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We study the preconditioned iterative method for the unsteady Navier-Stokes equations. The
rotation form of the Oseen system is considered. We apply an efficient preconditioner which
is derived from the Hermitian/Skew-Hermitian preconditioner to the Krylov subspace-iterative
method. Numerical experiments show the robustness of the preconditioned iterative methods
with respect to the mesh size, Reynolds numbers, time step, and algorithm parameters. The
preconditioner is efficient and easy to apply for the unsteady Oseen problems in rotation form.

1. Introduction

We study the numerical solution methods of the incompressible viscous fluid problems with
the following form:

∂u
∂t

− νΔu + (u · ∇)u +∇p = f in Ω × (0,Γ], (1.1)

∇ · u = 0 in Ω × [0,Γ], (1.2)

Bu = g on ∂Ω × [0,Γ], (1.3)

u(x, 0) = u0 in Ω. (1.4)

Equations (1.1) to (1.4) are also known as the Navier-Stokes equations. Here Ω is an
open set of R

d, where d = 2, or d = 3, with boundary ∂Ω; the variable u = u(x, t) ∈ R
d

is a vector-valued function representing the velocity of the fluid, and the scalar function
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p = p(x, t) ∈ R represents the pressure. The pressure field, p, is determined up to an additive
constant. To uniquely determine p, we may impose some additional condition, such as

∫
Ω
p dx = 0. (1.5)

The source function f is given onΩ. Here ν > 0 is a given constant called the kinematic
viscosity, which is ν = O(Re−1). Re is the Reynolds number: Re = VL/ν, where V denotes the
mean velocity, and L is the diameter ofΩ, see [1]. Also,Δ is the (vector) Laplacian operator in
d dimensions,∇ is the gradient operator, and∇· is the divergence operator. In (1.3) B is some
boundary operator; for example, the Dirichlet boundary condition u = g; Neumann boundary
condition ∂u/∂n = g, where n denotes the outward-pointing normal to the boundary, or a
mixture of the two.

We use fully implicit time discretization and picard linearization to obtain a sequence
of Oseen problems, that is, linear problems of the form

αu − νΔu + (v · ∇)u +∇p = f in Ω, (1.6)

∇ · u = 0 in Ω, (1.7)

Bu = g on ∂Ω. (1.8)

Here v is a known divergence-free vector obtained from the previous linearized step
(e.g., v = uk). We call the vector v the wind function. In addition, α = O(1/δt)where δt is the
time step. Equations (1.6)–(1.8) are referred to as the Oseen problem.

We can use either finite element or finite different methods to discretize (1.6)–(1.8).
The resulting discrete system Au = b has the form

[
A BT

B −C

][
u

p

]
=

[
f

g

]
. (1.9)

In this paper, we are interested in an alternative linearization of the steady-state
Navier-Stokes equation. Based on the identity

(u · ∇)u =
1
2
∇(u · u) + (∇ × u) × u. (1.10)

In order to linearize it, we replace u in one place with a known divergence-free vector vwhich
can be the solution obtained from the previous Picard iteration. In this case we have

(v · ∇)u ≈ 1
2
∇(u · u) + (∇ × v) × u. (1.11)
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After substituting the right-hand side into (1.6), we find that the corresponding
linearized equations have the following form:

∂u
∂t

− νΔu +w × u +∇P = f in Ω × (0, T], (1.12)

∇ · u = 0 in Ω × [0, T], (1.13)

Bu = g on ∂Ω × [0, T], (1.14)

u(x, 0) = u0 in Ω, (1.15)

where P = p + (1/2)‖u‖22 is the so-called Bernoulli pressure. For the two-dimensional case

w× =

(
0 w

−w 0

)
, (1.16)

where w = ∇ × v = −∂v1/∂x2 + ∂v2/∂x1 is a scalar function.
In the three-dimensional case, we have

w× =

⎛
⎜⎜⎝

0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞
⎟⎟⎠, (1.17)

here (w1, w2, w3) = w = ∇ × v, where wi denotes the ith component of ∇ × v. Assume
v = (v1, v2, v3), then we have the formal expression of w

∇ × v =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂x
v1 v2 v3

∣∣∣∣∣∣∣∣∣
. (1.18)

Here the divergence-free vector field v again denotes the approximate velocity from
the previous Picard iteration. Note that when the “wind” function v is irrotational (∇×v = 0),
(1.12)–(1.14) reduce to the Stokes problem. It is not difficult to see that the linearizations (1.6)–
(1.8) and (1.12)–(1.14), although both conservative, are not mathematically equivalent. The
momentum equation (1.12) is called the rotation form. We can see that no first-order terms
in the velocities appear in (1.12); on the other hand, the velocities in the d scalar equations
comprising (1.12) are now coupled due to the presence of the termw×u. The disappearance of
the convective terms suggests that the rotation form (1.12) of the momentum equations may
be advantageous over the standard form (1.6) from the linear solution point of view. This
observation was first made by Olshanskii and his coworkers in [2–5]. In their papers, they
showed the advantages of the rotation form over the standard convection form in several
aspects.
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Figure 1: Sparsity patterns for different types of the Oseen problem in rotation form.

After we discretize the Oseen problem in rotation form (1.12)–(1.14), we obtain the
sparse linear system Ax = b, where

A =

[
A BT

B 0

]
. (1.19)

Here A = L + K, where L is the discretization of the operator α − νΔ, and matrix K is
the discretization of the term w×, where w = ∇ × v. In the 2D case,

K =

[
0 D

−D 0

]
. (1.20)

The rectangular matrix B is the discretization of the negative divergence, and BT is the
discretization of the gradient.

If we use a finite difference method, like Mac and Cell (MAC), see [6], then D is a
diagonal matrix where its diagonal elements are the values of w evaluated at the grid edges.
Matrix D is a weighted mass matrix if a finite element method is used. In the 3D case, we
have

K =

⎡
⎢⎢⎣

0 −D3 D2

D3 0 −D1

−D2 D1 0

⎤
⎥⎥⎦. (1.21)

Again matrices D1,D2, and D3 are all diagonal matrices or weighted mass matrices.
Typical sparsity patterns for A in the 2D and 3D case are displayed in Figures 1(a) and 1(b).

For some discretization methods, a stabilization matrix needs to be added to the (2,2)
block of A, namely, a matrix −C, where C is a symmetric positive semidefinite diagonal or
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Figure 2: Sparsity patterns for different types of the 2D Oseen problem in convection form.

scaled mass matrix, or scaled Laplacian with small norm. Figures 2(a) and 2(b) show the
sparsity pattern for the coefficient matrixA with or without stabilization term in the 2D case.
Such a stabilization is not necessary for the MAC discretization.

To solve the system Ax = b, we can consider the Krylov subspace methods
with the preconditioning. Many powerful preconditioning techniques have been explored
for the generalized Oseen problems, for example, Uzawa-type preconditioner, block and
approximate schur complement preconditioner, pressure preconditioner, and so forth, see
[7–11] for more details. However, there is no “best” preconditioner for the saddle point
system. To find the “best” preconditioner, we would like to find a preconditioner P , such that
the rate of convergence of the preconditioned Krylov subspace matrix is low and bounded
independent of the mesh size, viscosity ν and time step α. In addition, the cost of the
preconditioning steps must be low. In this paper, we describe such a new preconditioner
that satisfies the above requirements in most of cases and demonstrate its utility.

A summary of the paper is as follows. Section 2 demonstrates the Alternative
Hermitian and Skew-Hermitian (AHSS) preconditioner; studies some of its convergence
properties and the application of the HSS preconditioner for Krylov subspace methods;
Section 3 shows the results of a series of numerical experiments. Finally, section 4 summarizes
the approach and future work.

2. The Alternative HSS Preconditioner

The alternative HSS preconditioner is based on the nonsymmetric formulation

[
A BT

−B 0

][
u

p

]
=

[
f

−g

]
. (2.1)

We have analyzed the advantages of the nonsymmetric formulation in [12]. We gain positive
(semi)-definiteness in this case. By changing the sign in front of the (2, 1) and (2, 2) blocks,
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we obtain an equivalent linear system with a matrix whose spectrum is entirely contained in
the half-plane�(z) > 0. (Here we use�(z) to denote the real part of z ∈ C).The spectra of the
nonsymmetric formulation is more friendly to the convergence of Krylov subspace iterations.
For an example, GMRES methods, see [13, 14].

We have investigated the preconditioner based on the Hermitian and Skew-Hermitian
splitting methods for the Navier-Stokes problem, see [12, 15, 16]. However, the HSS precon-
ditioner still has some problems. When the time step is not small enough or the viscosity is
relative larger, the iteration number increases a lot. Therefore, we are trying to find another
preconditioner which works better than the HSS preconditioner. We find out that if we use
a different splitting of the coefficient matrix, we can get a very good results. The following
splitting is the new preconditioner we will introduce in the paper. LettingH ≡ (1/2)(A+AT )
and K ≡ (1/2)(A −AT ), we have the following splitting of A into two parts:

A =

[
A BT

−B 0

]
=

[
H BT

−B 0

]
+

[
K 0

0 0

]
. (2.2)

We denote

H =

[
H BT

−B 0

]
, K =

[
K 0

0 0

]
. (2.3)

Therefore, we defined the preconditioner as the following:

Pρ =
1
2ρ

(H + In+m)(K + In+m). (2.4)

Here In+m denotes the identity matrix of order n +m, and ρ > 0 is a parameter.
Similar in spirit to the classical ADI (alternating-direction implicit) method, we con-

sider the following two splittings of Â:

A =
(
H + ρI

)
−
(
ρI −K

)
, A =

(
K + ρI

)
−
(
ρI −H

)
. (2.5)

Here I denotes the identity matrix of order n +m. Note that

H + ρI =

[
H + ρIn BT

B ρIm

]
(2.6)

is the shifted discretized Stokes problem, where In denotes the identity matrix of order n, and
Im denotes the identity matrix of order m. We obtian that

K + ρI =

[
K + ρIn 0

0 ρIm

]
(2.7)

is nonsingular and has positive definite symmetric part.
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Alternating between these two splittings leads to the the following iteration:

(
H + ρI

)
uk+1/2 =

(
ρI −K

)
uk + b̂,

(
K + ρI

)
uk+1 =

(
ρI −H

)
uk+1/2 + b̂,

(2.8)

(k = 0, 1, . . .). Here b̂ denotes the right-hand side of (1.9); the initial guess u0 is chosen
arbitrarily. Elimination of uk+1/2 from (2.8) leads to a stationary (fixed-point) iteration of the
form

uk+1 = Tρuk + c, k = 0, 1, . . . , (2.9)

where Tρ = (K + ρI)−1(ρI − H)(H + ρI)−1(ρI − K) is the iteration matrix and c := (S +
ρI)−1(ρI−H)(H+ρI)−1(ρI−S). The iteration converges for arbitrary initial guesses u0 and
right-hand sides b to the solution u∗ = Â−1 if and only if �(Tρ) < 1, where �(Tρ) denotes the
spectral radius of Tρ.

Theorem 2.1. Consider the problem (2.1), that is,

[
A BT

−B 0

][
u

p

]
=

[
f

−g

]
. (2.10)

We assume thatA is positive real, and B has full rank. Then the iteration (2.9) from the splitting (2.3)
is unconditionally convergent; that is, �(Tρ) < 1 for all ρ > 0 and α ≥ 0.

Proof. Consider the splitting (2.3). The iteration matrix Tρ is similar to

T̂ρ :=
(
ρI −H

)(
H + ρI

)−1(
ρI −K

)(
K + ρI

)−1
,

= RU,
(2.11)

where R := (ρI −H)(H + ρI)−1 is symmetric and U := (ρI −K)(K + ρI)−1.
By Kellogg’s lemma, ‖R‖ = ‖(ρI−H)(H+ρI)−1‖ ≤ 1 sinceH is positive semidefinite.

U is the unitary matrix so ‖U‖ = ‖(ρI −K)(K + ρI)−1‖ = 1. Therefore,

�
(
Tρ

)
≤ 1. (2.12)

We claim that �(Tρ)/= 1.
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Assume that λ is one eigenvalue of the preconditioned linear system P−1Ax = P−1b.
We have

Ax = λ
1
2ρ
(
H + ρI

)(
K + ρI

)
x

=
λ

2ρ

(
HK + ρA + ρ2I

)
x

=
λ

2ρ
HKx +

λ

2
Ax +

ρλ

2
x.

(2.13)

Therefore,

(
1 − λ

2

)
Ax =

ρλ

2

(
I +

1
ρ2

HK
)
x. (2.14)

We claim that 1 − λ/2/= 0, otherwise, (I + (1/ρ2)HK)x = 0. It turns out that

⎡
⎣

1
ρ2

HS + I 0

−BS I

⎤
⎦x = 0. (2.15)

However, ρ((1/ρ2)HS + I) = 1 + ρ((1/ρ2)HS), and HS is orthogonal similar with the
matrixH−1/2SH1/2 which is a skew symmetric matrix with only pure imaginary eigenvalues.
Thus, if B is full rank, we claim that λ/= 2.

We define that θ = λρ/(2 − λ). Since λ/= 2, θ is welldefined. Thus, with λ = 2θ/(θ + 2),
we consider the following equation:

Ax = θ

(
I +

1
ρ2

HK
)
x. (2.16)

If |λ| < 1, then, |2θ/(θ+ 2)| < 1. Since |1− (2θ/(θ+ 2))| = |(ρ−θ)/(θ+ρ)| ≤ 1, we need to show
|ρ − θ|/|ρ + θ|/= 1, which means that θ is not a pure imaginary number.

Next we will prove that θ is not a pure imaginary number.
Consider the system

[
A BT

−B 0

][
u

−p

]
=

⎡
⎢⎢⎣

1
ρ2

HS + I 0

− 1
ρ2

BS I

⎤
⎥⎥⎦
[
u

−p

]
. (2.17)
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We can obtain the following system of the equations:

Au + BTp = θu +
θ

ρ2
HSu,

−Bu = − θ

ρ2
BSu + θp.

(2.18)

We solve p from the second equation p = (1/θ)B((θ/ρ2)S − I)u. Plug in p into the first
equation, we have

Au +
1
ρ2

BTBSu − θu − θ

ρ2
HSu =

1
θ
BTBu. (2.19)

Applying θuH to the both sides, we can obtain the following equation:

θuHAu +
θ

ρ2
uHBTBSu − θ2uHu − θ2

ρ2
uHHSu = uHBTBu = ‖Bu‖2 ≥ 0. (2.20)

Therefore, θA+(θ/ρ2)BTBS−θ2I− (θ2/ρ2)HS is a Hermitian matrix. Suppose that Re(θ) = 0,
that is, θ = ti, where t /= 0. We denote that G = θA + (θ/ρ2)BTBS − θ2I − (θ2/ρ2)HS = tiA +
(ti/ρ2)BTBS+ t2I+(t2/ρ2)HS. WhileGH = −tiAH +(ti/ρ2)BTBS+ t2I+(t2/ρ2)HS = G, which
leads toA = AH . A contradiction. BecauseA is the discretization of the Oseen problemwhich
is not Hermitian.

Thus, θ is not a pure imaginary number.

3. Application of the Preconditioner

To solve the preconditioner Pαzk = rk, we first solve the system

Hwk = rk, (3.1)

for wk, followed by

Kzk = wk. (3.2)

The first system requires solving systems with coefficient matrixH, which is a system
from discretized Stokes problem. We have many efficient solvers to solve this type of the
system, see [17–19].

The second system requires solving the sparse tridiagonal matrix K + ρIn. This can be
done by sparse LU factorization, preconditioned GMRES method. Notice that since K + ρI is
a tridiagnoal matrix, it is very easy to solve this system. In practice, we can solve (3.1) and
(3.2) with inexact solvers. Our experience is that the rate of convergence of the outer Krylov
subspace iteration is scarcely affected by the use of inexact inner solves. We can only use 1
step of pcg method for (3.1) and 1 step of gmres method for (3.2).
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4. Numerical Experiments

In this section we report on several numerical experiments meant to illustrate the behavior
of the HSS preconditioner on a wide range of model problems. We consider both Stokes and
Oseen-type problems, steady and unsteady, in 2D. The use of inexact solves is also discussed.
Our results include iteration counts, as well as some timings and eigenvalue plots.

All results were computed in Matlab 7.6.0 on one processor of an Intel core i7 with
8GB of memory.

In all experiments, a symmetric diagonal scaling was applied before forming the pre-
conditioner, so as to have all the nonzeros diagonal entries of the saddle point matrix equal
to 1. We found that this scaling is beneficial to convergence, and it makes finding (nearly)
optimal values of the shift ρ easier. Of course, the right-hand side and the solution vector
were scaled accordingly. We found, however, that without further preconditioning Krylov
subspace solvers converge extremely slowly on all the problems considered here. Right pre-
conditioning was used in all cases.

Here we consider linear systems arising from the discretization of the linearized
Navier-Stokes equations in rotation form. The computational domain is the unit square
Ω = [0, 1]×[0, 1]. Homogeneous Dirichlet boundary conditions are imposed on the velocities;
experiments with different boundary conditions were also performed, with results similar to
those reported below. We experimented with different forms of the divergence-free field v
appearing (via w = ∇ × v) in the rotation form of the unsteady Oseen problem. Here we
present results for the choice w = 16x(x − 1) + 16y(y − 1) (2D case) and w = (−4z(1 −
2x), 4z(2y−1), 2y(1−y)) (3D case). The 2D case corresponds to the choice of v. The equations
were discretized with a Marker-and-Cell (MAC) scheme with a uniform mesh size h. The
outer iteration (full GMRES) was stopped when

‖rk‖2
‖r0‖2

< 10−6, (4.1)

where rk denotes the residual vector at step k. For the results presented in this section, we
use the exact solver to solve the two systems.

In Tables 1, 2, and 3, we present results for unsteady problems with α = 10 to α = 100
for different values of ν. We can see from the table that AHSS preconditioning results in fast
convergence in all cases, and that the rate of convergence is virtually h-independent. Here as
in all other unsteady (or quasi-steady) problems that we have tested, the rate of convergence
is not overly sensitive to the choice of ρ, especially for small ν. A good choice is ρ ≈ 0.01 for
the two most grids.

5. Conclusions

In this paper, we have considered preconditioned iterative methods applied to discretizations
of the Navier-Stokes equations in rotation form. We focus on the unsteady case of the
linearized Navier-Stokes problem.We have compared the performance of the alternative HSS
(AHSS) preconditioners with regard to the mesh size, the Reynolds number, the time step,
and other problem parameters. We find that the AHSS preconditioner has a robust behavior
especially for unsteady Oseen problems. Although our computational experience has been
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Table 1: Results for 2D unsteady Oseen problem different values of α (exact solves) and ν = 0.1.

Grid α = 10 α = 20 α = 50 α = 100

8 × 8 7 5 4 3

16 × 16 8 6 4 4

32 × 32 8 6 5 4

64 × 64 8 6 5 4

128 × 128 8 6 5 4

Table 2: Results for 2D unsteady Oseen problem different values of α (exact solves) and ν = 0.05.

Grid α = 10 α = 20 α = 50 α = 100

8 × 8 4 4 3 3

16 × 16 6 5 3 3

32 × 32 8 6 4 3

64 × 64 9 7 5 5

128 × 128 10 7 5 5

Table 3: Results for 2D unsteady Oseen problem different values of α (exact solves) and ν = 0.01.

Grid α = 10 α = 20 α = 50 α = 100

8 × 8 3 3 2 2

16 × 16 4 3 3 2

32 × 32 5 4 3 3

64 × 64 8 5 3 3

128 × 128 9 6 4 3

limited to uniformMAC discretizations and simple geometries, the preconditioner should be
applicable to more complicated problems and discretizations, including unstructured grids.

Compared with HSS (Hermitian and Skew-Hermitian preconditioner), the AHSS pre-
conditioner works better for relative large viscosity. For an example, ν > 0.05. For the smaller
viscosity, ν < 0.01, HSS preconditioner will be recommended.

In the future study, we will investigate the performance the AHSS preconditioner
based using the inexact solvers for the inner iteration. Also the picard’s iteration will be
tested.
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