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Cho et al. (2012) proved some coupled fixed point theorems in partially ordered conemetric spaces
by using the concept of a c-distance in conemetric spaces. In this paper, we prove some coincidence
point theorems in partially ordered cone metric spaces by using the notion of a c-distance. Our
results generalize several well-known comparable results in the literature. Also, we introduce an
example to support the usability of our results.

1. Introduction and Preliminaries

Fixed point theory is an essential tool in functional nonlinear analysis. Consequently, fixed
point theory has wide applications areas not only in the various branches of mathematics
(see, e.g., [1, 2]) but also in many fields, such as, chemistry, biology, statistics, economics,
computer science, and engineering (see, e.g., [3–11]). For example, fixed point results are
incredibly useful when it comes to proving the existence of various types of Nash equilibria
(see, e.g., [7]) in economics. On the other hand, fixed point theorems are vital for the existence
and uniqueness of differential equations, matrix equations, integral equations (see, e.g.,
[1, 2]). Banach contraction mapping principle (Banach fixed point theorem) is one of the
most powerful theorems of mathematics and hence fixed point theory. Huang and Zhang [12]
generalized the Banach contraction principle by replacing the notion of usual metric spaces
by the notion of cone metric spaces. Then many authors obtained many fixed and common
fixed point theorems in cone metric spaces. For some works in cone metric spaces, we may
refer the reader (as examples) to [13–24]. The concept of a coupled fixed point of a mapping
F : X ×X → X was initiated by Bhaskar and Lakshmikantham [25], while Lakshmikantham
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and Ćirić [26] initiated the notion of coupled coincidence point of mappings F : X ×X → X
and g : X → X and studied some coupled coincidence point theorems in partially ordered
metric spaces. For some coupled fixed point and coupled coincidence point theorems, we
refer the reader to [27–34].

In the present paper, N∗ is the set of positive integers and E stands for a real Banach
space. Let P be a subset of E. We will always assume that the cone P has a nonempty interior
Int(P) (such cones are called solid). Then P is called a cone if the following conditions are
satisfied:

(1) P is closed and P /= {θ},
(2) a, b ∈ R+, x, y ∈ P implies ax + by ∈ P ,

(3) x ∈ P ∩ −P implies x = θ.

For a cone P , define a partial ordering � with respect to P by x � y if and only if y − x ∈ P .
We will write x ≺ y to indicate that x � y but x /=y, while x � y will stand for y − x ∈ Int(P).
It can be easily shown that λ Int(P) ⊆ Int(P) for all positive scalar λ.

Definition 1.1 (see [12]). Let X be a nonempty set. Suppose the mapping d : X × X → E
satisfies

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Bhaskar and Lakshmikantham [25] introduced the notion of mixed monotone
property of the mapping F : X ×X → X.

Definition 1.2 (see [25]). Let (X,≤) be a partially ordered set and F : X × X → X be
a mapping. Then the mapping F is said to have mixed monotone property if F(x, y) is
monotone nondecreasing in x and is monotone nonincreasing in y; that is, for any x, y ∈ X,

x1 ≤ x2 implies F
(
x1, y

) ≤ F
(
x2, y

)
, ∀y ∈ X,

y1 ≤ y2 implies F
(
x, y2

) ≤ F
(
x, y1

)
, ∀x ∈ X.

(1.1)

Inspired by Definition 1.2, Lakshmikantham and Ćirić in [26] introduced the concept
of a g-mixed monotone mapping.

Definition 1.3 (see [26]). Let (X,≤) be a partially ordered set and F : X × X → X. Then
the mapping F is said to have mixed gg-monotone property if F(x, y) is monotone g-
nondecreasing in x and is monotone g-nonincreasing in y; that is:

gx1 ≤ gx2 implies F
(
x1, y

) ≤ F
(
x2, y

)
, ∀y ∈ X,

gy1 ≤ gy2 implies F
(
x, y2

) ≤ F
(
x, y1

)
, ∀x ∈ X.

(1.2)
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Definition 1.4 (see [25]). An element (x, y) ∈ X×X is called a coupled fixed point of amapping
F : X ×X → X if

F
(
x, y
)
= x, F

(
y, x
)
= y. (1.3)

Definition 1.5 (see [26]). An element (x, y) ∈ X × X is called a coupled coincidence point of
the mappings F : X ×X → X and g : X → X if

F
(
x, y
)
= gx, F

(
y, x
)
= gy. (1.4)

Recently, Cho et al. [35] introduced the concept of c-distance on cone metric space
(X, d)which is a generalization of w-distance of Kada et al. [36] (see also [37, 38]).

Definition 1.6 (see [35]). Let (X, d) be a cone metric space. Then a function q : X × X → E is
called a c-distance on X if the following is satisfied:

(q1) θ � q(x, y) for all x, y ∈ X,

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) for each x ∈ X and n ≥ 1, if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u
whenever (yn) is a sequence in X converging to a point y ∈ X,

(q4) for all c ∈ E with θ � c, there exists e ∈ E with 0 ≤ e such that q(z, x) � e, and
q(z, y) � e implies d(x, y) � c.

Cho et al. [35] noticed the following important remark in the concept of c-distance on
cone metric spaces.

Remark 1.7 (see [35]). Let q be a c-distance on a cone metric space (X, d). Then

(1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X,

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Very recently, Cho et al. [39] proved the following existence theorems.

Theorem 1.8 (see [39]). Let (X,�) be a partially ordered set and suppose that (X, d) is a complete
cone metric space. Let q be a c-distance on X and let F : X ×X → X be a continuous function having
the mixed monotone property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � k

2
(
q(x, x∗) + q

(
y, y∗)), (1.5)

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x � x∗)∧ (y � y∗) or (x � x∗)∧ (y � y∗). If there
exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled fixed point (u, v).
Moreover, one has q(v, v) = q(u, u) = θ.

Theorem 1.9 (see [39]). Let (X,�) be a partially ordered set and suppose that (X, d) is a complete
cone metric space. Let q be a c-distance on X, and let F : X ×X → X be a function having the mixed
monotone property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � k

4
(
q(x, x∗) + q

(
y, y∗)), (1.6)
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for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x � x∗) ∧ (y � y∗) or (x � x∗) ∧ (y � y∗). Also,
suppose that X has the following properties:

(1) if (xn) is a nondecreasing sequence in X with xn → x, then xn � x for all n ≥ 1,

(2) if (xn) is a nonincreasing sequence in X with xn → x, then x � xn for all n ≥ 1.

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled
fixed point (u, v). Moreover, one has q(v, v) = q(u, u) = θ.

For other fixed point results using a c-distance, see [40].
In this paper, we prove some coincidence point theorems in partially ordered cone

metric spaces by using the notion of c-distance. Our results generalize Theorems 1.8 and 1.9.
We consider an application to illustrate our result is useful (see Section 3).

2. Main Results

The following lemma is essential in proving our results.

Lemma 2.1 (see [35]). Let (X, d) be a cone metric space, and let q be a cone distance on X. Let (xn)
and (yn) be sequences in X and x, y, z ∈ X. Suppose that (un) is a sequence in P converging to θ.
Then the following holds.

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then (yn) converges to z.

(3) If q(xn, xm) � un form > n, then (xn) is a Cauchy sequence in X.

(4) If q(y, xn) � un, then (xn) is a Cauchy sequence in X.

In this section, we prove some coupled fixed point theorems by using c-distance in
partially partially ordered cone metric spaces.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
q be a c-distance on X. Let F : X ×X → X and g : X → X be two mappings such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) + q

(
F
(
y, x
)
, F
(
y∗, x∗)) � k

(
q
(
gx, gx∗) + q

(
gy, gy∗)), (2.1)

for some k ∈ [0, 1) and for all x, y, x∗, y∗ ∈ X with (gx ≤ gx∗)∧(gy ≥ gy∗) or (gx ≥ gx∗)∧(gy ≤
gy∗). Assume that F and g satisfy the following conditions:

(1) F is continuous,

(2) g is continuous and commutes with F,

(3) F(X ×X) ⊆ gX,

(4) (X, d) is complete,

(5) F has the mixed g-monotone property.

If there exist x0, y0 ∈ X such that gx0 ≤ F(x0, y0) and F(y0, x0) ≤ gy0, then F and g have a coupled
coincidence point (u, v). Moreover, one has q(gu, gu) = θ and q(gv, gv) = θ.
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Proof. Let x0, y0 ∈ X be such that gx0 ≤ F(x0, y0) and F(y0, x0) ≤ gy0. Since F(X × X) ⊆
g(X), we can choose x1, y1 ∈ X such that gx1 = F(x0, y0) and gy1 = F(y0, x0). Again since
F(X × X) ⊆ g(X), we can choose x2, y2 ∈ X such that gx2 = F(x1, y1) and gy2 = F(y1, x1).
Since F has the mixed g-monotone property, we have gx0 ≤ gx1 ≤ gx2 and gy2 ≤ gy1 ≤ gy0.
Continuing this process, we can construct two sequences (xn) and (yn) in X such that

gxn = F
(
xn−1, yn−1

) ≤ gxn+1 = F
(
xn, yn

)
,

gyn+1 = F
(
yn, xn

) ≤ gyn = F
(
yn−1, xn−1

)
.

(2.2)

Let n ∈ N∗. Then by (2.1), we have

q
(
gxn, gxn+1

)
+ q
(
gyn, gyn+1

)

= q
(
F
(
xn−1, yn−1

)
, F
(
xn, yn

))
+ q
(
F
(
yn−1, xn−1

)
, F
(
yn, xn

))

� k
(
q
(
gxn−1, gxn

)
+ q
(
gyn−1, gyn

))
.

(2.3)

Repeating (2.3) n-times, we get

q
(
gxn, gxn+1

)
+ q
(
gyn, gyn+1

) � kn(q
(
gx0,gx1

)
+ q
(
gy0, gy1

))
. (2.4)

Thus, we have

q
(
gxn, gxn+1

) � kn(q
(
gx0, gx1

)
+ q
(
gy0, gy1

))
, (2.5)

q
(
gyn, gyn+1

)� kn(q
(
gx0, gx1

)
+ q
(
gy0, gy1

))
. (2.6)

Let m,n ∈ N∗ withm > n. Then by (q2) and (2.5), we have

q
(
gxn, gxm

) �
m−1∑

i=n

q
(
gxi, gxi+1

)

�
m−1∑

i=n

ki(q
(
gx0, gx1

)
+ q
(
gy0, gy1

))

� kn

1 − k

(
q
(
gx0, gx1

)
+ q
(
gy0, gy1

))
.

(2.7)

Similarly, we have

q
(
gyn, gym

) � kn

1 − k

(
q
(
gx0, gx1

)
+ q
(
gy0, gy1

))
. (2.8)

From part (3) of Lemma 2.1, we conclude that (gxn) and (gyn) are Cauchy sequences in in
(X, d). Since X is complete, there are u, v ∈ X such that gxn → u and gyn → v. Using
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the continuity of g, we get g(gxn) → gu and g(gyn) → gv. Also, by continuity of F and
commutativity of F and g, we have

gu = lim
n→∞

g
(
gxn+1

)
= lim

n→∞
g
(
F
(
xn, yn

))
= lim

n→∞
F
(
gxn, gyn

)
= F(u, v),

gv = lim
n→∞

g
(
gyn+1

)
= lim

n→∞
g
(
F
(
yn, xn

))
= lim

n→∞
F
(
gyn, gxn

)
= F(v, u).

(2.9)

Hence, (u, v) is a coupled coincidence point of F and g. Moreover, by (2.1)we have

q
(
gu, gu

)
+ q
(
gv, gv

)
= q(F(u, v), F(u, v)) + q(F(v, u), F(v, u))

� k
(
q
(
gu, gu

)
+ q
(
gv, gv

))
.

(2.10)

Since k < 1, we conclude that q(gu, gu) + q(gv, gv) = θ, and hence q(gu, gu) = θ and
q(gv, gv) = θ.

The continuity of F in Theorem 2.2 can be dropped. For this, we present the following
useful lemma which is a variant of Lemma 2.1, (1).

Lemma 2.3. Let (X, d) be a cone metric space, and let q be a c-distance onX. Let (xn) be a sequence in
X. Suppose that (αn) and (βn) are sequences in P converging to θ. If q(xn, y) � αn and q(xn, z) � βn,
then y = z.

Proof. Let c � θ be arbitrary. Since αn → θ, so there exists N1 ∈ N such that αn � c/2 for
all n ≥ N1. Similarly, there exists N2 ∈ N such that βn � c/2 for all n ≥ N2. Thus, for all
N ≥ max{N1,N2}, we have

q
(
xn, y

)� c

2
, q(xn, z) � c

2
. (2.11)

Take e = c/2, so by (q4), we get that d(y, z) � c for each c � θ; hence y = z.

Theorem 2.4. Let (X,≤) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
q be a c-distance on X. Let F : X ×X → X and let g : X → X be two mappings such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) + q

(
F
(
y, x
)
, F
(
y∗, x∗)) � k

(
q
(
gx, gx∗) + q

(
gy, gy∗)), (2.12)

for some k ∈ [0, 1) and for all x, y, x∗, y∗ ∈ X with (gx ≤ gx∗)∧(gy ≥ gy∗) or (gx ≥ gx∗)∧(gy ≤
gy∗). Assume that F and g satisfy the following conditions:

(1) F(X ×X) ⊆ gX,

(2) gX is a complete subspace of X,

(3) F has the mixed g-monotone property.

Suppose that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(ii) if a nonincreasing sequence xn → x, then x ≤ xn for all n.



Journal of Applied Mathematics 7

Assume there exist x0, y0 ∈ X such that gx0 ≤ F(x0, y0) and F(y0, x0) ≤ gy0. Then F and g
have a coupled coincidence point, say (u, v) ∈ X ×X. Also, q(gu, gu) = q(gv, gv) = θ.

Proof. As in the proof of Theorem 2.2, we can construct two Cauchy sequences (gxn) and
(gyn) in the complete cone metric space (gX, d). Then, there exist u, v ∈ X such that gxn →
gu and gyn → gv. Similarly we have for all m > n ≥ 1

q
(
gxn, gxm

) � kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
,

q
(
gyn, gym

) � kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
.

(2.13)

By (q3), we get that

q
(
gxn, gu

) � kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
, (2.14)

q
(
gyn, gv

) � kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
. (2.15)

By summation, we get that

q
(
gxn, gu

)
+ q
(
gyn, gv

) � 2
kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
. (2.16)

Since (gxn) is nondecreasing and (gyn) is nonincreasing, using the properties (i), (ii) of X,
we have

gxn ≤ gu, gv ≤ gyn, ∀n ≥ 0. (2.17)

From this and (2.14), we have

q
(
gxn, F(u, v)

)
+ q
(
gyn, F(v, u)

)
= q
(
F
(
xn−1, yn−1

)
, F(u, v)

)
+ q
(
F
(
yn−1, xn−1

)
, F(v, u)

)

� k
(
q
(
gxn−1, gu

)
+ q
(
gyn−1, gv

))
.

(2.18)

Therefore

q
(
gxn, F(u, v)

)
+ q
(
gyn, F(v, u)

) � k
[
q
(
gxn−1, gu

)
+ q
(
gyn−1, gv

)]
. (2.19)

By (2.16), we have

q
(
gxn, F(u, v)

)
+ q
(
gyn, F(v, u)

) � k
[
q
(
gxn−1, gu

)
+ q
(
gyn−1, gv

)]

� k
2kn−1

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]

=
2kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
.

(2.20)



8 Journal of Applied Mathematics

This implies that

q
(
gxn, F(u, v)

) � 2kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
, (2.21)

q
(
gyn, F(v, u)

) � 2kn

1 − k

[
q
(
gx0, gx1

)
+ q
(
gy0, gy1

)]
. (2.22)

By (2.14), (2.21) and Lemma 2.3, we obtain gu = F(u, v). Similarly, by (2.15), (2.22), and
Lemma 2.3, we obtain gv = F(v, u). Also, adjusting as the proof of Theorem 2.2, we get that

q
(
gu, gu

)
= q
(
gv, gv

)
= θ. (2.23)

Corollary 2.5. Let (X,≤) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
q be a c-distance on X. Let F : X ×X → X, and let g : X → X be two mappings such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � aq

(
gx, gx∗) + bq

(
gy, gy∗), (2.24)

for some a, b ∈ [0, 1) with a + b < 1 and for all x, y, x∗, y∗ ∈ X with (gx ≤ gx∗) ∧ (gy ≥ gy∗) or
(gx ≥ gx∗) ∧ (gy ≤ gy∗). Assume that F and g satisfy the following conditions:

(1) F is continuous,

(2) g is continuous and commutes with F,

(3) F(X ×X) ⊆ gX,

(4) (X, d) is complete,

(5) F has the mixed g-monotone property.

If there exist x0, y0 ∈ X such that gx0 ≤ F(x0, y0) and F(y0, x0) ≤ gy0, then F and g have a coupled
coincidence point (u, v). Moreover, one has q(gu, gu) = θ and q(gv, gv) = θ.

Proof. Given x, x∗, y, y∗ ∈ X such that (gx ≤ gx∗) ∧ (gy ≥ gy∗). By (2.24), we have

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � aq

(
gx, gx∗) + bq

(
gy, gy∗),

q
(
F
(
y, x
)
, F
(
y∗, x∗)) � aq

(
gy, gy∗) + bq

(
gx, gx∗).

(2.25)

Thus

q
(
F
(
x, y
)
, F
(
x∗, y∗)) + q

(
F
(
y, x
)
, F
(
y∗, x∗)) � (a + b)

(
q
(
gx, gx∗) + q

(
gy, gy∗)). (2.26)

Since a + b < 1, the result follows from Theorem 2.2.

Corollary 2.6. Let (X,≤) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Let F : X × X → X be a continuous mapping having the mixed
monotone property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � aq(x, x∗) + bq

(
y, y∗), (2.27)
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for some a, b ∈ [0, 1) with a + b < 1 and for all x, y, x∗, y∗ ∈ X with (x ≤ x∗) ∧ (y ≥ y∗) or
(x ≥ x∗) ∧ (y ≤ y∗). If there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then F
has a coupled fixed point (x, y). Moreover, one has q(x, x) = θ and q(y, y) = θ.

Proof. It follows from Corollary 2.5 by taking g = IX (the identity map).

Corollary 2.7. Let (X,≤) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
q be a c-distance on X. Let F : X ×X → X and g : X → X be two mappings such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � aq

((
gx, gx∗) + bq

(
gy, gy∗)), (2.28)

for some a, b ∈ [0, 1) with a + b < 1 and for all x, y, x∗, y∗ ∈ X with (gx ≤ gx∗) ∧ (gy ≥ gy∗) or
(gx ≥ gx∗) ∧ (gy ≤ gy∗). Assume that F and g satisfy the following conditions:

(1) F(X ×X) ⊆ gX,

(2) gX is a complete subspace of X,

(3) F has the mixed g-monotone property.

Suppose that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(ii) if a nonincreasing sequence xn → x, then x ≤ xn for all n.

Assume there exist x0, y0 ∈ X such that gx0 ≤ F(x0, y0) and F(y0, x0) ≤ gy0. Then F and g
have a coupled coincidence point.
Proof. It follows from Theorem 2.4 by similar arguments to those given in proof of
Corollary 2.5.

Corollary 2.8. Let (X,≤) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Let F : X × X → X be a mapping having the mixed monotone
property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) � aq

(
(x, x∗) + bq

(
y, y∗)), (2.29)

for some a, b ∈ [0, 1) with a + b < 1 and for all x, y, x∗, y∗ ∈ X with (x ≤ x∗) ∧ (y ≥ y∗) or
(x ≥ x∗) ∧ (y ≤ y∗). Suppose that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(ii) if a nonincreasing sequence xn → x, then x ≤ xn for all n.

Assume there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0. Then F has a coupled
fixed point.

Proof. It follows from Corollary 2.7 by taking g = IX (the identity map).

Corollary 2.9. Let (X,≤) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X, and let F : X ×X → X be a continuous mapping having the mixed
monotone property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) + q

(
F
(
y, x
)
, F
(
y∗, x∗)) � k

(
q(x, x∗) + q

(
y, y∗)), (2.30)

for some k ∈ [0, 1) and for all x, y, x∗, y∗ ∈ X with (x ≤ x∗) ∧ (y ≥ y∗) or (x ≥ x∗) ∧ (y ≤ y∗).
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If there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then F has a coupled
fixed point (x, y). Moreover, we have q(x, x) = θ and q(y, y) = θ.

Proof. It follows from Theorem 2.2 by taking g = IX .

Corollary 2.10. Let (X,≤) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Let F : X × X → X be a mapping having the mixed monotone
property such that

q
(
F
(
x, y
)
, F
(
x∗, y∗)) + q

(
F
(
y, x
)
, F
(
y∗, x∗)) � k

(
q(x, x∗) + q

(
y, y∗)), (2.31)

for some k ∈ [0, 1) and for all x, y, x∗, y∗ ∈ X with (x ≤ x∗) ∧ (y ≥ y∗) or (x ≥ x∗) ∧ (y ≤ y∗).
Suppose that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(ii) if a nonincreasing sequence xn → x, then x ≤ xn for all n.

Assume there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0. Then F has a coupled
fixed point.

Proof. It follows from Theorem 2.4 by taking g = IX .

Example 2.11. Let E = C1
R([0, 1])with ||x|| = ||x||∞+ ||x′||∞ and P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.

Let X = [0, 1] with usual order ≤. Define d : X × X → X by d(x, y)(t) = |x − y|et for all
x, y ∈ X. Then (X, d) is a partially ordered cone metric space. Define q : X × X → E by
q(x, y)(t) = yet for all x, y ∈ X. Then q is a c-distance. Define F : X ×X → X by

F
(
x, y
)
=

⎧
⎨

⎩

x − y

2
, x ≥ y,

0, x < y.
(2.32)

Then,

(1) q(F(x, y), F(x∗, y∗)) + q(F(y, x), F(y∗, x∗)) ≤ 1/2(q(x, x∗) + q(y, y∗)), for all x ≤ x∗
and y ≥ y∗,

(2) there is no k ∈ [0, 1) such that q(F(x, y), F(x∗, y∗)) ≤ (k/2)(q(x, x∗) + q(y, y∗)) for
all x ≤ x∗ and y ≥ y∗,

(3) there is no k ∈ [0, 1) such that q(F(x, y), F(x∗, y∗)) ≤ (k/4)(q(x, x∗) + q(y, y∗)) for
all x ≤ x∗ and y ≥ y∗.

Note that 0 ≤ F(0, 0) and 0 ≥ F(0, 0). Thus by Corollary 2.10, we have F which has a coupled
fixed point. Here (0, 0) is a coupled fixed point of F.

Proof. The proof of (2.1) is easy. To prove (2.3), suppose the contrary; that is, there is k ∈ [0, 1)
such that q(F(x, y), F(x∗, y∗)) ≤ k/2(q(x, x∗) + q(y, y∗)) for all x ≤ x∗ and y ≥ y∗. Take
x = 0, y = 1, x∗ = 1 and y∗ = 0. Then

q(F(0, 1), F(1, 0))(t) ≤ k

2
(
q(0, 1) + q(1, 0)

)
(t). (2.33)



Journal of Applied Mathematics 11

Thus

q

(
0,

1
2

)
(t) =

1
2
et ≤ k

2
et. (2.34)

Hence k ≥ 1 is a contradiction. The proof of (2.5) is similar to proof of (2.3).

Remark 2.12. Note that Theorems 3.1 and 3.2 of [39] are not applicable to Example 2.11.

Remark 2.13. Theorem 3.1 of [39] is a special case of Corollary 2.6 and Corollary 2.9.

Remark 2.14. Theorem 3.3 of [39] is a special case of Corollary 2.8 and Corollary 2.10.

3. Application

Consider the integral equations

x(t) =
∫T

0
f
(
t, x(s), y(s)

)
ds, t ∈ [0, T],

y(t) =
∫T

0
f
(
t, y(s), x(s)

)
ds, t ∈ [0, T],

(3.1)

where T > 0 and f : [0, T] × R × R → R. Let X = C([0, T],R) denote the space of R-
valued continuous functions on I = [0, T]. The purpose of this section is to give an existence
theorem for a solution (x, y) to (3.1) that belongs to X, by using the obtained result given by
Corollary 2.10. Let E = R

2, and let P ⊂ E be the cone defined by

P =
{(

x, y
) ∈ R

2 | x ≥ 0, y ≥ 0
}
. (3.2)

We endow X with the cone metric d : X ×X → E defined by

d(u, v) =

(

sup
t∈I

|u(t) − v(t)|, sup
t∈I

|u(t) − v(t)|
)

, ∀u, v ∈ X. (3.3)

It is clear that (X, d) is a complete cone metric space. Let q(x, y) = d(x, y) for all x, y ∈ X.
Then, q is a c-distance.

Now, we endow X with the partial order ≤ given by

u, v ∈ X, u ≤ v ⇐⇒ u(x) ≤ v(x), ∀x ∈ I. (3.4)

Also, the product space X ×X can be equipped with the partial order (still denoted ≤) given
as follows:

(
x, y
) ≤ (u, v) ⇐⇒ x ≤ u, y ≥ v. (3.5)

It is easy that (i) and (ii) given in Corollary 2.10 are satisfied.
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Now, we consider the following assumptions:

(a) f : [0, T] × R × R → R is continuous,

(b) for all t ∈ [0, T], the function f(t, ·, ·) : R → R has the mixed monotone property,

(c) for all t ∈ [0, T], for all p, q, p′, q′ ∈ R with p ≤ q and p′ ≥ q′, we have

f
(
t, q, q′

) − f
(
t, p, p′

) ≤ 1
T
ϕ

(
q − p + p′ − q′

2

)
, (3.6)

where ϕ : [0,∞) → [0,∞) is continuous nondecreasing an satisfies the following
condition: There exists 0 < k < 1 such that

ϕ(r) ≤ kr ∀r ≥ 0, (3.7)

(d) there exists x0, y0 ∈ C([0, T],R) such that

x0(t) ≤
∫T

0
f
(
t, x0(s), y0(s)

)
ds,

∫T

0
f
(
t, y0(s), x0(s)

)
ds ≤ y0(t), ∀t ∈ [0, T]. (3.8)

We have the following result.

Theorem 3.1. Suppose that (a)–(d) hold. Then, (3.1) has at least one solution (x∗, y∗) ∈
C([0, T],R) × C([0, T],R).

Proof. Define the mapping A : C([0, T],R) × C([0, T],R) → C([0, T],R) by

A
(
x, y
)
(t) =

∫T

0
f
(
t, x(s), y(s)

)
ds, x, y ∈ C([0, T],R), t ∈ [0, T]. (3.9)

We have to prove that A has at least one coupled fixed point (x∗, y∗) ∈ C([0, T],R) ×
C([0, T],R).

From (b), it is clear that A has the mixed monotone property.
Now, let x, y, u, v ∈ C([0, T],R) such that (x ≤ u and y ≥ v) or (x ≥ u and y ≤ v).

Using (c), for all t ∈ [0, T], we have

∣∣A(u, v)(t) −A
(
x, y
)
(t)
∣∣ ≤
∫T

0

[
f(t, u(s), v(s)) − f

(
t, x(s), y(s)

)]
ds

≤ 1
T

∫T

0
ϕ

(
u(s) − x(s) + y(s) − v(s)

2

)
ds
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≤ 1
T

∫T

0
ϕ

(
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣
∣y(z) − v(z)

∣
∣

2

)

ds

= ϕ

(
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣
∣y(z) − v(z)

∣
∣

2

)

≤ k

[
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣∣y(z) − v(z)
∣∣

2

]

,

(3.10)

which implies that

supz∈[0,T]
∣
∣A(u, v)(t) −A

(
x, y
)
(t)
∣
∣ ≤ k

[
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣
∣y(z) − v(z)

∣
∣

2

]

.

(3.11)

Similarly, one can get

supz∈[0,T]
∣∣A(v, u)(t) −A

(
y, x
)
(t)
∣∣ ≤ k

[
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣∣y(z) − v(z)
∣∣

2

]

.

(3.12)

We deduce

supz∈[0,T]
∣∣A(u, v)(t) −A

(
x, y
)
(t)
∣∣ + supz∈[0,T]

∣∣A(v, u)(t) −A
(
y, x
)
(t)
∣∣

≤ k
[
supz∈[0,T]|u(z) − x(z)| + supz∈[0,T]

∣∣y(z) − v(z)
∣∣
]
.

(3.13)

Thus

d
(
A(u, v), A

(
x, y
))

+ d
(
A(v, u), A

(
y, x
)) � k

[
d(x, u) + d

(
y, v
)]
. (3.14)

Thus, we proved that condition (2.31) of Corollary 2.10 is satisfied. Moreover, from (d), we
have x0 ≤ A(x0, y0) and A(y0, x0) ≤ y0. Finally, applying our Corollary 2.10, we get the
desired result.
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contractions and quasicontractions in ordered cone metric spaces,” Computers & Mathematics with
Applications, vol. 59, no. 9, pp. 3148–3159, 2010.
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