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We employ the generalized factorials to define a Stirling-type pair {s(n, k;α,β, r), S(n, k;α,β, r)}
which unifies various Stirling-type numbers investigated by previous authors. We make use of the
Newton interpolation and divided differences to obtain some basic properties of the generalized
Stirling numbers including the recurrence relation, explicit expression, and generating function.
The generalizations of the well-known Dobinski’s formula are further investigated.

1. Introduction

Throughout this paper the following notations will be used. We denote by R the set of
real numbers and by C the set of complex numbers. Let α = (α0, α1, . . .) be a vector. If
αi = iθ(i = 0, 1, . . .), we denote the vector by θ. We further denote (0, 1, . . .) by 1 and (0, 0, . . .)
by 0. Moreover, let us denote the generalized kth falling factorial of x with increment θ
by (x)(k,θ) = x(x − θ) · · · (x − kθ + θ). Particularly, if θ = 1, we write (x)(k) = x(x − 1) · · ·
(x − k + 1).

In mathematics, Stirling numbers of the first and second kind, which are named after
James Stirling, arise in a variety of combinatorics problems. They have played important
roles in combinatorics. Stirling numbers of the first kind are the coefficients in the expansion
(x)(n) =

∑n
k=0 s(n, k)x

k, and Stirling numbers of the second kind are characterized by xn =
∑n

k=0 S(n, k)(x)
(k).

Over the past few decades, there has been an interest in generalizing and extending the
Stirling numbers in mathematics literature. By starting with transformations between gen-
eralized factorial involving three arbitrary parameters α, β, and r, Hsu and Shiue [1] in-
troduced the generalized numbers S(n, k;α, β, r) and unified those generalizations of the Stir-
ling numbers due to Riordan [2], Carlitz [3, 4], Howard [5], Charalambides-Koutras [6],
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Gould-Hopper [7], Tsylova [8], and others. They define a Stirling-type pair {S(n, k;α, β, r),
s(n, k;α, β, r)} by

(x)(n,α) =
n∑

k=0

S
(
n, k;α, β, r

)
(x − r)(k,β),

(x)(n,β) =
n∑

k=0

s
(
n, k;α, β, r

)
(x + r)(k,α).

(1.1)

They systematically investigated many basic properties including orthogonality relations,
recurrence relations, generating function, and the Dobinski identity for their Stirling
numbers. Recently, Comtet [9] defines sα(n, k) and Sα(n, k), the generalized Stirling numbers
of the first kind and second kind associate with α0, α1, . . . , αn−1, by

(x − α0)(x − α1) · · · (x − αn−1) =
n∑

k=0

sα(n, k)xk,

xn =
n∑

k=0

Sα(n, k)(x − α0)(x − α1) · · · (x − αk−1).
(1.2)

El-Desouky [10] modified the noncentral Stirling numbers of the first and second kind. He
defined the multiparameter noncentral Stirling numbers of the first kind and second kind as
follows:

(x − α0)(x − α1) · · · (x − αn−1) =
n∑

k=0

S(n, k;α)(x)(k), (1.3)

(x)(n) =
n∑

k=0

s(n, k;α)(x − α0)(x − α1) · · · (x − αk−1). (1.4)

The recurrence relations, generating functions, and explicit forms for El-Desouky’s Stirling
numbers are obtained.

In another direction, Stirling numbers and their generalizations were investigated via
differential operators. Carlitz and Klamkin [11] defined the Stirling numbers of the second
kind by

(xD)n =
n∑

k=1

S(n, k)xkDk, (1.5)

where D is a differential operator d/dx. Actually, this can be traced back at least to Scherk
[12]. In the physical literature, Katriel [13] discovered (1.5)was in connectionwith the normal
ordering expressions in the boson creation operator a† and annihilation a, satisfying the
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commutation relation [a, a†] = 1 of the Weyl algebra. Recently, Lang [14, 15] generalized the
stirling numbers of the second kind by the following operator identity:

(xrD)n =
n∑

k=1

S(r;n, k)xkDk, (1.6)

where r is a nonnegative integer. He further obtained many properties of these numbers.
More recently, Blasiak et al. [16] defined Sr,s(n, k), the generalized Stirling numbers of the
second kind arising in the solution of the general normal ordering problem for a boson string,
as follows

(xrDs)n = xn(r−s)
ns∑

k=s

Sr,s(n, k)xkDk. (1.7)

These numbers were firstly defined by Carlitz [17]. More generally, given two sequences of
nonnegative integers r = (r1, r2, . . . , rn) and s = (s1, s2, . . . , sn), Blasiak [18] generalized this
formula by

xrnDsn · · ·xr2Ds2xr1Ds1 = xdn

s1+s2+···+sn∑

k=s1

Sr,s(n, k)xkDk, (1.8)

where dn =
∑n

k=1(rk − sk). He gave an explicit formula for the generalized Stirling numbers
Sr,s(n, k). In [19], a different explicit expression for these numbers was presented.

By considering powers (VU)n of the noncommuting variables U, V satisfying UV =
VU+hV s, Mansour and Schork [20] introduced a new family of generalized Stirling numbers
Ss;h(n, k) as

(VU)n =
n∑

k=1

Ss;h(n, k)V s(n−k)+kUk, (1.9)

which reduced to the conventional Stirling numbers of second kind and Bell numbers in
the case s = 0, h = 1. As mentioned in [21], this type of generalized Stirling numbers is
not a special case of Howard’s degenerate weight Stirling numbers although they look very
similar.

Moreover, for any sequence of real numbers α = (α0, α1, . . . , αn−1) and a sequence of
nonnegative integers r = (r0, r1, . . . , rn−1), by using operational identity [22, 23] El-Desouky
and Cakić [24] defined a generalized multiparameter noncentral Stirling numbers of the
second kind S(n, k;α, r) by

n−1∏

j=0

(
xαiδx−αj

)rj =
n−1∏

j=0

(
δ − αj

)rj =
|r|∑

k=0

S(n, k;α, r)xkDk, (1.10)

where |r| = r0+r1+· · ·+rn−1. These numbers reduced to the multiparameter noncentral Stirling
numbers of the second kind S(n, k;α) in (1.3) if all ri = 1.
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As a useful tool, the Newton interpolation with divided differences was utilized to
obtain closed formulas for Dickson-Stirling numbers in the paper [25] provided by the
referee. In this paper, we make use of the generalized factorials to define a Stirling-type pair
{s(n, k;α,β, r), S(n, k;α,β, r)} which unifies various Stirling-type numbers investigated by
previous authors. By using the Newton interpolation and divided differences, we obtain the
basic properties including recurrence relations, explicit expression, and generating function.
The generalizations of the well-known Dobinski’s formula are further investigated. This
paper is organized as follows. In Section 2, we introduce the Newton interpolation and
divided differences. Several important properties of divided differences are presented. In
Section 3, the definitions of a new family of Stirling numbers are given. According to the
definitions, the recurrence relation as well as an explicit formula is derived. Moreover,
we also investigate the generating function for our generalized Stirling numbers. In views
of our results, we rediscover many interesting special cases which are introduced in the
above. Finally, in Section 4, the associated generalized Bell numbers and Bell polynomials
are presented. Furthermore, a generalized Dobinski’s formula is derived.

2. Divided Differences and Newton Interpolation

For a sequence of points α = (α0, α1, . . .) and all αi ∈ R or C, we define

ω0,α(x) = 1, ωn,α(x) =
n−1∏

i=0

(x − αi), n = 1, 2, . . . . (2.1)

Let Nn(x) be the Newton interpolating polynomial of degree at most n that interpolates a
function f(x) at the point α0, α1, . . . , αn; then this polynomial is given as in

Nn(x) =
n∑

i=0

Δ(α0, . . . , αi)f ·ωi,α(x), (2.2)

where Δ(α0, . . . , αi)f is the divided difference of the ith order of the function f . As is well
known, for the distinct points α0, α1, . . . , αn, the divided differences of the function f are
defined recursively by the following formula:

Δ(α0)f = f(α0), (2.3)

Δ(α0, . . . , αn)f =
Δ(α0, . . . , αn−1)f −Δ(α1, . . . , αn)f

α0 − αn
. (2.4)

Divided differences as the coefficients of the Newton interpolating polynomial have
played an important role in numerical analysis, especially in interpolation and approximation
by polynomials and in spline theory; see [26] for a recent survey. They also have many
applications in combinatorics [27, 28]. The divided differences can be expressed by the
explicit formula

Δ(α0, . . . , αn)f =
n∑

i=0

f(αi)
∏n

j=0, /= i

(
αi − αj

) . (2.5)
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From the above expression it is not difficult to find the divided differences are symmetric
functions of their arguments. In particular, taking αi = α + iθ(θ /= 0) we have

Δ(α, . . . , α + nθ)f =
1

n!θn
Δn

θf(α) =
1

n!θn

n∑

i=0

(
n
i

)

(−1)n−if(α + iθ), (2.6)

where Δθ is the difference operator with step size θ.
Divided differences can be extended to the cases with repeated points. From the

recursive formula (2.4), it is clear that if α0 /=α1 the following holds:

Δ(α0, α1)f =
f(α1) − f(α0)

α1 − α0
. (2.7)

If repetitions are permitted in the arguments and the function f is smooth enough, then

lim
α1 →α0

Δ(α0, α1)f = lim
α1 →α0

f(α1) − f(α0)
α1 − α0

= f ′(α0). (2.8)

This gives the definition of first-order divided differences with repeated points

Δ(α0, α0)f = f ′(α0). (2.9)

In general, let α0 ≤ α1 ≤ · · · ≤ αn. Then the divided differences with repeated points obey the
following recursive formula:

Δ(α0, . . . , αn)f =

⎧
⎪⎪⎨

⎪⎪⎩

Δ(α0, . . . , αn−1)f −Δ(α1, . . . , αn)f
α0 − αn

, if αn /=α0,

f (n)(α0)
n!

, if αn = α0.

(2.10)

It is evident that divided differences can be viewed as a discrete analogue of derivatives.
If αn = α0, then all the points α0, α1, . . . , αn are the same. In this case, Nn(x) in (2.2) is the
Taylor polynomial of the function f at the point α0. More generally, if {α0, α1, . . . , αn} =
{α′

0, . . . , α
′
0︸ ︷︷ ︸

p0

, α′
1, . . . , α

′
1︸ ︷︷ ︸

p1

, . . . , α′
m, . . . , α

′
m︸ ︷︷ ︸

pm

} and p0 + p1 + · · · + pm = n + 1 where α′
0, α

′
1, . . . , α

′
m are

distinct, we define

Ωi(x) =
m∏

k=0, /= i

(
x − α′

k

)pk , Sli(x) =
m∑

k=0, /= i

pk
(
α′
k
− x
)l , (2.11)

with l ≥ 1, 0 ≤ i ≤ m. Recall that the cycle index of symmetric group

Zn(xk) = Zn(x1, x2, . . . , xn) =
∑

a1+2a2+···+nan=n

1
a1!(1)a1a2!(2)a2 · · ·an!(n)an

xa1
1 xa2

2 · · ·xan
n (2.12)
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is one of the essential tools in enumerative combinatorics [29]. Using the cycle index of sym-
metric group, the divided differences with repeated points can be expressed by the following
explicit formula [30] (see also [31]):

Δ(α0, . . . , αn)f =
m∑

i=0

Ωi

(
α′
i

)−1
pi−1∑

j=0

Zpi−1−j
(
S!i
(
α′
i

))f (j)(α′
i

)

j!
, (2.13)

where

Zpi−1−j
(
S!i
(
α′
i

))
= Zpi−1−j

(
S1i
(
α′
i

)
, S2i
(
α′
i

)
, . . . , Spi−1−ji

(
α′
i

))
. (2.14)

It is well known that the Leibniz formula for higher derivatives is basic and important
in calculus. A divided difference form of this formula given by [32] is stated as below. Let
h = fg. If f and g are sufficiently smooth functions, then for arbitrary points α0, α1, . . . , αn,

Δ(α0, . . . , αn)h =
n∑

i=0

Δ(α0, . . . , αi)f ·Δ(αi, . . . , αn)g. (2.15)

This formula is called the Steffensen formula which is a generalization of the Leibniz formula.
If α0 = α1 = · · · = αn, then the Leibniz formula holds, namely,

h(n)(α0) =
n∑

i=0

(
n
i

)

f (i)(α0)g(n−i)(α0). (2.16)

3. Generalized Stirling Numbers

Let α = (α0, α1, . . .) and β = (β0, β1, . . .) be two vectors. We define two kinds of Stirling-type
numbers as

ωn,α(x) =
n∑

k=0

S(n, k;α,β, r)ωk,β(x − r), (3.1)

ωn,β(x) =
n∑

k=0

s(n, k;α,β, r)ωk,α(x + r), (3.2)

where S(n, k;α,β, r) are called the generalized Stirling numbers of the second kind with the
parameters α, β, and r, and s(n, k;α,β, r) are called the generalized Stirling numbers of the
first kind. It is obvious that S(n, k;α,β, r) = s(n, k;β,α,−r). In particular, S(n, k; 0, 1, 0) is the
conventional Stirling number of the second kind, and s(n, k; 0, 1, 0) is of the first kind.

In this section, making use of divided difference operator and the Newton interpola-
tion in Section 2, we will investigate orthogonality relations, recurrences, explicit expressions,
and generating functions for the generalized Stirling numbers.
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3.1. Basic Properties of the Generalized Stirling Numbers

Firstly, let us consider orthogonality relations of the two kinds of the generalized Stirling
numbers. By substituting (3.1) into (3.2) and (3.2) into (3.1), one may easily get the following
orthogonality relations

n∑

i=k

s(n, i;α,β, r)S(i, k;α,β, r) = δn,k, (3.3)

n∑

i=k

S(n, i;α,β, r)s(i, k;α,β, r) = δn,k, (3.4)

respectively, where the Kronecker symbol δn,k is defined by δn,k = 1 if n = k, and δn,k = 0 if
n/= k. As a consequence, the inverse relations are immediately obtained:

fn =
n∑

k=0

S(n, k;α,β, r)gk ⇐⇒ gn =
n∑

k=0

s(n, k;α,β, r)fk. (3.5)

Next, from the definition (3.1), one may see that S(n, k;α,β, r) can be viewed as the
coefficients of the Newton interpolation of the functionωn,α at the points r+β0, r+β1, . . . , r+
βn. Thus, we immediately have the following theorem.

Theorem 3.1. For arbitrary parameters α, β, and r, there holds

S(n, k;α,β, r) = Δ
(
r + β0, . . . , r + βk

)
ωn,α. (3.6)

In particular, if β0, β1, . . . , βn are distinct, we have

S(n, k;α,β, r) =
k∑

i=0

∏n−1
j=0
(
r + βi − αj

)

∏k
j=0, /= i

(
βi − βj

) . (3.7)

If β0 = β1 = · · · = βn = 0, then

S(n, k;α, 0, r) =
1
k!

∑

0≤i1<···<in−k≤n−1
(r − αi1) · · · (r − αin−k). (3.8)

This theorem gives the explicit expressions for the generalized Stirling numbers. We
can similarly get s(n, k;α,β, r) = Δ(−r + α0, . . . ,−r + αk)ωn,β. By (3.6), we can further get the
recurrence relations as follows.

Theorem 3.2. For arbitrary parameters α, β, and r, there holds

S(n, k;α,β, r) = S(n − 1, k − 1;α,β, r) +
(
r + βk − αn−1

)
S(n − 1, k;α,β, r). (3.9)
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In particular, we have

S(n, 0;α,β, r) = ωn,α
(
r + β0

)
=
(
r + β0 − α0

) · · · (r + β0 − αn−1
)
. (3.10)

Proof. According to (3.6), we have

S(n, k;α,β, r) = Δ
(
r + β0, . . . , r + βk

)
(ωn−1,α(· − αn−1)). (3.11)

By using the Steffensen formula for divided differences and the basic facts

Δ(x0, . . . , xi)ωj,α = δi,j , (3.12)

we have

S(n, k;α,β, r) = Δ
(
r + β0, . . . , r + βk−1

)
ωn−1,α

+
(
r + βk − αn−1

)
Δ
(
r + β0, . . . , r + βk

)
ωn−1,α.

(3.13)

This leads to (3.9), and the proof is complete.

Finally, let us consider the generating function of the Stirling numbers S(n, k;α,β, r)
denoted by G(t; k,α,β, r). Assume that G(t; k,α,β, r) is of the form:

G(t; k,α,β, r) =
∞∑

n=0

AnS(n, k;α,β, r)tn, (3.14)

where A0, A1, . . . is a reference sequence. In this way we treat at the same time the case of
ordinary coefficients ofG(An = 1) and the case of Taylor coefficients (An = 1/n!). LetΦ(x, t) =
∑∞

n=0 Anωn,α(x)tn. Making use of (3.6), we get the following:

G(t; k,α,β, r) =
∞∑

n=0

AnΔ
(
r + β0, . . . , r + βk

)
ωn,αt

n = Δ
(
r + β0, . . . , r + βk

)
Φ(·, t). (3.15)

This formula is essential and important for getting the generating function of the generalized
Stirling numbers. If we get the analytic expression of Φ(x, t) by choosing special α, the
analytic expression of G(t; k,α,β, r) is obtained as well.

3.2. Special Cases

Because the parameters α,β, and r are arbitrary, our results contain many interesting special
cases. In this part we will investigate these special cases. Some results have been derived and
some are new.

Let θ = (0, θ, . . .) and all βi be distinct. According to Theorems 3.1 and 3.2, we have
the explicit expressions and the recurrence relations for new generalized Stirling numbers
S(n, k;θ,β, r).
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Corollary 3.3. The numbers S(n, k;θ,β, r) have the following explicit expression

S
(
n, k;θ,β, r

)
=

k∑

i=0

∏n−1
j=0
(
r + βi − jθ

)

∏k
j=0, /= i

(
βi − βj

) . (3.16)

Corollary 3.4. The numbers S(n, k;θ,β, r) satisfy the following recurrence relation

S
(
n, k;θ,β, r

)
= S
(
n − 1, k − 1;θ,β, r

)
+
(
r + βk − (n − 1)θ

)
S
(
n − 1, k;θ,β, r

)
. (3.17)

For θ = (0, θ, . . .) and An = 1/n!, if θ /= 0 we have

Φ(x, t) =
∞∑

n=0
(x)(n,θ)

tn

n!
= (1 + θt)x/θ, (3.18)

and if θ = 0 we have

Φ(x, t) =
∞∑

n=0

xn t
n

n!
= ext. (3.19)

Thus, by (3.15) one easily obtain the following theorem.

Theorem 3.5. The sequence {S(n, k;θ,β, r)} has the following exponential generating function:

∞∑

n=0

S
(
n, k;θ,β, r

) tn

n!
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + θt)r/θ
k∑

i=0

(1 + θt)βi/θ
∏k

j=0, /= i

(
βi − βj

) , θ /= 0,

ert
k∑

i=0

eβit
∏k

j=0, /= i

(
βi − βj

) , θ = 0.

(3.20)

Our generalized Stirling numbers S(n, k;θ,β, r) include the Stirling numbers due to
Hsu and Shiue [1], EI-Desouky’s multiparameter noncentral Stirling numbers [10], and the
so-called Comtet numbers [9] as special cases. Now, let us discuss these special cases as
follows.

Example 3.6. Let β = θ′ := (0, θ′, . . .) and θ′ /= 0. This implies the points βi are equally spaced
with step size θ′. By Corollaries 3.3 and 3.4, we immediately get the explicit expression for
the generalized Stirling numbers

S
(
n, k;θ,θ′, r

)
=

1
k!θ′k

k∑

i=0
(−1)k−i

(
k
i

) n−1∏

j=0

(
r + jθ′ − iθ

)
(3.21)

and the recurrence relation

S
(
n + 1, k;θ,θ′, r

)
= S
(
n, k − 1;θ,θ′, r

)
+
(
r + kθ′ − nθ

)
S
(
n, k;θ,θ′, r

)
. (3.22)
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For θ /= 0, the following holds

k∑

i=0

(1 + θt)(r+iθ
′)/θ

∏k
j=0, /= i

(
iθ′ − jθ′)

=
1

k!θ′k
(1 + θt)r/θ

k∑

i=0
(−1)k−i

(
k
i

)

(1 + θt)iθ
′/θ

=
1

k!θ′k
(1 + θt)r/θ

(
(1 + θt)θ

′/θ − 1
)k

.

(3.23)

In a similar manner, we can also get the generating function for θ = 0. Thus, we have

∞∑

n=0

S
(
n, k;θ,θ′, r

) tn

n!
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
k!
(1 + θt)r/θ

(
(1 + θt)θ

′/θ − 1
θ′

)k

, θ /= 0,

1
k!
ert
(

eθ
′t − 1
θ′

)k

, θ = 0.

(3.24)

Here S(n, k;θ,θ′, r) is equivalent to S(n, k;α, β, r) in [1]. As mentioned in [1], the
generalized Stirling numbers S(n, k;θ,θ′, r) contain serval special cases, for example, two
kinds of the classical Stirling numbers, the binomial coefficients, the Lah numbers, Carlitz’s
two kinds of weighted Stirling numbers [4], Carlitz’s two kinds of degenerate Stirling num-
bers [3], Howard’s weighted degenerate Stirling numbers [5], Gould-Hopper’s noncentral
Lah numbers [7], Riordan’s noncentral Stirling numbers [2], the noncentral C numbers
extensively studied by Charalambides and Koutras [6], Tsylova’s numbers [8], Todorov’s
numbers [33], Nandi and Dutta’s associated Lah numbers [34], and the r-Stirling numbers of
the first kind fully developed by Broder [35]. Hsu and Shiue obtained the recurrence relation
for the generalized Stirling numbers S(n, k;θ,θ′, r), and they also found the generating
function by solving a difference-differential equation. However, the formula (3.21) was new
and not given by [1]. Obviously, in the present paper we follow a very different approach to
rediscover the recurrence relation and the generating function. In the case r = 0, one may also
refer to [36].

It is remarkable that Mansour and Schork [20] recently considered UV − VU = hV s

to generalize the commutation relation UV − VU = 1. They defined generalized Stirling
numbers Ss;h(n, k) by (1.9). The explicit expressions of these generalized Stirling numbers
are given by [20] (see also [21]), and they are very closely related to the numbers considered
by Lang [14]. In [21], the authors exploited many properties of these generalized Stirling
numbers. It is interesting that observing our generalized Stirling numbers S(n, k;θ,β, r) by
θ = −sh, βk = kh(1−s) and r = 0, we find that the Stirling numbers due toMansour and Schork
are actually a special case of ours and Hsu-Shiue’s, and they are equivalent to the numbers
due to [36]. Thus, by (3.20) we get the exponential generating function of the generalized
Stirling numbers due to Mansour and Schork:

1
k!

(
(1 − hst)(s−1)/s − 1

h(1 − s)

)k

=
∞∑

n=0

Ss;h(n, k)
tn

n!
. (3.25)

In [21], the authors gave the generating function for k = 1.
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Example 3.7. Let θ = 1, r = 0, and βi be arbitrary but distinct, and one can get the
multiparameter noncentral Stirling numbers of the first kind introduced by El-Desouky
[10]. Here we denote the numbers by S(n, k; 1,β, 0). Using Corollaries 3.3 and 3.4 and
Theorem 3.5, we rediscover the explicit expression, recurrence relation, and the generating
function, namely,

S
(
n, k; 1,β, 0

)
=

k∑

i=0

∏n−1
j=0
(
βi − j

)

∏k
j=0, /= i

(
βi − βj

) ,

S
(
n + 1, k; 1,β, 0

)
= S
(
n, k − 1; 1,β, 0

)
+
(
βk − n

)
S
(
n, k; 1,β, 0

)
,

∞∑

n=0

S
(
n, k; 1,β, 0

) tn

n!
=

k∑

i=0

(1 + t)βi
∏k

j=0, /= i

(
βi − βj

) .

(3.26)

Example 3.8. Let us consider the case θ = 0. In this case, there holds

xn =
n∑

k=0

S(n, k; 0,β, r)ωk,β(x − r), (3.27)

which is equivalent to

(x + r)n =
n∑

k=0

S(n, k; 0,β, r)ωk,β(x). (3.28)

Especially, for r = 0 the Comtet numbers [9] (see also [10]) are defined associated with the
sequence β by

xn =
n∑

k=0

Sβ(n, k)
(
x − β0

)(
x − β1

) · · · (x − βk−1
)
. (3.29)

This implies S(n, k; 0,β, 0) = Sβ(n, k). Thus, it is not difficult to obtain

S(n, k; 0,β, 0) =
k∑

i=0

βni
∏k

j=0, /= i

(
βi − βj

) ,

S(n + 1, k; 0,β, 0) = S(n, k − 1; 0,β, 0) + βkS(n, k; 0,β, 0),

(3.30)

and the exponential generating function

∞∑

n=0

S(n, k; 0,β, 0)
tn

n!
=

k∑

i=0

eβit
∏k

j=0, /= i

(
βi − βj

) . (3.31)
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It is worth noting that the Comtet numbers S(n, k; 0,β, 0) can be rewritten as an alternate
form

S(n, k; 0,β, 0) =
∑

0≤i1≤···≤in≤k
βi1βi2 · · · βin , (3.32)

which is really the complete symmetric function of nth order with respect to the variables β0,
β1, . . ., βk. By (3.15), they have the ordinary generating function:

∞∑

n=0

S(n, k; 0,β, 0)tn = Δ
(
β0, . . . , βk

) 1
1 − (·)t =

tk
∏k

i=0
(
1 − βit

) . (3.33)

Moreover, if we let r = −a,β = 1, then we get the noncentral Stirling numbers of the
second kind defined by Koutras [37] (see also [24]). For more details one refers to [37].

What has been discussed above in this subsection is relevant to the generalized Stirling
numbers with equidistance parameters αi. However, we are also interested in the other cases.
In a recent year, many authors [14, 16, 18, 19, 24] were devoted to the generalized Stirling
numbers by differential operator. We here rediscover these generalized Stirling numbers by
the Newton interpolation.

Example 3.9. Our generalized Stirling numbers S(n, k;α,β, r) also contain the numbers due to
Blasiak [18] as a special case. Here we let r = (r1, r2, . . . , rm), s = (s1, s2, . . . , sm) and let d0 = 0
and dm =

∑m
i=1(ri − si) form ≥ 1. Moreover, we let

d̂ = −(d0, d0 − 1, . . . , d0 − s1 + 1, d1, d1 − 1, . . . , d1 − s2 + 1, . . . ,

dm−1, dm−1 − 1, . . . , dm−1 − sm + 1),

ŝ = (0, 1, . . . , s1 + s2 + · · · + sm),

(3.34)

where s1 + s2 + · · · + sm = n. By using (3.7) we immediately have the explicit expression of
S(n, k; d̂, ŝ, 0) as follows

S
(
n, k; d̂, ŝ, 0

)
=

1
k!

k∑

j=0

(
k
j

)

(−1)k−j
m∏

i=1

(
di−1 + j

)(si), (3.35)

which is in accordance with the generalized Stirling numbers Sr,s(m, k) introduced by Blasiak
[18]. Blasiak got this explicit formula by using the operator xrmDsm · · ·xr2Ds2xr1Ds1 to act
on ex. His proof is very different from ours. Recently, El-Desouky et al. [19] found a new
expression by successive application of Leibniz formula. The special case r = (r, r, . . . , r) and
s = (s, s, . . . , s) is investigated by Blasiak et al. [16], and they gave us Lang’s result [14] as a
special case for s = (1, 1, . . . , 1).



Journal of Applied Mathematics 13

Example 3.10. By operating with (1.10) on ex and using Cauchy rule of multiplication of se-
ries, El-Desouky and Cakić [24] obtain the explicit formula

S(n, k;α, r) =
1
k!

k∑

i=0

(
k
i

)

(−1)k−i
n−1∏

j=0

(
k − αj

)rj . (3.36)

In fact, let α̂ = {α0, . . . , α0︸ ︷︷ ︸
r0

, α1, . . . , α1︸ ︷︷ ︸
r1

, . . . , αn−1, . . . , αn−1︸ ︷︷ ︸
rn−1

}. It is not difficult to find S(n, k;α, r) =

S(r0 + r1 + · · · + rn−1, k; α̂, 1, 0) holds. In particular, setting n = 2, α0 = 0, α1 = 1, r0 = l, and
r1 = m − l in S(r0 + r1 + · · · + rn−1, k; α̂, 1, 0), we get the explicit expression of the number of
partitions of M = {x1, x2, . . . , xm} into n nonempty parts such that the distance of any two
members in the same part differs from l denoted by Tl(m, k); see [38].

4. Generalized Bell Polynomials and Dobinski-Type Formulas

Recall that the Bell numbers Bn and the exponential polynomials Bn(x) are defined, respec-
tively, by the sums

Bn =
n∑

k=0

S(n, k), Bn(x) =
n∑

k=0

S(n, k)xk. (4.1)

The Bell polynomials Bn(x) have the generating function

∞∑

n=0

Bn(x)
tn

n!
= ex(e

t−1). (4.2)

They also satisfy the following remarkable Dobinski-type formula

Bn(x) = e−x
∞∑

i=0

in

i!
xi, (4.3)

which reduces to the Dobinski formula when x = 1. It is worth noting that Bn(x) is represent-
ed as an infinite series in i.

As we know, the Dobinski-type formulas have been the subject of much combinatorial
interest. Thus, it is worth looking for a general Dobinski-type formula.

In this section, we define a generalized Bell polynomials by

B
n;α,θ′,r(x) =

n∑

k=0

S
(
n, k;α,θ′, r

)
xk, (4.4)
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where θ′ = (0, θ′, . . .) and θ′ /= 0. Naturally, one get an extended definition of generalized Bell
numbers as follow:

B
n;α,θ′,r =

n∑

k=0

S
(
n, k;α,θ′, r

)
. (4.5)

Note that Bn;0,1,0(x) = Bn(x) and Bn;0,1,0 = Bn. We can make use of (3.6) to obtain the following
Dobinski-type formula.

Theorem 4.1. For θ′ = (0, θ′, . . .) and arbitrary α, r, we have the Dobinski-type formula

B
n;α,θ′,r(x) = e−x/θ

′
∞∑

i=0

ωn,α(r + iθ′)
i!

(
x

θ′

)i

, (4.6)

where ωn,α is defined by (2.1).

Proof. By (4.4) we have

∞∑

n=0

B
n;α,θ′,r(x)

tn

n!
=

∞∑

n=0

tn

n!

n∑

k=0

S
(
n, k;α,θ′, r

)
xk =

∞∑

k=0

xk
∑

n≥k
S
(
n, k;α,θ′, r

) tn

n!
. (4.7)

Replacing β by θ′ in (3.6) yields

∞∑

n=0

B
n;α,θ′,r(x)

tn

n!
=

∞∑

k=0

xk
∑

n≥k
Δ
(
r, r + θ′, . . . , r + kθ′)ωn,α

tn

n!

=
∞∑

n=0

tn

n!

∞∑

k=0

1
k!

(
x

θ′

)k k∑

i=0
(−1)k−i

(
k
i

)

ωn,α
(
r + iθ′).

(4.8)

By equating the coefficient of tn/n! within the first and last expressions, we arrive at

B
n;α,θ′,r(x) =

∞∑

k=0

1
k!

(
x

θ′

)k k∑

i=0
(−1)k−i

(
k
i

)

ωn,α
(
r + iθ′). (4.9)

Using the Cauchy product rule gives

B
n;α,θ′,r(x) =

∞∑

j=0

(−1)j
j!

(
x

θ′

)j ∞∑

i=0

ωn,α(r + iθ′)
i!

(
x

θ′

)i

. (4.10)

This implies (4.6) is true and completes the proof.

Letting x = 1 we directly obtain the generalized Dobinski formula.
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Corollary 4.2. For θ′ = (0, θ′, . . .) and arbitrary α, r, we have

B
n;α,θ′,r = e−1/θ

′
∞∑

i=0

ωn,α(r + iθ′)
i!

(
1
θ′

)i

, (4.11)

where ωn,α is defined by (2.1).

It is clear that (4.3) is a special case of (4.6)with θ′ = 1,α = 0, r = 0.
Let φα,θ′(t) =

∑∞
i=0(iθ

′ −α0) · · · (iθ′ −αn−1)(ti/i!). It is worth noting that the formula (4.6)
can be used to obtain a closed sum formula for this type of infinite series. As mentioned in
[1], such a type of series cannot be summed by using the hypergeometric series method. Let
t = x/θ′, r = 0; then according to (4.6)we have

φα,θ′(t) = B
n;α,θ′,0

(
θ′t
)
et = et

n∑

k=0

S
(
n, k;α,θ′, 0

)
θ′ktk. (4.12)

Example 4.3. Letting α = θ = (0, θ, . . .)we immediately obtain the Dobinski-type formula due
to Hsu and Shiue [1] as follows:

B
n;θ,θ′,r(x) = e−x/θ

′
∞∑

i=0

θn((r + iθ′)/θ)(n)

i!

(
x

θ′

)i

. (4.13)

Example 4.4. Letting α = d̂, θ′ = 1, n = s1 + s2 + · · · + sm we have the following Dobinski-type
formula due to Blasiak [18]:

Bn;d̂,1,0(x) = e−x
∞∑

i=s1

m∏

j=1

(
dj−1 + i

)(sj )x
i

i!
. (4.14)
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generalized Stirling numbers,” Journal of Mathematical Sciences, vol. 127, no. 4, pp. 2073–2081, 2005.

[37] M. Koutras, “Noncentral Stirling numbers and some applications,” Discrete Mathematics, vol. 42, no.
1, pp. 73–89, 1982.

[38] W. C. Chu and C. Wei, “Set partitions with restrictions,” Discrete Mathematics, vol. 308, no. 15, pp.
3163–3168, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


