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Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm. Let K be
a nonempty bounded closed convex subset of E, and every nonempty closed convex bounded
subset of K has the fixed point property for non-expansive self-mappings. Let f : K → K a
contractive mapping and T : K → K be a uniformly continuous pseudocontractive mapping with
F(T)/= ∅. Let {λn} ⊂ (0, 1/2) be a sequence satisfying the following conditions: (i) limn→∞λn = 0;
(ii)

∑∞
n=0 λn = ∞. Define the sequence {xn} in K by x0 ∈ K, xn+1 = λnf(xn) + (1 − 2λn)xn + λnTxn,

for all n ≥ 0. Under some appropriate assumptions, we prove that the sequence {xn} converges
strongly to a fixed point p ∈ F(T) which is the unique solution of the following variational
inequality: 〈f(p) − p, j(z − p)〉 ≤ 0, for all z ∈ F(T).

1. Introduction

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

J(x) =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2 = ∥

∥f∗∥∥2
}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing.
It is well known that, if E is smooth, then J is single-valued. In the sequel, we will

denote the single-valued normalized duality mapping by j. We use D(T), R(T) to denote the
domain and range of T , respectively.
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An operator T : D(T) → R(T) is called pseudocontractive if there exists j(x − y) ∈
J(x − y) such that

〈Tx − Ty, j
(
x − y

)〉 ≤ ∥
∥x − y

∥
∥2

, ∀x, y ∈ D(T). (1.2)

A point x ∈ K is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed
points of T , that is, F(T) = {x ∈ K : Tx = x}.

Within the past 40 years or so, many authors have been devoted to the iterative
construction of fixed points of pseudocontractive mappings (see [1–10]).

In 1974, Ishikawa [11] introduced an iterative scheme to approximate the fixed points
of Lipschitzian pseudocontractive mappings and proved the following result.

Theorem 1.1 (see [11]). If K is a compact convex subset of a Hilbert space H,T : K → K is a
Lipschitzian pseudocontractive mapping. Define the sequence {xn} in K by

x0 ∈ K,

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, ∀n ≥ 0,

(1.3)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1,

(ii) limn→∞βn = 0,

(iii)
∑∞

n=1 αnβn = ∞.

Then, the sequence {xn} converges strongly to a fixed point of T .

In connection with the iterative approximation of fixed points of pseudo-contractions,
in 2001, Chidume and Mutangadura [12] provided an example of a Lipschitz pseudocon-
tractive mapping with a unique fixed point for which the Mann iterative algorithm failed to
converge. Chidume and Zegeye [13] introduced a new iterative scheme for approximating
the fixed points of pseudocontractive mappings.

Theorem 1.2 (see [13]). Let E be a real reflexive Banach space with a uniformly Gâteaux differen-
tiable norm. Let K be a nonempty closed convex subset of E. Let T : K → K be a L-Lipschitzian
pseudocontractive mapping such that F(T)/= ∅. Suppose that every nonempty closed convex bounded
subset of K has the fixed point property for nonexpansive self-mappings. Let {λn} and {θn} be two
sequences in (0, 1] satisfying the following conditions:

(i) limn→∞θn = 0,

(ii) λn(1 + θn) ≤ 1,
∑∞

n=0 λnθn = ∞, limn→∞(λn/θn) = 0,

(iii) limn→∞((θn−1/θn − 1)/λnθn) = 0.



Journal of Applied Mathematics 3

For given x1 ∈ K arbitrarily, let the sequence {xn} be defined iteratively by

xn+1 = (1 − λn)xn + λnTxn − λnθn(xn − x1), ∀n ≥ 1. (1.4)

Then, the sequence {xn} defined by (1.4) converges strongly to a fixed point of T .

Prototypes for the iteration parameters are, for example, λn = 1/(n + 1)a and θn =
1/(n + 1)b for 0 < b < a and a + b < 1. But we observe that the canonical choices of λn = 1/n
and θn = 1/n are impossible. This bring us a question.

Question 1. Under what conditions, limn→∞λn = 0 and
∑∞

n=0 λn = ∞ are sufficient to
guarantee the strong convergence of the iterative scheme (1.4) to a fixed point of T?

In this paper, we explore an iterative scheme to approximate the fixed points of
pseudocontractive mappings and prove that, under some appropriate assumptions, the
proposed iterative scheme converges strongly to a fixed point of T , which solves some
variational inequality. Our results improve and extend many results given in the literature.

2. Preliminaries

Let K be a nonempty closed convex subset of a real Banach space E. Recall that a mapping
f : K → K is called contractive if there exists a constant α ∈ (0, 1) such that

∥
∥f(x) − f

(
y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ K. (2.1)

Let μ be a continuous linear functional on l∞ and s = (a0, a1, . . .) ∈ l∞. We write μn(an)
instead of μ(s). We call μ a Banach limit if μ satisfies ‖μ‖ = μ(1) = 1 and μn(an+1) = μn(an) for
all (a0, a1, . . .) ∈ l∞.

If μ is a Banach limit, then we have the following.

(1) For all n ≥ 1, an ≤ cn implies μn(an) ≤ μn(cn).

(2) μn(an+r) = μn(an) for any fixed positive integer r.

(3) lim infn→∞an ≤ μn(an) ≤ lim supn→∞an for all (a0, a1, . . .) ∈ l∞.

(4) If s = (a0, a1, . . .) ∈ l∞ with an → a, then μ(s) = μn(an) = a for any Banach limit μ.

For more details on Banach limits, we refer readers to [14]. We need the following
lemmas for proving our main results.

Lemma 2.1 (see [15]). Let E be a Banach space. Suppose thatK is a nonempty closed convex subset
of E and T : K → E is a continuous pseudocontractive mapping satisfying the weakly inward
condition: T(x) ∈ IK(x)(IK(x) is the closure of IK(x)) for each x ∈ K, where IK(x) = {x+c(u−x) :
u ∈ E and c ≥ 1}. Then, for each z ∈ K, there exists a unique continuous path t �→ zt ∈ K for all
t ∈ [0, 1), satisfying the following equation

zt = tTzt + (1 − t)z. (2.2)
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Furthermore, if E is a reflexive Banach space with a uniformly Gâteaux differentiable norm and every
nonempty closed convex bounded subset of K has the fixed point property for nonexpansive self-
mappings, then, as t → 1, zt converges strongly to a fixed point of T .

Lemma 2.2 (see [16]). (1) If E is smooth Banach space, then the duality mapping J is single valued
and strong-weak∗ continuous.

(2) If E is a Banach space with a uniformly Gâteaux differentiable norm, then the duality
mapping J : E → E∗ is single valued and norm to weak star uniformly continuous on bounded sets
of E.

Lemma 2.3 (see [17]). Let {an} be a sequence of nonnegative real numbers satisfying an+1 ≤ (1 −
αn)an + αnβn for all n ≥ 0, where {αn} ⊂ (0, 1), and {βn} two sequences of real numbers such that
∑∞

n=0 αn = ∞ and lim supn→∞ βn ≤ 0. Then {an} converges to zero as n → ∞.

Lemma 2.4 (see [18]). Let E be a real Banach space, and let J be the normalized duality mapping.
Then, for any given x, y ∈ E,

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2〈y, j(x + y

)〉, ∀j(x + y
) ∈ J

(
x + y

)
. (2.3)

Lemma 2.5 (see [14]). Let a be a real number, and let (x0, x1, . . . , ) ∈ l∞ such that μnxn ≤ a for all
Banach limits. If lim supn→∞(xn+1 − xn) ≤ 0, then lim supn→∞xn ≤ a.

3. Main Results

Now, we are ready to give our main results in this paper.

Theorem 3.1. Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm.
Let K be a nonempty bounded closed convex subset of E, and every nonempty closed convex bounded
subset ofK has the fixed point property for nonexpansive self-mappings. Let f : K → K a contractive
mapping and T : K → K be a uniformly continuous pseudocontractive mapping with F(T)/= ∅. Let
{λn} ⊂ (0, 1/2] be a sequence satisfying the conditions:

(i) limn→∞λn = 0,

(ii)
∑∞

n=0 λn = ∞.

Define the sequence {xn} in K by

x0 ∈ K,

xn+1 = λnf(xn) + (1 − 2λn)xn + λnTxn, ∀n ≥ 0.
(3.1)

If limn→∞‖xn − Txn‖ = 0, then the sequence {xn} converges strongly to a fixed point p ∈ F(T),
which is the unique solution of the following variational inequality:

〈f(p) − p, j
(
z − p

)〉 ≤ 0, ∀z ∈ F(T). (3.2)
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Proof. Take p ∈ F(T), and let S = I − T . Then, we have

〈
Sx − Sy, j

(
x − y

)〉 ≥ 0. (3.3)

From (3.1), we obtain

xn = xn+1 + λnxn − λnTxn + λnxn − λnf(xn)

= xn+1 + λnxn + λnSxn − λnf(xn)

= xn+1 + λn
[
xn+1 + λnxn + λnSxn − λnf(xn)

]
+ λnSxn − λnf(xn)

= (1 + λn)xn+1 + λ2n(xn + Sxn) − λ2nf(xn) + λnSxn − λnf(xn)

= (1 + λn)xn+1 + λnSxn+1 + λ2n(xn + Sxn) − λ2nf(xn)

+ λn(Sxn − Sxn+1) − λnf(xn).

(3.4)

By (3.4), we have

xn − p = (1 + λn)
(
xn+1 − p

)
+ λn

(
Sxn+1 − Sp

)
+ λ2n(xn + Sxn)

− λ2nf(xn) + λn(Sxn − Sxn+1) + λn
(
p − f(xn)

)
.

(3.5)

Combining (3.3) and (3.5), we have

〈
xn − p − λ2n(xn + Sxn) + λ2nf(xn) − λn(Sxn − Sxn+1) + λn

(
f(xn) − p

)
, j
(
xn+1 − p

)〉

= (1 + λn)
∥
∥xn+1 − p

∥
∥2 + λn

〈
Sxn+1 − Sp, j

(
xn+1 − p

)〉

≥ (1 + λn)
∥
∥xn+1 − p

∥
∥2
.

(3.6)

Next, we prove that lim supn→∞〈f(p) − p, j(xn − p)〉 ≤ 0. Indeed, taking z = f(p) in
Lemma 2.1, we have

zt − xn = (1 − t)(Tzt − xn) + t
(
f
(
p
) − xn

)
, (3.7)

and, hence,

‖zt − xn‖2 = (1 − t)
〈
Tzt − xn, j(zt − xn)

〉
+ t

〈
f
(
p
) − xn, j(zt − xn)

〉

= (1 − t)〈Tzt − Txn, j(zt − xn)〉 + (1 − t)
〈
Txn − xn, j(zt − xn)

〉

+ t
〈
f
(
p
) − zt, j(zt − xn)

〉
+ t‖zt − xn‖2

≤ ‖zt − xn‖2 + (1 − t)‖Txn − xn‖‖zt − xn‖
+ t

〈
f
(
p
) − zt, j(zt − xn)

〉
.

(3.8)
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Therefore, we have

〈
zt − f

(
p
)
, j(zt − xn)

〉 ≤ 1 − t

t
‖Txn − xn‖‖zt − xn‖

≤ M1
1 − t

t
‖Txn − xn‖,

(3.9)

where M1 > 0 is some constant such that ‖zt − xn‖ ≤ M1 for all t ∈ (0, 1] and n ≥ 1. Letting
n → ∞, we have

lim sup
n→∞

〈
zt − f

(
p
)
, j(zt − xn)

〉 ≤ 0. (3.10)

From Lemma 2.1, we know zt → p as t → 0. Since the duality mapping J : E → E∗ is norm
to weak star uniformly continuous from Lemma 2.2, we have

lim sup
n→∞

〈
f
(
p
) − p, j

(
xn − p

)〉 ≤ 0. (3.11)

From (3.6), we have

(1 + λn)
∥
∥xn+1 − p

∥
∥2 ≤

〈
xn − p − λ2n(xn + Sxn) + λ2nf(xn) − λn(Sxn − Sxn+1), j

(
xn+1 − p

)〉

≤ ∥
∥xn − p

∥
∥
∥
∥xn+1 − p

∥
∥ +M2λ

2
n +M2λn‖Sxn+1 − Sxn‖

+ λn
∥
∥f(xn) − f

(
p
)∥
∥
∥
∥xn+1 − p

∥
∥ + λn

〈
f
(
p
) − p, j

(
xn+1 − p

)〉

≤ ∥
∥xn − p

∥
∥
∥
∥xn+1 − p

∥
∥ +M2λ

2
n +M2λn‖Sxn+1 − Sxn‖

+ λnα
∥
∥xn − p

∥
∥
∥
∥xn+1 − p

∥
∥ + λn

〈
f
(
p
) − p, j

(
xn+1 − p

)〉

≤ 1 + λnα

2

(∥
∥xn − p

∥
∥2 +

∥
∥xn+1 − p

∥
∥2
)
+M2λ

2
n

+M2λn‖Sxn+1 − Sxn‖ + λn
〈
f
(
p
) − p, j

(
xn+1 − p

)〉
,

(3.12)

where M2 is a constant such that

sup
{‖xn + Sxn‖

∥
∥xn+1 − p

∥
∥ +

∥
∥f(xn)

∥
∥
∥
∥xn+1 − p

∥
∥ +

∥
∥xn+1 − p

∥
∥, n ≥ 0

} ≤ M2. (3.13)
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It follows that

∥
∥xn+1 − p

∥
∥2 ≤ 1 + λnα

1 + (2 − α)λn

∥
∥xn − p

∥
∥2 +M2λ

2
n +M2λn‖Sxn+1 − Sxn‖

+
λn

1 + (2 − α)λn

〈
f
(
p
) − p, j

(
xn+1 − p

)〉

=
[

1 − 2(1 − α)
1 + (2 − α)λn

λn

]
∥
∥xn − p

∥
∥2 +

2(1 − α)λn
1 + (2 − α)λn

×
{
1 + (2 − α)λn

2(1 − α)
M2λn +

1 + (2 − α)λn
2(1 − α)

M2‖Sxn+1 − Sxn‖

+
1

2(1 − α)
〈
f
(
p
) − p, j

(
xn+1 − p

)〉
}

= (1 − αn)
∥
∥xn − p

∥
∥2 + αnβn,

(3.14)

where

αn =
2(1 − α)

1 + (2 − α)λn
λn,

βn =
1 + (2 − α)λn

2(1 − α)
M2λn +

1 + (2 − α)λn
2(1 − α)

M2‖Sxn+1 − Sxn‖

+
1

2(1 − α)
〈
f
(
p
) − p, j

(
xn+1 − p

)〉
.

(3.15)

Note that

‖xn+1 − xn‖ ≤ λn‖xn‖ + λn‖Txn‖ + λn
∥
∥xn − f(xn)

∥
∥ −→ 0 (n −→ ∞). (3.16)

By the uniformly continuity of T , we have

‖Sxn+1 − Sxn‖ −→ 0 (n −→ ∞). (3.17)

Hence, it is clear that
∑∞

n=0 αn = ∞ and lim supn→∞βn ≤ 0.
Finally, applying Lemma 2.3 to (3.14), we can conclude that xn → p. This completes

the proof.

From Theorem 3.1, we can prove the following corollary.

Corollary 3.2. Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm.
Let K be a nonempty bounded closed convex subset of E, and every nonempty closed convex bounded
subset of K has the fixed point property for nonexpansive self-mappings. Let T : K → K be a
uniformly continuous pseudocontractive mapping with F(T)/= ∅. Let {λn} ⊂ (0, 1/2] be a sequence
satisfying the conditions:
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(i) limn→∞λn = 0,

(ii)
∑∞

n=0 λn = ∞.

Define the sequence {xn} in K by

u, x0 ∈ K,

xn+1 = λnu + (1 − 2λn)xn + λnTxn, ∀n ≥ 0.
(3.18)

Then, the sequence {xn} converges strongly to a fixed point of T if and only if limn→∞‖xn−Txn‖ = 0.

Theorem 3.3. Let E be a uniformly smooth Banach space and K a nonempty bounded closed
convex subset of E. Let f : K → K be a contractive mapping and T : K → K a uniformly
continuous pseudocontractive mapping with F(T)/= ∅. Let {λn} ⊂ (0, 1/2] be a sequence satisfying
the conditions:

(i) limn→∞λn = 0,

(ii)
∑∞

n=0 λn = ∞.

If limn→∞‖xn −Txn‖ = 0, then the sequence {xn} defined by (3.1) converges strongly to a fixed point
p ∈ F(T), which is the unique solution of the following variational inequality:

〈
f
(
p
) − p, j

(
z − p

)〉 ≤ 0, ∀z ∈ F(T). (3.19)

Proof. Since every uniformly smooth Banach space E is reflexive and whose norm is
uniformly Gâteaux differentiable, at the same time, every closed convex and bounded subset
of K has the fixed point property for nonexpansive mappings. Hence, from Theorem 3.1, we
can obtain the result. This completes the proof.

From Theorem 3.3, we can prove the following corollary.

Corollary 3.4. Let E be a uniformly smooth Banach space and K a nonempty bounded closed convex
subset of E. Let T : K → K be a uniformly continuous pseudocontractive mapping with F(T)/= ∅.
Let {λn} ⊂ (0, 1/2] be a sequence satisfying the conditions:

(i) limn→∞λn = 0,

(ii)
∑∞

n=0 λn = ∞.

Define the sequence {xn} in K by

u, x0 ∈ K,

xn+1 = λnu + (1 − 2λn)xn + λnTxn, ∀n ≥ 0.
(3.20)

Then, the sequence {xn} converges strongly to a fixed point of T if and only if limn→∞‖xn−Txn‖ = 0.

Theorem 3.5. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space
E with a uniformly Gâteaux differentiable norm. Let f : K → K a contractive mapping and T :
K → K be a uniformly continuous pseudocontractive mapping. Let {λn} ⊂ (0, 1/2] be a sequence
satisfying the conditions:
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(i) limn→∞ λn = 0,

(ii)
∑∞

n=0 λn = ∞.

IfD∩F(T)/= ∅, whereD is defined as (3.22) below, then the sequence {xn} defined by (3.1) converges
strongly to a fixed point p ∈ F(T), which is the unique solution of the following variational inequality:

〈
f
(
p
) − p, j

(
z − p

)〉 ≤ 0, ∀z ∈ F(T). (3.21)

Proof. First, we note that the sequence {xn} is bounded. Now, if we define g(x) = μn‖xn −x‖2,
then g(x) is convex and continuous. Also, we can easily prove that g(x) → ∞ as ‖x‖ → ∞.
Since E is reflexive, there exists y ∈ K such that g(y) = infx∈Kg(x). So the set

D =
{

y ∈ K : g
(
y
)
= inf

x∈K
g(x)

}

/= ∅. (3.22)

Clearly, D is closed convex subset of K.
Now, we can take p ∈ D ∩ F(T) and t ∈ (0, 1). By the convexity of K, we have that

(1 − t)p + tf(p) ∈ K. It follows that

g
(
p
) ≤ g

(
(1 − t)p + tf

(
p
))
. (3.23)

By Lemma 2.4, we have

∥
∥xn − p − t

(
f
(
p
) − p

)∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − 2t

〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉
. (3.24)

Taking the Banach limit in (3.24), we have

μn

∥
∥xn − p − t

(
f
(
p
) − p

)∥
∥2 ≤ μn

∥
∥xn − p

∥
∥2 − 2tμn

〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉
.

(3.25)

This implies

2tμn

〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉 ≤ g
(
p
) − g

(
(1 − t)p + tf

(
p
))
. (3.26)

Therefore, it follows from (3.23) and (3.26) that

μn

〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉 ≤ 0. (3.27)

Since the normalized duality mapping j is single valued and norm-weak∗ uniformly
continuous on bounded subset of E, we have

〈
f
(
p
) − p, j

(
xn − p

)〉 − 〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉 −→ 0 (t −→ 0). (3.28)
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This implies that, for any ε > 0, there exists δ > 0 such that, for all t ∈ (0, δ) and n ≥ 1,

〈
f
(
p
) − p, j

(
xn − p

)〉 − 〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉
< ε. (3.29)

Taking the Banach limit and noting that (3.27), we have

μn

〈
f
(
p
) − p, j

(
xn − p

)〉 ≤ μn

〈
f
(
p
) − p, j

(
xn − p − t

(
f
(
p
) − p

))〉
+ ε ≤ ε. (3.30)

By the arbitrariness of ε, we obtain

μn

〈
f
(
p
) − p, j

(
xn − p

)〉 ≤ 0. (3.31)

At the same time, we note that

‖xn+1 − xn‖ ≤ λn
(∥
∥f(xn)

∥
∥ + 2‖xn‖ + ‖Txn‖

) −→ 0 (n −→ ∞). (3.32)

Since {xn − p}, {f(p) − p} are bounded and the duality mapping j is single valued and norm
topology to weak star topology uniformly continuous on bounded sets in Banach space E
with a uniformly Gâteaux differentiable norm, it follows that

lim
n→∞

{〈
f
(
p
) − p, j

(
xn+1 − p

)〉 − 〈
f
(
p
) − p, j

(
xn − p

)〉}
= 0. (3.33)

From (3.31), (3.33), and Lemma 2.5, we conclude that

lim sup
n→∞

〈
f
(
p
) − p, j

(
xn+1 − p

)〉 ≤ 0. (3.34)

Finally, by the similar arguments as that the proof in Theorem 3.1, it is easy prove that
the sequence {xn} converges to a fixed point of T . This completes the proof.

From Theorem 3.5, we can easily to prove the following result.

Corollary 3.6. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space
E with a uniformly Gâteaux differentiable norm. Let f : K → K be a contractive mapping and
T : K → K a uniformly continuous pseudocontractive mapping. Let {λn} ⊂ (0, 1/2] be a sequence
satisfying the conditions:

(i) limn→∞λn = 0,

(ii)
∑∞

n=0 λn = ∞.

Define the sequence {xn} in K by

u, x0 ∈ K,

xn+1 = λnu + (1 − 2λn)xn + λnTxn, ∀n ≥ 0.
(3.35)
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If D ∩ F(T)/= ∅, where D is defined as (3.22), then the sequence {xn} defined by (3.35) converges
strongly to a fixed point p ∈ F(T).
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