a sensor set z. Then, no measured
spanning tree will be found, as derived from Theorem 5.3. Instead, consider a measured
graph G of X as one of the largest connected graphs that can be formed according to the
sensing system and the constraints described earlier. Then, G is known as a maximum
measured graph of X but not spanning. The next theorem was extracted from [22], where
relevant properties concerning maximum measured graphs and observable subsystems are
described.

Theorem 6.1. Let S be a system and X the associated network from a given sensor set. If G is any
maximum measured graph of X, the maximum observable subnetwork is contained in the closure of G
in X.

Therefore, based on one of the maximum measured graphs, an iterative process can
take place by which the not wholly contained measurements, and their elementary networks
are removed from the system until the maximum observable subnetwork is obtained.
Additionally, other strategies concerning the search for the maximum observable subsystem
can be found in [13, 14] in the scope of electric power networks.

7. Examples

Two examples are presented in this section in order to illustrate the techniques developed
in this paper, focusing the attention on the fact that these techniques are valid for different
real engineering problems, where a collection of linear equations or equations linearized after
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Figure 5: Nguyen-Dupuis traffic network example.

a first order derivative describe the behavior of the system from a measurement acquisition
system viewpoint.

7.1. Traffic Model Example

One of the fundamental problems in traffic models concerns the estimation of the
origin/destination (OD) trip matrix. Traffic flows are measured by means of sensors spread
out at different locations in a study area. These data, in conjunction with other available
information, are used to estimate the target matrix, that is, the traffic derived from any OD
movement. For each OD pair there exist, in general, more than one alternative to complete the
trip that are usually expressed in terms of percentages or probabilities based on contextual
factors. In addition, the flow magnitudes at a link in a traffic network can be broken down
into percentages of vehicles moving along different OD trips. Thus, linear relationships can
be established between OD-pair and link flows. Let t = (tod) and v = (vb) be OD-pair and
link flow vectors, respectively; their linear relationships can be described by a matrix F as
follows:

v = F · t. (7.1)

Figure 5 shows a benchmark case, known as the Nguyen-Dupuis network [23] in
the literature, consisting of 13 plausible origin/destination places that are interconnected
by 19 bidirectional links. In that scenario, vehicles can move from one place to another
through suitable routes. Figure 5 shows indices assigned to links along with their directions.
Therefore, for an OD-pair, any possible path is defined as a series of oriented link indices; for
example, the sequence {2, 36, 20} denotes an alternative for a displacement from 1 (origin) to
2 (destination).
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In what follows, it is assumed that matrix F and the OD-pairs are known. Below are all
the OD pairs considered in this example and their potential paths as well as matrix F. They
are the same as those tested in [10]:

OD-pair 1-2 : {2, 36, 20}
OD-pair 1-3 : {1, 11, 14, 19, 31}, {1, 11, 15, 29, 31}

{1, 12, 25, 29, 31}, {1, 12, 26, 37}
{2, 35, 14, 19, 31}, {2, 35, 15, 29, 31}

OD-pair 2-1 : {3, 21, 17, 13, 9}, {3, 21, 17, 16, 34}
{3, 22, 34}, {4, 32, 17, 13, 9}
{4, 32, 17, 16, 34}, {4, 33, 27, 13, 9}
{4, 33, 27, 16, 34}, {4, 33, 28, 24, 9}

OD-pair 2-4 : {3, 21, 17, 13, 10}, {4, 32, 17, 13, 10}
{4, 33, 27, 13, 10}, {4, 33, 28, 23}
{4, 33, 28, 24, 10}

OD-pair 3-1 : {5, 32, 17, 13, 9}, {5, 32, 17, 16, 34}
{5, 33, 27, 13, 9}, {5, 33, 27, 16, 34}
{5, 33, 28, 24, 9}, {6, 38, 24, 9}

OD-pair 3-4 : {5, 32, 17, 13, 10}, {5, 33, 27, 13, 10}
{5, 33, 28, 23}, {5, 33, 28, 24, 10}
{6, 38, 23}, {6, 38, 24, 10}

OD-pair 4-2 : {7, 11, 14, 18, 20}, {7, 11, 14, 19, 30}
{7, 11, 15, 29, 30}, {7, 12, 25, 29, 30}
{8, 25, 29, 30}

OD-pair 4-3 : {7, 11, 14, 19, 31}, {7, 11, 15, 29, 31}
{7, 12, 25, 29, 31}, {7, 12, 26, 37}
{8, 25, 29, 31}, {8, 26, 37}

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

· 4 · · · · · ·
1 2 · · · · · ·
· · 3 1 · · · ·
· · 5 4 · · · ·
· · · · 5 4 · ·
· · · · 1 2 · ·
· · · · · · 4 4
· · · · · · 1 2
· · −4 · −4 · · ·
· · · −4 · −4 · ·
· 2 · · · · 3 2
· 2 · · · · 1 2
· · −3 −3 −2 −2 · ·
· 2 · · · · 2 1
· 2 · · · · 1 1
· · 3 · 2 · · ·
· · −4 −2 −2 −1 · ·
· · · · · · 1 ·
· 2 · · · · 1 1
−1 · · · · · −1 ·
· · −2 −1 · · · ·
· · 1 · · · · ·
· · · −1 · −2 · ·
· · −1 −1 −2 −2 · ·
· 1 · · · · 2 2
· 1 · · · · · 2
· · −2 −1 −2 −1 · ·
· · −1 −2 −1 −2 · ·
· 3 · · · · 3 3
· · · · · · −4 ·
· −5 · · · · · −4
· · −2 −1 −2 −1 · ·
· · −3 −3 −3 −3 · ·
· · −4 · −2 · · ·
· −2 · · · · · ·
−1 · · · · · · ·
· −1 · · · · · −2
· · · · −1 −2 · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(7.2)
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Note that F characterizes the physics of the whole traffic network because it relates the
defined OD-pair flows with all the 38 possible oriented traffic link flows:

(v1, . . . , v38)
� = F · (t1-2, t1-3, t2-1, t2-4, t3-1, t3-4, t4-2, t4-3)

�. (7.3)

A question arises when we want to know if a given sensor network allows to estimate
the state of the traffic system or where sensors should be placed in order to complete an
observable sensed system. Two cases are going to be taken into account concerning these
issues.

7.1.1. Case 1: Observable Configuration

Consider a sensor network consisting of 8 traffic flow meters that result in a measured
variable vector z whose magnitudes might be estimated by means of a submatrix of F and
the system state variables x, that is, OD-pair traffic flows, as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v2

v4

v5

v7

v12

v15

v27

v38

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
z

8×1

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 · · · · · ·
· · 5 4 · · · ·
· · · · 5 4 · ·
· · · · · · 4 4
· 2 · · · · 1 2
· 2 · · · · 1 1
· · −2 −1 −2 −1 · ·
· · · · −1 −2 · ·

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
M

8×8

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t1-2

t1-3

t2-1

t2-4

t3-1

t3-4

t4-2

t4-3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
x

8×1

. (7.4)

The question arises as to whether OD-pair traffic flows x can be estimated from this
sensor set z among the aforementioned oriented link flows.

In Figure 6, the elementary networks derived from the coefficient matrix M of (7.4)
are shown. Note how OD-pairs play the role of network nodes, while OD-pair traffic flows
are the network node potential levels. In the figures, branch admittance values are indicated;
indices were assigned to the branches and are shown in the figures by smaller numbers next
to the arrows.

Figure 7 shows the entire associated network and how a measured spanning tree,
highlighted using thick line, was found among other possibilities. Note that each elementary
network is related to one and only one branch in the resulting measured spanning tree. This
tree is not unique but the existence of, at least one, guarantees the topological observability
of the system for the sensor set defined in (7.4).

7.1.2. Case 2: Not Observable Configuration

In a second case, a total of 6 traffic flow meters are considered. The question arises as to
whether system observability can be achieved by incorporating additional sensors. And if it
is not possible, which is the maximum observable subsystem?
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Figure 6: Nguyen-Dupuis elementary networks.
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Figure 7: Nguyen-Dupuis case 1: entire associated network and measured spanning tree.
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Let {v2, v4, v5, v7, v12, v38} be the initial sensor set. This is a subset of the observable
configuration discussed earlier. Therefore, the linear equations that characterize this case are
given by:

⎛
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⎟
⎠

︸ ︷︷ ︸
x

8×1

. (7.5)

Figure 8 shows the resulting associated network, X, and one of the possible maximum
measured graphs, G (thick lines). Note that OD-pairs 2-4 and 4-3 are clearly not observable,
that is, their traffic flows cannot be estimated by means of the available measurements. A
more detailed analysis leads to the conclusion that measurements v4, v7, and v12 are not
wholly contained in G and, therefore, their associated elementary networks E2, E4, and
E5, respectively, should be removed from the network in order to search for the maximum
observable subnetwork. This argument should be repeated until the resulting subnetwork is
made up exclusively of elementary networks associated to wholly contained measurements.
That is the case after removing E1, the elementary network associated to measure v2. From
there, the maximum observable traffic subsystem is immediate and is given by OD-pairs 3-1
and 3-4 and oriented traffic link flow sensed values {v5, v38}.

To achieve a totally observable system, it is necessary to add two new traffic flow
meters that allow to join the maximum measured graph in Figure 8 and the isolated nodes
given by OD-pairs 2-4 and 4-3. Each row in matrix F of (7.2) corresponds to an oriented
traffic link flow and, in particular, those rows with nonzero coefficients in columns related
to isolated OD-pairs are plausible candidates to improve the system observability. Thus, the
inclusion of one of the sensed values from:

{v3, v10, v13, v17, v21, v23, v24, v27, v28, v32, v33}, (7.6)

that allow joining the OD-pair 2-4 node, in conjunction with one of the following:

{v8, v11, v14, v15, v19, v25, v26, v29, v31, v37}, (7.7)

that allow joining OD-pair 4-3 node, would permit observing the whole traffic system.

7.2. Electric Power System Example

As it was mentioned in the introduction, observability analysis in electric power systems has
been an important research topic for decades. In particular, this issue can be addressed by
means of topological methods, when the set of measured variables are made up exclusively



Journal of Applied Mathematics 23

321

6

5

4

78

(a) system topology

1 2 37

4 5

6
321

6

5

4

78

(b) measurement configuration

GND

1

11

1

2

22
2

22

3

3
33

3

4

4

4

5

5

5
6

6

6

7

7

7

8

8

(c) associated network

2
3

3

GND

3

4

521

78 6

8

1
3

6
4 5

72

(d) simplified associated network

GND

3

4

521

78 6

8

1
3

6
4 5

72

(e) measured spanning tree

Figure 9: Electric power system example.

of bus voltages and active and reactive powers that are injected into or flow through the
system [9]. In those cases the system can be considered as a decoupled system [7], that is, a
pair of two independent subsystems: one of which can be analyzed by means of active power
measurements, and is known as P -δ subsystem; the other one, the Q-U subsystem, can be
studied exclusively from bus voltages and reactive powers measured in the system. Only the
Q-U subsystem is going to be analyzed in this example. Such a subsystem is observable [7]
when a sufficient number of well-placed reactive powers are measured, and, at least, one
node voltage is known at any node.

An electric power system is commonly represented as a mesh where the edges denotes
the lines in charge of transporting the electric energy, and where the nodes are the places
where the lines are incident, that is, the places where electricity is generated, consumed, or
transformed. Figure 9(a) shows the topology of an example of an electric power system with 8
nodes. The places where reactive powers are acquired in the system are shown in Figure 9(b),
where two kinds of measurements may be distinguished:
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(i) node measurements, numbered as 1, 2, and 3 in Figure 9(b), corresponding to
reactive powers injected into the system through a node. These derive in equations
of the form:

z1 = Q1 − c1 = α11U1 + α12U2 + α18U8,

z2 = Q3 − c2 = α22U2 + α23U3 + α24U4 + α25U5 + α27U7,

z3 = Q5 − c3 = α33U3 + α34U4 + α35U5 + α36U6,

(7.8)

where Qi denotes the i-th node reactive power, Ui represents the voltage at node i,
αki is a coefficient related to measurement k and node i, and ck denotes a constant
term related to measurement k;

(ii) branch measurements, numbered as 4, 5, 6, and 7 in Figure 9(b), corresponding to
reactive powers that flow through the lines. These derive in equations of the form:

z4 = Q12 − c4 = α41U1 + α42U2,

z5 = Q23 − c5 = α52U2 + α53U3,

z6 = Q37 − c6 = α63U3 + α67U7,

z7 = Q45 − c7 = α74U4 + α75U5,

(7.9)

where Qij denotes a branch reactive power that is acquired in a line that joins nodes
i and j.

Finally, a voltage measure at node 1 is also considered, resulting in an equation as
follows:

z8 = U1. (7.10)

Summarizing, the linear equations that characterize the Q-U subsystem and the given
measurement configuration are as follows:
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. (7.11)

Figure 9(c) shows the associated network derived from (7.11), where branch admittances
were suppressed in order to clarify the drawing. The numbers close to the oriented edges of
the graph denote the order of the measurement from which the edge is derived, that is, the
order of the elementary network in which it is defined. Note that the only branch associated
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to measurement z8 and, in general, to any node voltage measure, is the one that joins the
node where the voltage is acquired and the reference node. As a result, the reference node
is implicitly connected to the rest of the nodes due to the inclusion of just one node voltage
measurement, and a simplified associated network may be taken into account as shown in
Figure 9(d), where thicker lines represent the edges that are present in the entire individuals
of the search space of measured graphs. Note that those edges are the ones due to the node
voltage and branch reactive power measurements.

Finally, one of the possible measured spanning trees is shown in Figure 9(e), after
the assignment of each of the eight measurements considered to one of the edges in the
associated network. The existence of such a tree permits concluding that the electric power
Q-U subsystem is topologically observable for the given sensing system.

8. Conclusions

In this paper, a new topological approach to the determination of the observability of a
physical system where a sensor network is defined has been presented. The techniques
developed in this paper were inspired by the contributions of researchers in the scope
of electric power systems and generalized to other physical sparse linear systems. The
terms parametric unobservability and topological observability have been introduced and
justified in a formal way, which allows characterizing those parameter dependent cases
where an algebraic approach to the observability issue led to different results than the
topological one. A sensing system has been considered for any linear physical system or, at
least, linearized after a first order derivative. From there, an associated network has been
defined, and it has been demonstrated that the existence of certain constrained graphs,
known as measured graphs, in the scope of the associated network permits characterizing the
topological observability of the system. From this graph approach, the determination of the
maximum observable subsystem can be carried out in case of unobservability. The technique
has been illustrated with the help of two examples in the scope of traffic sensing structures
and electric power systems.
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