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Let C be a nonempty bounded closed convex subset of a complete CAT(0) space X. We prove
that the common fixed point set of any commuting family of asymptotic pointwise nonexpansive
mappings on C is nonempty closed and convex. We also show that, under some suitable
conditions, the sequence {xk}∞k=1 defined by xk+1 = (1 − tmk)xk ⊕ tmkT

nk
m y(m−1)k, y(m−1)k = (1 −

t(m−1)k)xk ⊕ t(m−1)kT
nk

m−1y(m−2)k, y(m−2)k = (1 − t(m−2)k)xk ⊕ t(m−2)kT
nk

m−2y(m−3)k, . . . , y2k = (1 − t2k)xk ⊕
t2kT

nk

2 y1k, y1k = (1 − t1k)xk ⊕ t1kT
nk

1 y0k, y0k = xk, k ∈ N, converges to a common fixed point
of T1, T2, . . . , Tm where they are asymptotic pointwise nonexpansive mappings on C, {tik}∞k=1 are
sequences in [0, 1] for all i = 1, 2, . . . , m, and {nk} is an increasing sequence of natural numbers.
The related results for uniformly convex Banach spaces are also included.

1. Introduction

A mapping T on a subset C of a Banach space X is said to be asymptotic pointwise
nonexpansive if there exists a sequence of mappings αn : C → [0,∞) such that

∥
∥Tnx − Tny

∥
∥ ≤ αn(x)

∥
∥x − y

∥
∥, (1.1)

where lim supn→∞αn(x) ≤ 1, for all x, y ∈ C. This class of mappings was introduced by Kirk
and Xu [1], where it was shown that if C is a bounded closed convex subset of a uniformly
convex Banach space X, then every asymptotic pointwise nonexpansive mapping T : C → C
always has a fixed point. In 2009, Hussain and Khamsi [2] extended Kirk-Xu’s result to the
case of metric spaces, specifically to the so-called CAT(0) spaces. Recently, Kozlowski [3]
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defined an iterative sequence for an asymptotic pointwise nonexpansive mapping T : C → C
by x1 ∈ C and

xk+1 = (1 − tk)xk + tkT
nk yk,

yk = (1 − sk)xk + skT
nkxk, k ∈ N,

(1.2)

where {tk} and {sk} are sequences in [0, 1] and {nk} is an increasing sequence of natural
numbers. He proved, under some suitable assumptions, that the sequence {xk} defined by
(1.2) converges weakly to a fixed point of T where X is a uniformly convex Banach space
which satisfies the Opial condition and {xk} converges strongly to a fixed point of T provided
Tr is a compact mapping for some r ∈ N. On the other hand, Khan et al. [4] studied the
iterative process defined by

xn+1 = (1 − αmn)xn + αmnT
n
my(m−1)n,

y(m−1)n =
(

1 − α(m−1)n
)

xn + α(m−1)nT
n
m−1y(m−2)n,

y(m−2)n =
(

1 − α(m−2)n
)

xn + α(m−2)nT
n
m−2y(m−3)n,

...

y2n = (1 − α2n)xn + α2nT
n
2 y1n,

y1n = (1 − α1n)xn + α1nT
n
1 y0n,

y0n = xn, n ∈ N,

(1.3)

where T1, . . . , Tm are asymptotically quasi-nonexpansive mappings on C and {αin}∞n=1 are
sequences in [0, 1] for all i = 1, 2, . . . , m.

In this paper, motivated by the results mentioned above, we ensure the existence of
common fixed points for a family of asymptotic pointwise nonexpansive mappings in a
CAT(0) space. Furthermore, we obtain � and strong convergence theorems of a sequence
defined by

xk+1 = (1 − tmk)xk ⊕ tmkT
nk
m y(m−1)k,

y(m−1)k =
(

1 − t(m−1)k
)

xk ⊕ t(m−1)kT
nk

m−1y(m−2)k,

y(m−2)k =
(

1 − t(m−2)k
)

xk ⊕ t(m−2)kT
nk

m−2y(m−3)k,

...

y2k = (1 − t2k)xk ⊕ t2kT
nk

2 y1k,

y1k = (1 − t1k)xk ⊕ t1kT
nk

1 y0k,

y0k = xk, k ∈ N,

(1.4)

where T1, . . . , Tm are asymptotic pointwise nonexpansive mappings on a subset C of a
complete CAT(0) space and {tik}∞k=1 are sequences in [0, 1] for all i = 1, 2, . . . , m, and {nk}
is an increasing sequence of natural numbers. We also note that our method can be used to
prove the analogous results for uniformly convex Banach spaces.
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2. Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. It is
well-known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [5]), R-
trees (see [6]), Euclidean buildings (see [7]), and the complex Hilbert ball with a hyperbolic
metric (see [8]). For a thorough discussion of these spaces and of the fundamental role they
play in geometry, we refer the reader to Bridson and Haefliger [5].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [9, 10]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory
for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed,
and many papers have appeared (see, e.g., [2, 11–22] and the references therein). It is worth
mentioning that fixed point theorems in CAT(0) spaces (specially in R-trees) can be applied
to graph theory, biology, and computer science (see, e.g., [6, 23–26]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) =
y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle �(x1, x2, x3) in a geodesic space (X, d) consists of three points x1,
x2, x3 in X (the vertices of �) and a geodesic segment between each pair of vertices (the
edges of �). A comparison triangle for geodesic triangle �(x1, x2, x3) in (X, d) is a triangle
�(x1, x2, x3) := �(x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): Let � be a geodesic triangle in X, and let � be a comparison triangle for �.
Then, � is said to satisfy the CAT(0) inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d
(

x, y
)

≤ dE2
(

x, y
)

. (2.1)

Let x, y ∈ X, by Lemma 2.1(iv) of [14] for each t ∈ [0, 1], there exists a unique point
z ∈ [x, y] such that

d(x, z) = td
(

x, y
)

, d
(

y, z
)

= (1 − t)d
(

x, y
)

. (2.2)

We will use the notation (1 − t)x ⊕ ty for the unique point z satisfying (2.2). We now collect
some elementary facts about CAT(0) spaces.
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Lemma 2.1. Let X be a complete CAT(0) space.

(i) [5, Proposition 2.4] If C is a nonempty closed convex subset of X, then, for every x ∈ X,
there exists a unique point P(x) ∈ C such that d(x, P(x)) = inf{d(x, y) : y ∈ C}.
Moreover, the map x 
→ P(x) is a nonexpansive retract from X onto C.

(ii) [14, Lemma 2.4] For x, y, z ∈ X and t ∈ [0, 1], we have

d
(

(1 − t)x ⊕ ty, z
)

≤ (1 − t)d(x, z) + td
(

y, z
)

. (2.3)

(iii) [14, Lemma 2.5] For x, y, z ∈ X and t ∈ [0, 1], we have

d
(

(1 − t)x ⊕ ty, z
)2 ≤ (1 − t)d(x, z)2 + td

(

y, z
)2 − t(1 − t)d

(

x, y
)2
. (2.4)

We now give the concept ofΔ-convergence and collect some of its basic properties. Let
{xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn). (2.5)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}, (2.6)

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. (2.7)

It is known from Proposition 7 of [27] that, in a CAT(0) space, A({xn}) consists of
exactly one point.

Definition 2.2 (see [28, 29]). A sequence {xn} in a CAT(0) space X is said to Δ-converge to
x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this
case, we write Δ-lim

n
x
n
= x and call x the Δ-limit of {xn}.

Lemma 2.3. Let X be a complete CAT(0) space.

(i) [28, page 3690] Every bounded sequence in X has a Δ-convergent subsequence.

(ii) [30, Proposition 2.1] If C is a closed convex subset of a complete CAT(0) space and if {xn}
is a bounded sequence in C, then the asymptotic center of {xn} is in C.

(iii) [14, Lemma 2.8] If {xn} is a bounded sequence in a complete CAT(0) space withA({xn}) =
{x} and {un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)}
converges, then x = u.

Recall that a mapping T : X → X is said to be nonexpansive [31] if

d
(

Tx, Ty
)

≤ d
(

x, y
)

, ∀x, y ∈ X, (2.8)
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where T is called asymptotically nonexpansive [32] if there is a sequence {kn} of positive
numbers with the property limn→∞ kn = 1 and such that

d
(

Tnx, Tny
)

≤ knd
(

x, y
)

, ∀n ≥ 1, x, y ∈ X, (2.9)

where T is called an asymptotic pointwise nonexpansive mapping [1] if there exists a sequence of
functions αn : X → [0,∞) such that

d
(

Tnx, Tny
)

≤ αn(x)d
(

x, y
)

, ∀n ≥ 1, x, y ∈ X, (2.10)

where lim supn→∞ αn(x) ≤ 1. The following implications hold.

T is nonexpansive =⇒ T is asymptotically nonexpansive

=⇒ T is asymptotic pointwise nonexpansive.
(2.11)

A point x ∈ X is called a fixed point of T if x = Tx. We shall denote by F(T) the set of fixed
points of T . The existence of fixed points for asymptotic pointwise nonexpansive mappings
in CAT(0) spaces was proved by Hussain and Khamsi [2] as the following result.

Theorem 2.4. Let C be a nonempty bounded closed convex subset of a complete CAT(0) space X.
Suppose that T : C → C is an asymptotic pointwise nonexpansive mapping. Then, F(T) is nonempty
closed and convex.

3. Existence Theorems

Let M be a metric space and F a family of subsets of M. Then, we say that F defines a con-
vexity structure on M if it contains the closed balls and is stable by intersection.

Definition 3.1 (see [2]). Let F be a convexity structure on M. We will say that F is compact if
any family {Aα}α∈Γ of elements of F has a nonempty intersection provided

⋂

α∈F Aα /= ∅ for
any finite subset F ⊂ Γ.

Let X be a complete CAT(0) space. We denote by C(X) the family of all closed convex
subsets of X. Then, C(X) is a compact convexity structure on X (see, e.g., [2]).

The following theorem is an extension of Theorem 4.3 in [33]. For an analog of this
result in uniformly convex Banach spaces, see [34].

Theorem 3.2. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space
X. Then, for any commuting family S of asymptotic pointwise nonexpansive mappings on C, the set
F(S) of common fixed points of S is nonempty closed and convex.

Proof. Let T be the family of all finite intersections of the fixed point sets of mappings in
the commutative family S. We first show that T has the finite intersection property. Let
T1, T2, . . . , Tn ∈ S. By Theorem 2.4, F(T1) is a nonempty closed and convex subset of C. We
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assume that A :=
⋂k−1

j=1 F(Tj) is nonempty closed and convex for some k ∈ N with 1 < k ≤ n.
For x ∈ A and j ∈ N with 1 ≤ j < k, we have

Tk(x) = Tk ◦ Tj(x) = Tj ◦ Tk(x). (3.1)

Thus, Tk(x) is a fixed point of Tj , which implies that Tk(x) ∈ A; therefore,A is invariant under
Tk. Again, by Theorem 2.4, Tk has a fixed point in A, that is,

k⋂

j=1

F
(

Tj
)

= F(Tk)
⋂

A/= ∅. (3.2)

By induction,
⋂n

j=1 F(Tj)/= ∅. Hence, T has the finite intersection property. Since C(X) is
compact,

F(S) =
⋂

T∈T
T /= ∅. (3.3)

Obviously, the set is closed and convex.

As a consequence of Lemma 2.1(i) and Theorem 3.2, we obtain an analog of Bruck’s
theorem [35].

Corollary 3.3. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space
X. Then, for any commuting family S of nonexpansive mappings on C, the set F(S) of common fixed
points of S is a nonempty nonexpansive retract of C.

4. Convergence Theorems

Throughout this section, X stands for a complete CAT(0) space. Let C be a closed convex
subset of X. We shall denote by T(C) the class of all asymptotic pointwise nonexpansive
mappings fromC intoC. Let T1, . . . , Tm ∈ T(C), without loss of generality, we can assume that
there exists a sequence of mappings αn : C → [0,∞) such that for all x, y ∈ C, i = 1, . . . , m,
and n ∈ N, we have

d
(

Tn
i x, T

n
i y

)

≤ αn(x)d
(

x, y
)

, lim sup
n→∞

αn(x) ≤ 1. (4.1)

Let an(x) = max{αn(x), 1}. Again, without loss of generality, we can assume that

d
(

Tn
i x, T

n
i y

)

≤ an(x)d
(

x, y
)

, lim
n→∞

an(x) = 1, an(x) ≥ 1, (4.2)

for all x, y ∈ C, i = 1, . . . , m, and n ∈ N. We define bn(x) = an(x) − 1, then, for each x ∈ C, we
have limn→∞ bn(x) = 0.
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The following definition is a mild modification of [3, Definition 2.3].

Definition 4.1. Define Tr(C) as a class of all T ∈ T(C) such that

∞∑

n=1

sup
x∈C

bn(x) < ∞, (4.3)

an is a bounded function for every n ∈ N.
Let T1, . . . , Tm ∈ Tr(C), and let {tik}∞k=1 ⊂ (0, 1) be bounded away from 0 and 1 for all

i = 1, 2, . . . , m, and {nk} an increasing sequence of natural numbers. Let x1 ∈ C, and define a
sequence {xk} in C as

xk+1 = (1 − tmk)xk ⊕ tmkT
nk
m y(m−1)k,

y(m−1)k =
(

1 − t(m−1)k
)

xk ⊕ t(m−1)kT
nk

m−1y(m−2)k,

y(m−2)k =
(

1 − t(m−2)k
)

xk ⊕ t(m−2)kT
nk

m−2y(m−3)k,

...

y2k = (1 − t2k)xk ⊕ t2kT
nk

2 y1k,

y1k = (1 − t1k)xk ⊕ t1kT
nk

1 y0k,

y0k = xk, k ∈ N.

(4.4)

We say that the sequence {xk} in (4.4) is well defined if lim supk→∞ank(xk) = 1. As in [3], we
observe that limk→∞ ak(x) = 1 for every x ∈ C. Hence, we can always choose a subsequence
{ank}which makes {xk}well defined.

Lemma 4.2 (see [36, Lemma 2.2]). Let {an} and {un} be sequences of nonnegative real numbers
satisfying

an+1 ≤ (1 + un)an, ∀n ∈ N,
∞∑

n=1

un < ∞. (4.5)

Then, (i) limn an exists, (ii) if lim infn an = 0, then limn an = 0.

Lemma 4.3 (see [37, 38]). Suppose {tn} is a sequence in [b, c] for some b, c ∈ (0, 1) and {un}, {vn}
are sequences inX such that lim supn d(un,w) ≤ r, lim supn d(vn,w) ≤ r, and limn d((1− tn)un ⊕
tnvn,w) = r for some r ≥ 0. Then,

lim
n→∞

d(un, vn) = 0. (4.6)

Lemma 4.4. Let C be a nonempty closed convex subset of X and T1, . . . , Tm ∈ Tr(C). Let
{tik}∞k=1 ⊂ [a, b] ⊂ (0, 1) and {nk} ⊂ N be such that {xk} in (4.4) is well defined. Assume that
F :=

⋂m
i=1 F(Ti)/= ∅. Then,

(a) there exists a sequence {vk} in [0,∞) such that
∑∞

k=1 vk < ∞ and d(xk+1, p) ≤
(1 + vk)

md(xk, p), for all p ∈ F and all k ∈ N,
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(b) there exists a constant M > 0 such that d(xk+l, p) ≤ Md(xk, p), for all p ∈ F and
k, l ∈ N.

Proof. (a) Let p ∈ F and vk = supx∈C bnk(x) for all k ∈ N. Since
∑∞

k=1 supx∈C bnk(x) < ∞, we
have

∑∞
k=1 vk < ∞. Now,

d
(

y1k, p
)

≤ (1 − t1k)d
(

xk, p
)

+ t1kd
(

Tnk

1 xk, p
)

≤ (1 − t1k)d
(

xk, p
)

+ t1k
(

1 + bnk

(

p
))

d
(

xk, p
)

=
(

1 + t1kbnk

(

p
))

d
(

xk, p
)

≤ (1 + vk)d
(

xk, p
)

.

(4.7)

Suppose that d(yjk, p) ≤ (1 + vk)
jd(xk, p) holds for some 1 ≤ j ≤ m − 2. Then,

d
(

y(j+1)k, p
)

≤
(

1 − t(j+1)k
)

d
(

xk, p
)

+ t(j+1)kd
(

Tnk

j+1yjk, p
)

≤
(

1 − t(j+1)k
)

d
(

xk, p
)

+ t(j+1)k
(

1 + bnk

(

p
))

d
(

yjk, p
)

≤
(

1 − t(j+1)k
)

d
(

xk, p
)

+ t(j+1)k(1 + vk)j+1d
(

xk, p
)

=

[

1 − t(j+1)k + t(j+1)k

(

1 +
j+1
∑

r=1

(

j + 1
)

j · · ·
(

j + 2 − r
)

r!
vr
k

)]

d
(

xk, p
)

=

[

1 + t(j+1)k

j+1
∑

r=1

(

j + 1
)

j · · ·
(

j + 2 − r
)

r!
vr
k

]

d
(

xk, p
)

≤ (1 + vk)j+1d
(

xk, p
)

.

(4.8)

By induction, we have

d
(

yik, p
)

≤ (1 + vk)id
(

xk, p
)

, ∀i = 1, 2, . . . , m − 1. (4.9)

This implies

d
(

xk+1, p
)

≤ (1 − tmk)d
(

xk, p
)

+ tmkd
(

Tnk
m y(m−1)k, p

)

≤ (1 − tmk)d
(

xk, p
)

+ tmk

(

1 + bnk

(

p
))

d
(

y(m−1)k, p
)

≤ (1 − tmk)d
(

xk, p
)

+ tmk(1 + vk)(1 + vk)m−1d
(

xk, p
)

≤ (1 − tmk)d
(

xk, p
)

+ tmk(1 + vk)md
(

xk, p
)

=

[

1 − tmk + tmk

(

1 +
m∑

r=1

m(m − 1) · · · (m − r + 1)
r!

vr
k

)]

d
(

xk, p
)

=

[

1 + tmk

m∑

r=1

m(m − 1) · · · (m − r + 1)
r!

vr
k

]

d
(

xk, p
)

≤ (1 + vk)md
(

xk, p
)

.

(4.10)

This completes the proof of (a).
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(b) We observe that (1 + α)n ≤ enα holds for all n ∈ N and α ≥ 0. Thus, by (a), for
k, l ∈ N, we have

d
(

xk+l, p
)

≤ (1 + vk+l−1)md
(

xk+l−1, p
)

≤ exp{mvk+l−1}d
(

xk+l−1, p
)

≤ · · · ≤ exp

{

m
k+l−1∑

i=1

vi

}

d
(

xk, p
)

≤ exp

{

m
∞∑

i=1

vi

}

d
(

xk, p
)

.

(4.11)

The proof is complete by setting M = exp{m
∑∞

i=1 vi}.

Theorem 4.5. LetC be a nonempty closed convex subset ofX and T1, . . . , Tm ∈ Tr(C). Let {tik}∞k=1 ⊂
[a, b] ⊂ (0, 1) and {nk} ⊂ N be such that {xk} in (4.4) is well defined. Assume that F /= ∅. Then, {xk}
converges to some point in F if and only if lim infk→∞ d(xk, F) = 0, where d(x, F) = infp∈F d(x, p).

Proof. The necessity is obvious. Now, we prove the sufficiency. From Lemma 4.4(a), we have

d
(

xk+1, p
)

≤ (1 + vk)md
(

xk, p
)

, ∀p ∈ F, ∀k ∈ N. (4.12)

This implies

d(xk+1, F) ≤ (1 + vk)md(xk, F) =

(

1 +
m∑

r=1

m(m − 1) · · · (m − r + 1)
r!

vr
k

)

d(xk, F). (4.13)

Since
∑∞

k=1 vk < ∞, then
∑∞

k=1
∑m

r=1(m(m − 1) · · · (m − r + 1)/r!)vr
k
< ∞. By Lemma 4.2(ii), we

get limk→∞ d(xk, F) = 0. Next, we show that {xk} is a Cauchy sequence. From Lemma 4.4(b),
there exists M > 0 such that

d
(

xk+l, p
)

≤ Md
(

xk, p
)

, ∀p ∈ F, k, l ∈ N. (4.14)

Since limk→∞ d(xk, F) = 0, for each ε > 0, there exists k1 ∈ N such that

d(xk, F) <
ε

2M
, ∀k ≥ k1. (4.15)

Hence, there exists z1 ∈ F such that

d(xk1 , z1) <
ε

2M
. (4.16)
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By (4.14) and (4.16), for k ≥ k1, we have

d(xk+l, xk) ≤ d(xk+l, z1) + d(xk, z1)

≤ Md(xk1 , z1) +Md(xk1 , z1)

< 2M
( ε

2M

)

= ε.

(4.17)

This shows that {xk} is a Cauchy sequence and so converges to some q ∈ C. We next show
that q ∈ F. Let L = sup{a1(x) : x ∈ C}. Then, for each ε > 0, there exists k2 ∈ N such that

d
(

xk, q
)

<
ε

2(1 + L)
, ∀k ≥ k2. (4.18)

Since limk→∞ d(xk, F) = 0, there exists k3 ≥ k2 such that

d(xk, F) <
ε

2(1 + L)
, ∀k ≥ k3. (4.19)

Thus, there exists z2 ∈ F such that

d(xk3 , z2) <
ε

2(1 + L)
. (4.20)

By (4.18) and (4.20), for each i = 1, 2, . . . , m, we have

d
(

Tiq, q
)

≤ d
(

Tiq, Tixk3

)

+ d(Tixk3 , z2) + d(z2, xk3) + d
(

xk3 , q
)

≤ Ld
(

xk3 , q
)

+ Ld(xk3 , z2) + d(xk3 , z2) + d
(

xk3 , q
)

≤ (1 + L)d
(

xk3 , q
)

+ (1 + L)d(xk3 , z2)

< (1 + L)
ε

2(1 + L)
+ (1 + L)

ε

2(1 + L)
= ε.

(4.21)

Since ε is arbitrary, we have Tiq = q for all i = 1, 2, . . . , m. Hence, q ∈ F.

As an immediate consequence of Theorem 4.5, we obtain the following.

Corollary 4.6. LetC be a nonempty closed convex subset ofX and T1, . . . , Tm ∈ Tr(C). Let {tik}∞k=1 ⊂
[a, b] ⊂ (0, 1) and {nk} ⊂ N be such that {xk} in (4.4) is well defined. Assume that F /= ∅. Then, {xk}
converges to a point p ∈ F if and only if there exists a subsequence {xkj} of {xk} which converges to
p.

Definition 4.7. A strictly increasing sequence {nk} ⊂ N is called quasiperiodic [39] if the
sequence {nk+1 − nk} is bounded or equivalently if there exists a number p ∈ N such that
any block of p consecutive natural numbers must contain a term of the sequence {nk}. The
smallest of such numbers p will be called a quasiperiod of {nk}.
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Lemma 4.8. Let C be a nonempty closed convex subset of X and T1, . . . , Tm ∈ Tr(C). Let {tik}∞k=1 ⊂
[δ, 1 − δ] for some δ ∈ (0, 1/2) and {nk} ⊂ N be such that {xk} in (4.4) is well defined. Then,

(i) limk→∞ d(xk, p) exists for all p ∈ F,

(ii) limk→∞ d(xk, T
nk

j y(j−1)k) = 0, for all j = 1, 2, . . . , m,

(iii) if the set J = {k ∈ N : nk+1 = 1 + nk} is quasiperiodic, then limk→∞ d(xk, Tjxk) = 0, for
all j = 1, 2, . . . , m.

Proof. (i) Follows from Lemmas 4.2(i) and 4.4(a).
(ii) Let p ∈ F, then, by (i), we have limk→∞ d(xk, p) exists. Let

lim
k→∞

d
(

xk, p
)

= c. (4.22)

By (4.9) and (4.22), we get that

lim sup
k→∞

d
(

yjk, p
)

≤ c, for 1 ≤ j ≤ m − 1. (4.23)

Note that

d
(

xk+1, p
)

≤ (1 − tmk)d
(

xk, p
)

+ tmkd
(

Tnk
m y(m−1)k, p

)

≤ (1 − tmk)d
(

xk, p
)

+ tmk(1 + vk)d
(

y(m−1)k, p
)

...

≤
(

1 − tmkt(m−1)k · · · t(j+1)k
)

(1 + vk)m−jd
(

xk, p
)

+ tmkt(m−1)k · · · t(j+1)k(1 + vk)m−jd
(

yjk, p
)

.

(4.24)

Thus,

d
(

xk, p
)

≤
d
(

xk, p
)

δm−j −
d
(

xk+1, p
)

δm−j(1 + vk)m−j + d
(

yjk, p
)

, (4.25)

so that

c ≤ lim inf
k→∞

d
(

yjk, p
)

, for 1 ≤ j ≤ m − 1. (4.26)

From (4.23) and (4.26), we have

lim
k→∞

d
(

yjk, p
)

= c, for each j = 1, 2, . . . , m − 1. (4.27)

That is

lim
k→∞

d
((

1 − tjk
)

xk ⊕ tjkT
nk

j y(j−1)k, p
)

= c, (4.28)

for each j = 1, 2, . . . , m − 1.
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We also obtain from (4.23) that

lim sup
k→∞

d
(

Tnk

j y(j−1)k, p
)

≤ c, for each j = 1, 2, . . . , m − 1. (4.29)

By Lemma 4.3, we get that

lim
k→∞

d
(

Tnk

j y(j−1)k, xk

)

= 0, for each j = 1, 2, . . . , m − 1. (4.30)

For the case j = m, by (4.1), we have

d
(

Tnk
m y(m−1)k, p

)

≤
(

1 + bnk

(

p
))

d
(

y(m−1)k, p
)

≤
(

1 + bnk

(

p
))

(1 + vnk)
m−1d

(

xk, p
)

. (4.31)

But since limk→∞d(xk, p) = c, then

lim sup
k→∞

d
(

Tnk
m y(m−1)k, p

)

≤ c. (4.32)

Moreover,

lim
k→∞

d
(

(1 − tmk)xk ⊕ tmkT
nk
m y(m−1)k, p

)

= lim
k→∞

d
(

xk+1, p
)

= c. (4.33)

Again, by Lemma 4.3, we get that

lim
k→∞

d
(

Tnk
m y(m−1)k, xk

)

= 0. (4.34)

Thus, (4.30) and (4.34) imply that

lim
k→∞

d
(

Tnk

j y(j−1)k, xk

)

= 0, for each j = 1, 2, . . . , m. (4.35)

(iii) For j = 1, from (ii), we have

lim
k→∞

d
(

Tnk

1 xk, xk

)

= 0. (4.36)

If j = 2, 3, . . . , m, then we have

d
(

Tnk

j xk, xk

)

≤ d
(

Tnk

j xk, T
nk

j y(j−1)k
)

+ d
(

Tnk

j y(j−1)k, xk

)

≤ ank(xk)d
(

xk, y(j−1)k
)

+ d
(

Tnk

j y(j−1)k, xk

)

≤ ank(xk)t(j−1)kd
(

xk, T
nk

j−1y(j−2)k
)

+ d
(

Tnk

j y(j−1)k, xk

)

.

(4.37)
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By (ii) and lim supk→∞ ank(xk) = 1, we get

lim sup
k→∞

d
(

Tnk

j xk, xk

)

= 0, for j = 2, 3, . . . , m. (4.38)

By (4.36) and (4.38), we have

lim
k→∞

d
(

Tnk

j xk, xk

)

= 0, ∀j = 1, 2, . . . , m. (4.39)

By the construction of the sequence {xk}, we have from (4.35) that

lim
k→∞

d(xk+1, xk) = 0. (4.40)

Next, we show that

lim
k→∞

d
(

Tjxk, xk

)

= 0, ∀j = 1, 2, . . . , m. (4.41)

It is enough to prove that d(Tjxk, xk) → 0 as k → ∞ thoughJ. Indeed, let p be a quasiperiod
of J, and let ε > 0 be given. Then, there exists N1 ∈ N such that

lim
k→∞

d
(

Tjxk, xk

)

<
ε

3
, ∀k ∈ J such that k ≥ N1. (4.42)

By the quasiperiodicity of J, for each l ∈ N, there exists il ∈ J such that |l − il| ≤ p. Without
loss of generality, we can assume that l ≤ il ≤ l + p (the proof for the other case is identical).
Let M = sup{a1(x) : x ∈ C}. Then, M ≥ 1. Since liml→∞ d(xl+1, xl) = 0 by (4.40), there exists
N2 ∈ N such that

d(xl+1, xl) <
ε

3pM
, ∀l ≥ N2. (4.43)

This implies that

d(xil , xl) ≤ d(xil , xil−1) + · · · + d(xl+1, xl) ≤ p

(
ε

3pM

)

=
ε

3M
. (4.44)

By the definition of T , we have

d
(

Tjxil , Tjxl

)

≤ Md(xil , xl) ≤ M

(
ε

3M

)

=
ε

3
. (4.45)

Let N = max{N1,N2}. Then, for l ≥ N, we have from (4.42), (4.44), and (4.45) that

d
(

xl, Tjxl

)

≤ d(xl, xil) + d
(

xil , Tjxil

)

+ d
(

Tjxil , Tjxl

)

<
ε

3M
+
ε

3
+
ε

3
≤ ε. (4.46)
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To prove that d(Tjxk, xk) → 0 as k → ∞ though J. Since J = {k ∈ N : nk+1 = nk + 1} is
quasiperiodic, for each k ∈ J, we have

d
(

xk, Tjxk

)

≤ d(xk, xk+1) + d
(

xk+1, T
nk+1
j xk+1

)

+ d
(

Tnk+1
j xk+1, T

nk+1
j xk

)

+ d
(

Tnk+1
j xk, Tjxk

)

≤ d(xk, xk+1) + d
(

xk+1, T
nk+1
j xk+1

)

+ ank+1(xk+1)d(xk+1, xk) + a1(xk)d
(

Tnk

j xk, xk

)

.

(4.47)

From this, together with (4.39) and (4.40), we can obtain that d(Tjxk, xk) → 0 as k → ∞
through J.

The following lemmas can be found in [3] (see also [2]).

Lemma 4.9. Let C be a nonempty closed convex subset of X, and let T ∈ Tr(C). If
limn→∞ d(xn, Txn) = 0, then limn→∞ d(xn, T

lxn) = 0 for every l ∈ N.

Lemma 4.10. Let C be a nonempty closed convex subset of X, and let T ∈ Tr(C). Suppose {xn} is a
bounded sequence in C such that limn d(xn, Txn) = 0 and Δ-limn xn = w. Then, Tw = w.

By using Lemmas 2.3 and 4.10, we can obtain the following result. We omit the proof
because it is similar to the one given in [38].

Lemma 4.11. Let C be a closed convex subset of X, and let T : C → C be an asymptotic pointwise
nonexpansive mapping. Suppose {xn} is a bounded sequence in C such that limn d(xn, T(xn)) = 0
and d(xn, v) converges for each v ∈ F(T), then ωw(xn) ⊂ F(T). Here, ωw(xn) =

⋃
A({un}) where

the union is taken over all subsequences {un} of {xn}. Moreover,ωw(xn) consists of exactly one point.

Now, we are ready to prove our Δ-convergence theorem.

Theorem 4.12. Let C be a nonempty closed convex subset of X and T1, . . . , Tm ∈ Tr(C). Let
{tik}∞k=1 ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2) and {nk} ⊂ N be such that {xk} in (4.4) is well defined.
Suppose that F :=

⋂m
i=1 F(Ti)/= ∅ and the set J = {k ∈ N : nk+1 = 1 + nk} is quasiperiodic. Then,

{xk}Δ-converges to a common fixed point of the family {Ti : i = 1, 2, . . . , m}.

Proof. Let p ∈ F, by Lemma 4.8, limk→∞ d(xk, p) existsm and hence {xk} is bounded. Since
limk→∞ d(xk, Tjxk) = 0 for all j = 1, 2, . . . , m, then by Lemma 4.11 ωw(xk) ⊂ F(Tj) for all
j = 1, 2, . . . , m, and hence ωw(xk) ⊂

⋂m
j=1 F(Tj) = F. Since ωw(xn) consists of exactly one

point, then {xk}Δ-converges to an element of F.

Before proving our strong convergence theorem, we recall that a mapping T : C → C
is said to be semicompact if C is closed and, for any bounded sequence {xn} in C with
limn→∞ d(xn, Txn) = 0, there exists a subsequence {xnj} of {xn} and x ∈ C such that
limk→∞ xnk = x.

Theorem 4.13. Let C be a nonempty closed convex subset of X and T1, . . . , Tm ∈ Tr(C) such that Tl
i

is semicompact for some i ∈ {1, . . . , m} and l ∈ N. Let {tik}∞k=1 ⊂ [δ, 1 − δ] for some δ ∈ (0, 1/2)
and {nk} ⊂ N be such that {xk} in (4.4) is well defined. Suppose that F :=

⋂m
i=1 F(Ti)/= ∅ and the set

J = {k ∈ N : nk+1 = 1 + nk} is quasiperiodic. Then, {xk} converges to a common fixed point of the
family {Ti : i = 1, 2, . . . , m}.
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Proof. By Lemma 4.8, we have

lim
k→∞

d(xk, Tixk) = 0, for i = 1, . . . , m. (4.48)

Let i ∈ {1, . . . , m} be such that Tl
i is semicompact. Thus, by Lemma 4.9,

lim
k→∞

d
(

xk, T
l
i xk

)

= 0. (4.49)

We can also find a subsequence {xnj} of {xk} such that limj→∞ xkj = q ∈ C. Hence, from
(4.48), we have

d
(

q, Tiq
)

= lim
j→∞

d
(

xkj , Tixkj

)

= 0, ∀i = 1, . . . , m. (4.50)

Thus, q ∈ F, and, by Corollary 4.6, {xk} converges to q. This completes the proof.

5. Concluding Remarks

One may observe that our method can be used to obtain the analogous results for uniformly
convex Banach spaces. Let C be a nonempty closed convex subset of a Banach space X and
fix x1 ∈ C. Define a sequence {xk} in C as

xk+1 = (1 − tmk)xk + tmkT
nk
m y(m−1)k,

y(m−1)k =
(

1 − t(m−1)k
)

xk + t(m−1)kT
nk

m−1y(m−2)k,

y(m−2)k =
(

1 − t(m−2)k
)

xk + t(m−2)kT
nk

m−2y(m−3)k,

...

y2k = (1 − t2k)xk + t2kT
nk

2 y1k,

y1k = (1 − t1k)xk + t1kT
nk

1 y0k,

y0k = xk, k ∈ N,

(5.1)

where T1, . . . , Tm ∈ Tr(C), {tik}∞k=1 are sequences in [0, 1] for all i = 1, 2, . . . , m, and {nk} is an
increasing sequence of natural numbers.

Theorem 5.1. Let X be a uniformly convex Banach space with the Opial property, and let C be a
nonempty closed convex subset of X. Let T1, . . . , Tm ∈ Tr(C), {tik}∞k=1 ⊂ [δ, 1 − δ] for some δ ∈
(0, 1/2), and let {nk} ⊂ N be such that {xk} in (5.1) is well defined. Suppose that F :=

⋂m
i=1 F(Ti)/= ∅

and the set J = {k ∈ N : nk+1 = 1 + nk} is quasiperiodic. Then, {xk} converges weakly to a common
fixed point of the family {Ti : i = 1, 2, . . . , m}.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and
T1, . . . , Tm ∈ Tr(C) such that Tl

i is semicompact for some i ∈ {1, . . . , m} and l ∈ N. Let {tik}∞k=1 ⊂
[δ, 1 − δ] for some δ ∈ (0, 1/2), and let {nk} ⊂ N be such that {xk} in (5.1) is well defined. Suppose
that F :=

⋂m
i=1 F(Ti)/= ∅ and the set J = {k ∈ N : nk+1 = 1 + nk} is quasiperiodic. Then, {xk}

converges strongly to a common fixed point of the family {Ti : i = 1, 2, . . . , m}.
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