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For the linear discrete stochastic systems with multiple sensors and unknown noise statistics, an
online estimators of the noise variances and cross-covariances are designed by using measure-
ment feedback, full-rank decomposition, and weighted least squares theory. Further, a self-tuning
weighted measurement fusion Kalman filter is presented. The Fadeeva formula is used to establish
ARMA innovation model with unknown noise statistics. The sampling correlated function of the
stationary and reversible ARMA innovation model is used to identify the noise statistics. It is
proved that the presented self-tuning weighted measurement fusion Kalman filter converges
to the optimal weighted measurement fusion Kalman filter, which means its asymptotic global
optimality. The simulation result of radar-tracking system shows the effectiveness of the presented
algorithm.

1. Introduction

With the development of scientific technology, the scale of a control system has become more
andmore complex and tremendous, and the accuracy, fault-tolerance, and robustness of a sys-
tem are required much higher, so that single sensor has been unable to satisfy the demands
of high scientific technologies. Thus, the multisensor information fusion technology has been
paid great attention to and become an important research issue.

In early 1980s, Shalom [1, 2] presented the computation formula of cross-covariance
matrix by studying the correlation of two sensor subsystems with independent noises. Carl-
son [3] presented the famous federated Kalman filter by using the upper bound of noise
variance matrix to replace noise variance matrix and supposing that the initial local esti-
mation errors are not correlated. Kim [4] proposed themaximum likelihood fusion estimation
algorithm by requiring the hypothesis that random variables obey normal distributions.
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The universal weighted least squares method and the best linear unbiased fusion estimation
algorithm were presented by Li et al. [5] on the basis of a unified linear model for three
estimation fusion architectures of centralized filter, distributed filter, and hybrid filter. Three
weighted fusion algorithms of matrix-weighted, diagonal-matrix-weighted, and scalar-
weighted in the linear minimum variance sense were proposed by Sun and Deng [6], Sun [7],
where the matrix-weighted fusion algorithm, maximum likelihood fusion algorithm [4], and
distributed best linear unbiased estimation algorithm [5] have the same result and avoid the
derivation on the basis of hypothesis of normal distribution and linear model. The short-
comings of methods presented in [3–7] are that they have larger calculation burdens and the
fusion accuracy is global suboptimal.

Based on Kalman filtering, Gan and Chris [8] discussed two kinds of multisensor
measurement fusion method: the centralized measurement fusion (CMF) and the weighted
measurement fusion (WMF). The former is to directly merge the multisensor data through
the augmented measurement vector to calculate the estimation. Its advantage is that it can
obtain globally optimal state estimator. Its shortcoming is that the computational burden is
large since the measurement dimension is high. So it is unsuitable for real-time application.
The latter is to weigh local sensor measurements to obtain a low-dimensional measurement
equation, and then to use a single Kalman filter to obtain the final fused state estimation.
Its advantages are that the computational burden can be obviously reduced and the globally
optimal state estimation can be obtained [8–12].

It is known that the existing information fusion Kalman filtering is only effective
when the model parameters and noise statistics are exactly known. But this restricts its
applications in practice. In real applications, the model parameters and noise statistics are
completely or partially unknown in general. The filtering problem for systems with unknown
model parameters and/or noise statistics yields the self-tuning filtering. Its basic principle
is the optimal filter plus a recursive identifier of model parameters and/or noise statis-
tics [13].

For self-tuning fusion filters, there are two methods of self-tuning weighted state
fusion and self-tuningmeasurement fusion.Weighted state fusionmethod is used by Sun [14]
and Deng et al. [15], respectively, but the used distributed state fusion algorithm is globally
suboptimal and the acquired self-tuning estimator cannot reach globally asymptotic opti-
mality. For the self-tuning measurement fuser, [9, 16] considered the uncorrelated input
noise and measurement noise. Ran and Deng [17] presented a self-tuning measurement
fusion Kalman filter under the assumption that all sensors have the same measurement mat-
rices.

This paper is concernedwith the self-tuning filtering problem for a multisensor system
with unknown noise variances, different measurement matrices, and correlated noises.
Firstly, transform the system with correlated input noise and measurement noise into one
with uncorrelated input noise and measurement noise by using the measurement feedback
and taking measurement data as a part of system control item. Then, weigh all the meas-
urements by using full-rank decomposition and weighted least squares theory. The Fadeeva
formula is used to establish ARMA innovation model with unknown noise covariance
matrices and the sampling correlated function of a stationary and reversible ARMA
innovation model is used to identify the noise covariance matrices. It is rigorously proved
that the presented self-tuning weighted measurement fusion Kalman filter converges to the
optimal weighted measurement fusion Kalman filter, that is, it has asymptotic global optima-
lity.
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2. Problem Formulation

Consider the controlled multisensor time-invariant systems with correlated noises:

x(t + 1) = Φx(t) + Bu(t) + Γw(t), (2.1)

yi(t) = Hix(t) + vi(t), i = 1, . . . , L, (2.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the given control, yi(t) ∈ Rmi is the measurement
of the sensor i, w(t) ∈ Rr is the input noise, and vi(t) ∈ Rmi is the measurement noise. L is
the number of sensors, Hi ∈ Rmi×n is the measurement matrix of the sensor i. Φ, B, and Γ are
constant matrices with compatible dimensions.

Assumption 2.1. w(t) and vi(t) are correlated Gaussian white noise with zero means, and

E

{[
w(t)

vi(t)

][
wT(k) vT

j (k)
]}

=

[
Qw Sj

ST
i Rij

]
δtk, i = 1, . . . , L, (2.3)

where the symbol E denotes the expectation, δtk is Kronecker delta function, that is, δtt = 1,
δtk = 0 (t /= k). The variance matrix of vi(t) is Rii = Ri. Combining L measurement equations
of (2.2) yields

y(I)(t) = H(I)x(t) + v(I)(t), (2.4)

where y(I)(t) = [yT
1 (t), . . . , y

T
L(t)]

T, H(I) = [HT
1 , . . . ,H

T
L]

T and v(I)(t) = [vT
1 (t), . . . , v

T
L(t)]

T. Let
the variance of v(I)(t) be R(I) = (Rij) > 0 and the cross covariance of w(t) and v(I)(t) be
S = [S1, . . . , SL].

Assumption 2.2. (Φ,H(I)) is a detectable pair and (Φ,Γ) is a controllable pair, or Φ are stable.

Assumption 2.3. Measurement data yi(t) is bounded, that is,

∥∥yi(t)
∥∥ < c, i = 1, . . . , L, (2.5)

where ‖ · ‖ is the norm of a vector and c > 0 is a positive real number.

2.1. CMF and WMF Kalman Filter

To convert the systems (2.1) and (2.4) into the uncorrelated system, (2.1) is equivalent to

x(t + 1) = Φx(t) + Bu(t) + Γw(t) + J
[
y(I)(t) −H(I)x(t) − v(I)(t)

]
, (2.6)

where J is a pending matrix. (2.6) can be converted into

x(t + 1) = Φx(t) + u(t) +w(t), (2.7)
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where Φ = Φ − JH(I), u(t) = Bu(t) + Jy(I)(t), w(t) = Γw(t) − Jv(I)(t). Jy(I)(t) as an output
feedback becomes a part of the control item. Then, primary system formulae (2.1) and (2.2)
are equivalent to the system formed by formulae (2.4) and (2.7). To make E[w(t)v(I)T(t)] = 0,
introduce J = ΓSR(I)−1 which ensures that w(t) and v(I)(t) are not correlated. Then, variance
matrix of w(t) is yielded as Qw = Γ(Qw − SR(I)ST)ΓT. From [18], we know that any nonzero
matrix H(I) has full-rank decomposition:

H(I) = FH(II), (2.8)

where F is a full column-rank matrix with the rank r, andH(II) is a full row-rank matrix with
the rank r, then measurement model (2.4) can be represented as

y(I)(t) = FH(II)x(t) + v(I)(t). (2.9)

Given that F is a full column-rank matrix, it follows that FTR(I)F is nonsingular. Then,
the weighted least squares (WLS) [19] method is used and the Gauss-Markov estimate of
H(II)x(t) is yielded as

y(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1y(I)(t), (2.10)

substituting (2.9) into (2.10) yields

y(II)(t) = H(II)x(t) + v(II)(t), (2.11)

v(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1v(I)(t). (2.12)

The variance matrix R(II) = E[v(II)(t)v(II)T(t)] of v(II)(t) is given by

R(II) =
(
FTR(I)−1F

)−1
. (2.13)

For systems (2.4) and (2.7), and (2.7) and (2.11), respectively, using standard Kalman
filtering algorithm [20], we can obtain CMF and WMF Kalman estimators x̂(i)(t | t + j), i = I,
II, j = 0, j < 0, and j > 0, and their error variance matrices P (i)(t | t + j). It is proved in [11]
that the weighted measurement fusion steady-state Kalman filter x̂(II)(t | t) for the weighted
measurement fusion system (2.7) and (2.11) has the global optimality, that is, it is numerically
identical to the CMF steady-state Kalman filter x̂(I)(t | t) if they have the same initial values.

The above WMF method can obviously reduce the computational burden since the
dimension of the measurement vector for the centralized measurement fusion is m × 1, m =
m1 +m2 + · · · +mL, while that for the weighted measurement fusion is r × 1, and m is much
larger than r generally.
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2.2. Optimal Measurement Fusion Steady-State Kalman Filter

By the above WMF methods, the corresponding optimal steady-state Kalman filter is given
as [21]

x̂(II)(t + 1 | t + 1) = x̂(II)(t + 1 | t) +K
(II)
f ε(II)(t + 1),

x̂(II)(t + 1 | t) = Ψ(II)
p x̂(II)(t | t − 1) +K

(II)
p y(II)(t) + u(t),

x̂(II)(t | t +N) = x̂(II)(t | t) +
N∑
j=1

K(II)(j)ε(II)(t + j
)
, N > 0,

u(t) = Bu(t) + Jy(I)(t),

J = ΓSR(I)−1,

ε(II)(t) = y(II)(t) −H(II)x̂(II)(t | t − 1),

K
(II)
f

= Σ(II)H(II)T
(
H(II)Σ(II)H(II)T + R(II)

)−1
,

K
(II)
p = ΦΣ(II)H(II)T

(
H(II)Σ(II)H(II)T + R(II)

)−1
,

Ψ(II)
p = Φ −K

(II)
p H(II),

K(II)(j) = Σ(II)
((

In −K
(II)
f H(II)

)T
Φ

T
)j

H(II)T
(
H(II)Σ(II)H(II)T + R(II)

)−1
,

P (II) =
[
In −K

(II)
f

H(II)
]
Σ(II),

(2.14)

where Ψ(II)
p is a stable matrix [19] and Σ(II) satisfies the following Riccati equation:

Σ(II) = Φ
[
Σ(II) − Σ(II)H(II)T

(
H(II)Σ(II)H(II)T + R(II)

)−1
H(II)Σ(II)

]
Φ

T
+Qw. (2.15)

When noise variance matricesQw, Si, andRij(i, j = 1, . . . , L) are unknown, the problem
is to find a self-tuning WMF Kalman filter x̂(II)s(t | t) for the fused system (2.7) and (2.11).
Then, the key to the problem is how to find the consistent estimates of the noise variance and
cross-covariance matrices Qw, Si, and Rij .

3. Online Estimators of Variances and Cross-Covariances

Lemma 3.1 (matrix inverse Fadeeva formula [13]). The matrix inverse formula is given by

(
In − q−1Φ

)−1
=

adj
(
In − q−1Φ

)
det

(
In − q−1Φ

) =
F
(
q−1

)
A
(
q−1

) , (3.1)
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where Φ is an n × n matrix, q−1 is a backward shift operator, In is an n × n unit matrix, and

A
(
q−1

)
= 1 + a1q

−1 + · · · + anq
−n, F

(
q−1

)
= In + F1q

−1 + · · · + Fn−1q−(n−1) (3.2)

then the coefficients ai and Fi can be computed recursively as

ai = −1
i
trace

(
ΦFi−1

)
, i = 1, . . . , n,

Fi = ΦFi−1 + aiIn, i = 1, . . . , n − 1, F0 = In, a0 = 1.

(3.3)

Suppose the greatest common factor of A(q−1) and F(q−1) as scalar polynomial of μ(q−1), that is,

F
(
q−1

)
= μ

(
q−1

)
F
(
q−1

)
,

A
(
q−1

)
= μ

(
q−1

)
A
(
q−1

)
.

(3.4)

Eliminate the greatest common factor μ(q−1) of numerator and denominator in (3.1), we have the
irreducible Fadeeva formula:

(
In − q−1Φ

)−1
=

F
(
q−1

)
A
(
q−1

) ,
F
(
q−1

)
= In + F1q

−1 + · · · + Fnf q
−nf ,

A
(
q−1

)
= 1 + a1q

−1 + · · · + anaq
−na , ana /= 0, na ≤ n − nμ,

Fi = ΦFi−1 + aiIn, i = 1, . . . , nf , F0 = In, nf = n − nμ − 1.

(3.5)

Theorem 3.2. For the ith subsystem of systems (2.1) and (2.2) under the Assumptions of 2.1, 2.2, and
2.3, the innovation model of CARMA

Ai

(
q−1

)
yi(t) = Ci

(
q−1

)
u(t) +Di

(
q−1

)
εi(t) (3.6)

is stable. The innovation εi(t) ∈ Rmi is a white noise with zero mean and variance matrix Qεi ,

Ci

(
q−1

)
= HiF

(
q−1

)
Bq−1,

Bi

(
q−1

)
= HiF

(
q−1

)
Γq−1,

(3.7)

where the polynomial matrices of Di(q−1), Ai(q−1), Ci(q−1), and Bi(q−1) have the form as

Xi

(
q−1

)
= Xi0 +Xi1q

−1 + · · · +Xinxiq
−nxi , i = 1, 2, . . . , L; (3.8)



Journal of Applied Mathematics 7

with

Ai0 = Imi , Di0 = Imi , Bi0 = 0, (3.9)

we have

Di

(
q−1

)
εi(t) = Bi

(
q−1

)
w(t) +Ai

(
q−1

)
vi(t). (3.10)

Proof. From (2.1) and (2.2), we have

yi(t) = Hi

(
In − q−1Φ

)−1
q−1[Bu(t) + Γw(t)] + vi(t). (3.11)

Applying the extended Fadeeva formula of (3.5), we have

Ai

(
q−1

)
yi(t) = Ci

(
q−1

)
u(t) + Bi

(
q−1

)
w(t) +Ai

(
q−1

)
vi(t). (3.12)

Suppose (Ai(q−1)Imi , Ci(q−1), Bi(q−1)) left-coprime, and (Bi(q−1), Ai(q−1)Imi) or their greatest
left factor’s determinant has no zero point on the unit circles. Note that it needs to be left-
coprime factorization if it is not left-coprime. Then, there is an MA process of Di(q−1)εi(t),
which makes (3.10) hold and guaranteesDi(q−1) stable. We have (3.6) from (3.10) and (3.12).
The proof is completed.

Define a new measurement process:

zi(t) = Ai

(
q−1

)
yi(t) − Ci

(
q−1

)
u(t). (3.13)

From (3.6), we have

zi(t) = Di

(
q−1

)
εi(t). (3.14)

From (3.10), we have

zi(t) = Bi

(
q−1

)
w(t) +Ai

(
q−1

)
vi(t). (3.15)

Remark 3.3. When the noise variances Qw and Ri are known, the Gevers-Wouters [20] algo-
rithm can be used to construct ARMA innovation model and obtain Di(q−1) and Qεi .



8 Journal of Applied Mathematics

In (3.14), zi(t) is a stationary stochastic process, whose correlated function Rzij (k) has
cut-off property, and suppose it be cut-off at nzij , that is,

Rzij (k) = E
[
zi(t)zTj (t − k)

]
, k = 0, 1, . . . , nzij ,

Rzij (k) = 0, k > nzij , i, j = 1, 2, . . . , L.
(3.16)

At the end of time t, the sampling estimation of the correlated function Rzij (k) (k =
0, 1, . . . , nzij ) based on measurements (zi(t), zi(t − 1), zi(t − 2), . . .) can be defined as

R̂t
zij (k) =

1
t

t∑
α=1

zi(α)zTj (α − k), (3.17)

then we have its recursive form:

R̂t
zij (k) = R̂t−1

zij (k) +
1
t

[
zi(t)zTj (t − k) − R̂t−1

zij (k)
]
, t = 2, 3, . . . , (3.18)

with the initial value R̂1
zij (k) = zi(1)zTj (1 − k).

Computing the correlated function on both sides of (3.14), we have

Rzij (k) =
n0∑
u=k

BiuQwB
T
j,u−k +

n0∑
u=k

AiuS
T
i B

T
j,u−k +

n0∑
u=k

BiuSjA
T
j,u−k +

n0∑
u=k

AiuRijA
T
j,u−k,

k = 0, 1, . . . , nzij , i, j = 1, . . . , L,

(3.19)

where n0 = max(nai, nbi, naj , nbj). Aij and Bij are known, Bij = 0(j > nbi), Aij = 0(j > nai).
However (3.19) is a matrix equations set. Substituting the sampling estimates at the

time tR̂t
zij (k) (k = 0, . . . , nzij ) into (3.19), and solving the matrix equations set, then we have

the estimates Ŝi(t), Q̂w(t), and R̂ij(t) at the time t.
From the ergodicity of the stationary stochastic process (3.14) and the Assumption 2.3,

when t → ∞, we have Ŝi(t) → Si, Q̂w(t) → Qw and R̂ij(t) → Rij .

4. Self-Tuning WMF Kalman Filter

When the statistical features of the noise are unknown, the self-tuning weighted measure-
ment fusion Kalman estimator can be obtained through the following three steps.

Step 1. For different sensor systems, (3.16)– (3.19) are used to identify online the estimates
Q̂w(t), R̂ij(t), and Ŝi(t), i, j = 1, . . . , L, of noise variances ofQw, Rij , and Si at the time t, which
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will yield the following available estimates at the time t:

Ŝ =
[
Ŝ1, . . . , ŜL

]
,

R̂(I) =

⎡
⎢⎢⎢⎣
R̂11 · · · R̂1L

...
...

R̂L1 · · · R̂LL

⎤
⎥⎥⎥⎦,

Ĵ = ΓŜR̂(I)−1,

û(t) = Bu(t) + Ĵy(I)(t),

Q̂ = Q̂w − ŜR̂(I)−1ŜT, Q̂w = ΓQ̂ΓT,

ŷ(II)(t) = Ω̂y(I)(t),

Ω̂ =
(
FTR̂(I)−1F

)−1
FTR̂(I)−1,

R̂(II) = (FTR̂(I)−1F)
−1
,

Φ̂ = Φ − ĴH(I).

(4.1)

Step 2. From (2.15), solving the following Riccati equation, we get the estimation value Σ̂(II)

of Σ(II) at the time t:

Σ̂(II) = Φ̂
[
Σ̂(II) − Σ̂(II)H(II)T

(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
H(II)Σ̂(II)

]
Φ̂

T
+ Q̂w. (4.2)

Step 3. Equations (2.14) are applied, and the self-tuning weighted measurement fusion state
estimator is given by

x̂(II)s(t + 1 | t + 1) = x̂(II)s(t + 1 | t) + K̂
(II)
f ε̂(II)(t + 1),

x̂(II)s(t + 1 | t) = Ψ̂(II)
p x̂(II)s(t | t − 1) + K̂

(II)

p ŷ(II)(t) + û(t),

x̂(II)s(t | t +N) = x̂(II)s(t | t) +
N∑
j=1

K̂(II)(j)ε̂(II)(t + j
)
, N > 0,

ε̂(II)(t) = ŷ(II)(t) −H(II)x̂(II)s(t | t − 1),

K̂
(II)
f

= Σ̂(II)H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

K̂
(II)

p = Φ̂Σ̂(II)H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

Ψ̂(II)
p = Φ̂ − K̂

(II)

p H(II),

K̂(II)(j) = Σ̂II
((

In − K̂
(II)
f H(II)

)T
Φ̂

T)j

H(II)T
(
H(II)Σ̂(II)H(II)T + R̂(II)

)−1
,

P̂ (II) =
[
In − K̂

(II)
f H(II)

]
Σ̂(II).

(4.3)
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Figure 1: ρ1 and the convergence of estimation value ρ̂1(t).
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Figure 2: d11 and the convergence of estimation value d̂11(t).
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Figure 3: d12 and the convergence of estimation value d̂12(t).

Remark 4.1. At every moment, the iteration method to solve Riccati equation (4.2) causes
comparatively large computation burden, which is not convenient for the real applications.
To reduce the computational burden, a computing period (dead band) Td of (4.2) is set and
the estimation value Σ̂(II) keeps invariant in the period Td. So, Σ̂(II) is only computed at the
moments of t = Td, 2Td, 3Td, . . ., which can reduce computation burden, and can be called
Riccati equation with a dead band [9, 17].
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Figure 4: Qε1 and the convergence of estimation value Q̂ε1(t).
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Figure 6: ρ2 and the convergence of estimation value ρ̂2(t).
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Figure 7: d21 and the convergence of estimation value d̂21(t).
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Figure 9: Qw and the convergence of estimation value Q̂w(t).
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Figure 10: Qξ2 and the convergence of estimation value Q̂ξ2(t).
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∑(II) and the convergence of estimation value
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(t).
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1 (t | t).
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Figure 14: The curve of position errors e1(t) = x̂
(II)
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(II)s
1 (t | t) for optimal and self-tuning WMF

Kalman filter.

5. Simulation Example

The self-tuning α − β radar track system with colored measurement noise:

x(t + 1) =

[
1 T0

0 1

]
x(t) +

[
0.5T2

0

T0

]
w(t),

yi(t) = H0ix(t) + vi(t), i = 1, 2,

vi(t + 1) = ρiv(t) + ξi(t),

(5.1)

where w(t) and ξi(t), i = 1, 2, are independent Gaussian white noises with zero means and
variances of Qw = 1, Qξ1 = 0.04, and Qξ2 = 0.7, vi(t) is colored measurement noise, H01 =
[1 0] and H02 = [0 1]. T0 = 1 is the sampling period, x(t) = [x1(t) x2(t)]

T, x1(t) and x2(t),
are, respectively, the position and speed of the moving object at tT0, ρ1 = −0.4, ρ2 = −0.5.

When ρi,Qw andQξi(i = 1, 2) are unknown, the problem is to find the self-tuningWMF
α − β tracking filter x̂(II)s(t | t).

The parameter convergence results of subsystem 1 are shown in Figures 1, 2, 3, 4, and 5,
and the parameter convergence results of subsystem 2 are shown in Figures 6, 7, 8, 9, and 10,
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Figure 15: The curve of velocity errors e2(t) = x̂
(II)
2 (t | t) − x̂

(II)s
2 (t | t) for optimal and self-tuning WMF

Kalman filter.

where the curved lines denote the estimates and the straight lines denote true values. The
self-tuning WMF Kalman filter x̂(II)s(t | t) is shown in Figures 11, 12, 13, 14, and 15, where
Figure 11 is the convergence of Σ̂(II). Using the iteration algorithm with dead band Td = 200,
we can see that the parameter estimates in Σ̂(II) shown in ladder-shape curves converge to the
corresponding real values.

The object-tracking curves of self-tuningWMFKalman filter is shown in Figures 12, 13,
14, and 15.We can see that the system can gradually track the position and speed of the objects
as the time increases, where the real lines are real values and the dashed lines are estimates.
The error curves between the optimal and self-tuningWMF Kalman filter is shown in Figures
14 and 15. We see that the error curves take on the funnel shape, which demonstrates that the
self-tuning filter has better convergence.

6. Conclusion

For multisensor linear discrete time-invariant stochastic control systemwith different measu-
rement matrices and correlated noise, an online identification method is designed when the
input noise and measurement noise variance are unknown. It firstly uses Fadeeva formula to
construct ARMA innovation model with unknown noise covariance matrices, and then uses
the ergodicity of sampling-correlated function in the stationary and inverse ARMA inno-
vation model to identify the noise covariance matrices. Further, a self-tuning WMF Kalman
filter has been presented from a steady-state global optimal measurement fusion Kalman
filter by matrix full-rank decompostion, weighted least squares method, and measurement
feedback. It has asymptotic global optimality. Compared to the centralized fusion algorithm,
it can reduce the computational burden.
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