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Themain purpose of this paper is to investigate the existence of solutions of BVPs for a very general
case in which both the system of ordinary differential equations and the boundary conditions are
nonlinear. By employing the implicit function theorem, sufficient conditions for the existence of
three-point boundary value problems are established.

1. Introduction

We consider existence of solutions at resonance to first-order three-point BVPs with nonlinear
boundary conditions using results developed in [1, 2].

Consider

x′ −A(t)x = H(t, x, ε) = εF(t, x, ε) + E(t), 0 ≤ t ≤ 1, (1.1)

Mx(0) +Nx
(
η
)
+ Rx(1) = � + εg

(
x(0), x

(
η
)
, x(1)

)
, (1.2)

where M, N, and R are constant square matrices of order n, A(t) is an n × n matrix with
continuous entries, E : [0, 1] → R is continuous, F : [0, 1]×R

n×(−ε0, ε0) → R
n is a continuous

function where ε0 > 0, � ∈ R
n, η ∈ (0, 1), and g : R

3n → R
n is continuous.

Our existence theorem uses the implicit function theorem; see for example Nagle [3].
Nagle [3] extended the alternative method considered by Hale [4] for handling the periodic
case of non-self-adjoint problems subject to homogeneous boundary conditions. These results
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extend the work of Feng and Webb [5] and Gupta [6] of three-point BVPs with linear
boundary conditions for α = 1 and αη = 1 to nonlinear boundary conditions. Feng and Webb
[5] studied the existence of solutions of the following BVPs (1.3) and (1.4):

y′′ = f
(
t, y, y′) + e(t), 0 ≤ t ≤ 1,

y′(0) = 0, y(1) = αy
(
η
)
,

(1.3)

y′′ = f
(
t, y, y′) + e(t), 0 ≤ t ≤ 1,

y(0) = 0, y(1) = αy
(
η
)
,

(1.4)

where η ∈ (0, 1), α ∈ R, f : [0, 1] × R
2 → ×R is a continuous function, and e : [0, 1] → R is

a function in L1[0, 1]. Both of the problems are resonance cases under the assumption α = 1
for the problem (1.3), and αη = 1 for the problem (1.4). The problem for nonlinear boundary
conditions for discrete systems has been studied by Rodriguez [7, 8]. Rodriguez [7] extended
results of Halanay [9], who considered periodic boundary conditions and also extended those
of Rodriguez [10] and Agarwal [11] who considered linear boundary conditions. To our
knowledge there appears to be no research in the literature on multipoint BVPs for systems
of first-order equations with nonlinear boundary conditions at resonance. The results of this
paper fill this gap in the literature.

Our results are analogues for three-point boundary conditions of those periodic
boundary conditions for perturbed systems of first-order equations at resonance considered
by Coddington and Levinson [12] and Cronin [13, 14]. Moreover, our results extend the work
of Urabe [15], Liu [16], and of Nagle [3], where he solved the two-point BVP using the Cesari-
Hale alternative method.

2. Preliminaries

Now we state the following basic existence theorems for systems with a parameter and use
them to formulate the existence results for problem (1.1) and (1.2).

Theorem 2.1 (see Coppel [17, Page 19]).

(i) Let F(t, x, ε) be a continuous function of (t, x, ε) for all points (t, x) in an open set D and
all values ε near ε.

(ii) Let x(t, c, ε) be any noncontinuable solution of the differential equation

x′ = F(t, x, ε), with x(0) = c. (2.1)

If x(t, c, ε) is defined on the interval [0, 1] and is unique, then x(t, c, ε) is defined on [0, 1]
for all (c, ε) sufficiently near (c, ε) and is a continuous function of its threefold arguments
at any point (t, c, ε).

Theorem 2.2 (see Coppel [17, Page 22]).

(i) Let F(t, x, ε) be a continuous function of (t, x, ε) for all points (t, x) in a domainD and all
values of the vector parameter ε near ε.



Journal of Applied Mathematics 3

(ii) Let x(t, c, ε) be a solution of the differential equation

x′ = F(t, x, ε), with x(0) = c (2.2)

defined on a compact interval [0, 1].

(iii) Suppose that F has continuous partial derivatives Fx, Fε at all points (t, x(t, c, ε), ε) with
t ∈ [0, 1].

Then for all (c, ε) sufficiently near (c, ε) the differential equation

x′ = F(t, x, ε), with x(0) = c (2.3)

has a unique solution x(t, c, ε) over [0, 1] that is close to the solution x(t, c, ε) of (ii). The continuous
differentiability of F with respect to x and ε implies the additional property that the solution x(t, c, ε)
is differentiable with respect to (t, c, ε) for (c, ε) near (c, ε).

We recall the following results of [2].

Lemma 2.3 (see [2]). Consider the system

x′ = A(t)x, (2.4)

whereA(t) is an n×nmatrix with continuous entries on the interval [0, 1]. Let Y (t) be a fundamental
matrix of (2.4). Then the solution of (2.4) which satisfies the initial condition

x(0) = c (2.5)

is x(t) = Y (t)Y−1(0)c where c is a constant n-vector. Abbreviate Y (t)Y−1(0) to Y0(t). Thus x(t) =
Y0(t)c.

Lemma 2.4 (see [2]). Let Y (t) be a fundamental matrix of (2.4). Then any solution of (1.1) and
(2.5) can be written as

x(t, c, ε) = x(t) = Y0(t)c +
∫ t

0
Y (t)Y−1(s)H(s, x(s), ε)ds. (2.6)

The solution (1.1) satisfies the boundary conditions (1.2) if and only if

Lc = εN(c, α, η, ε) + d, (2.7)

where L = M + NY0(η) + RY0(1), N(c, α, η, ε) = −(∫η0 NY (η)Y−1(s)F(s, x(s, c, ε), ε)ds
+
∫1
0 RY (1)Y

−1(s)F(s, x(s, c, ε), ε)ds − g(c, x(η), x(1))), d = −(∫η0 NY (η)Y−1(s)E(s)ds +
∫1
0 RY (1)Y

−1(s)E(s)ds − �), and x(t, c, ε) is the solution of (1.1) given x(0) = c.
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Thus (2.7) is a system of n real equations in ε, c1, . . . , cn where c1, . . . , cn are the
components of c. The system (2.7) is sometimes called the branching equations.

Next we suppose that L is a singular matrix. This is sometimes called the resonance
case or degenerate case. Nowwe consider the case rankL = n− r, 0 < n− r < n. Let Er denote
the null space of L, and let En−r denote the complement in R

n of Er ; that is,

R
n = En−r ⊕ Er (direct sum). (2.8)

Let x1, . . . , xn be a basis for R
n such that x1, . . . , xr is a basis for Er and xr+1, . . . , xn a basis for

En−r .
Let Pr be the matrix projection onto Ker L = Er , and Pn−r = I − Pr , where I is the

identity matrix. Thus Pn−r is a projection onto the complementary space En−r of Er , and

P 2
r = Pr, P 2

n−r = Pn−r , Pn−rPr = PrPn−r = 0. (2.9)

Without loss of generality, we may assume

Prc = (c1, . . . , cr , 0, . . . , 0), Pn−rc = (0, . . . , 0, cr+1, . . . , cn). (2.10)

We will identify Prc with cr = (c1, . . . , cr) and Pn−rc with cn−r = (cr+1, . . . , cn) whenever it is
convenient to do so.

Let H be a nonsingular n × n matrix satisfying

HL = Pn−r . (2.11)

Matrix H can be computed easily. The nature of the solutions of the branching equations
depends heavily on the rank of the matrix L.

Lemma 2.5 (see [2]). The matrix L has rank n − r if and only if the three-point BVP (2.4) and
Mx(0) +Nx(η) + Rx(1) = 0 has exactly r linearly independent solutions.

Next we give a necessary and sufficient condition for the existence of solutions of
x(t, c, ε) of three-point BVPs for ε > 0 such that the solution satisfies x(0) = c where c = c(ε)
for suitable c(ε).

We need to solve (2.7) for c when ε is sufficiently small. The problem of finding
solutions to (1.1) and (1.2) is reduced to that of solving the branching equations (2.7) for
c as function of ε for |ε| < ε0. So consider (2.7)which is equivalent to

L(Pr + Pn−r)c = εN((Pr + Pn−r)c, α, η, ε
)
+ d. (2.12)

Multiplying (2.7) by the matrix H and using (2.11), we have

Pn−rc = εHN((Pr + Pn−r)c, α, η, ε
)
+Hd, (2.13)
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whereHN((Pr+Pn−r)c, α, η, ε) = −H(
∫η
0 NY (η)Y−1(s)F(s, x(s, c, ε), ε)ds +

∫1
0 RY (1)Y

−1(s)F(s,
x(s, c, ε), ε)ds−g(c, x(η), x(1))) andHd=−H(

∫η
0 NY (η)Y−1(s)E(s)ds+

∫1
0RY (1)Y

−1(s)E(s)ds−
�).

Since the matrixH is nonsingular, solving (2.7) for c is equivalent to solving (2.13) for
c. The following theorem due to Cronin [13, 14] gives a necessary condition for the existence
of solutions to the BVP (1.1) and (1.2).

Theorem 2.6 (see [2]). A necessary condition that (2.13) can be solved for c, with |ε| < ε0, for some
ε0 > 0 is PrHd = 0.

If L is a nonsingular matrix then the implicit function theorem is applicable to solve
(2.7) uniquely for c as a function of ε in a neighborhood of the initial solution c (see Cronin
[14]). The implicit function theorem may be stated as in Voxman and Goetschel [18, page
222].

Theorem 2.7 (the implicit function theorem). Let Ω ⊂ R
n × R

m be an open set, and let F : Ω →
R

m be function of class C1. Suppose (x0, y0) = 0. Assume that

det

⎛

⎜⎜⎜⎜
⎝

∂F1

∂y1
· · · ∂F1

∂ym

· · ·
∂Fm

∂y1
· · · ∂Fm

∂ym

⎞

⎟⎟⎟⎟
⎠

/= 0 evaluated at
(
x0, y0

)
, (2.14)

where F = (F1, . . . , Fm). Then there are open setsU ⊂ R
n and V ⊂ R

m, with x0 ∈ U and y0 ∈ U, and
a unique function f : U → V such that

F
(
x, f(x)

)
= 0 (2.15)

for all x ∈ U with y0 = f(x0). Furthermore, f is of class C1.

3. Main Results

In this section sufficient conditions are introduced for the existence of solutions to the BVP
(1.1), (1.2). We recall the following Definition 1 of [2] to develop our main results.

Definition 3.1 (see [2]). Let Er denote the null space ofL, and let En−r denote the complement
in R

n of Er . Let Pr be the matrix projection onto KerL = Er , and Pn−r = I − Pr , where I is
the identity matrix. Thus Pn−r is a projection onto the complementary space En−r of Er . If En−r
is properly contained in R

n, then Er is an r-dimensional vector space where 0 < r < n. If
c = (c1, . . . , cn), let Prc = cr and Pn−r = cn−r , then define a continuous mapping Φε : R

r → R
r ,

given by

Φε(c1, . . . , cr) = PrHN(cr ⊕ cn−r(cr, ε), α, η, ε
)
, (3.1)

where cn−r(cr, ε) = cn−r is a differentiable function of cr and ε. By abuse of notation we will
identify Prc and cr when convenient and where the meaning is clear from the context so that
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in defining Φε above from the context we interpreted PrHN as (HN1, . . . ,HNr). Similarly
we will sometimes identify Pn−rc and cn−r . Setting ε = 0, we have

Φ0(c1, . . . , cr) = PrHN(cr ⊕ Pn−rHd, α, η, 0
)
, (3.2)

where cn−r(cr, 0) = Pn−rHd; note that from the context cn−r(cr, 0) = Pn−rHd is interpreted as
cn−r(cr, 0) = (Hdr+1, . . . ,Hdn).

If Er = R
n and Pr = I, then Pn−r = 0. Since Pn−r = 0, it follows that the matrix H is

the identity matrix. Thus define a continuous mapping Φε : R
n → R

n, given by Φε(c) =
N(c, α, η, ε). Setting ε = 0, we have Φ0(c) = N(c, α, η, 0).

The following theorem is the main theorem of this paper and gives sufficient
conditions for the existence of solutions of (1.1), (1.2) for |ε| < ε0, for some ε0 > 0. The
existence theorem can be established using the implicit function theorem; see Theorem 2.7.

Theorem 3.2. If c = (c1, . . . , cn) ∈ R
n, let cr = (c1, . . . , cr). Let the conditions (i), (ii), and (iii) of

Theorem 2.2 hold, and let k1 > 0, k > 0 and ε0 > 0 be small enough so that (1.1) has a unique n-vector
x(t, c, ε) defined on [0, 1] × Bk1 × [−ε0, ε0]. Let Φε : Bk ⊆ R

r → R
r , given by

Φε(c1, . . . , cr) = PrHN(cr ⊕ cn−r(cr, ε), α, η, ε
)
, (3.3)

where cn−r(cr, ε) = cn−r is a differentiable function of cr and ε, and

Φ0(c1, . . . , cr) = PrHN(cr ⊕ Pn−rHd, α, η, 0
)

(3.4)

for (cr ⊕ Pn−rHd) ∈ Bk × {Pn−rHd} ⊆ Bk1 . If Φ0(c1, . . . , cr) = 0 and

det
∂Φi

0(c1, . . . , cr)
∂cj

|(c1,...,cr)=(c1,...,cr) /= 0, (3.5)

for some (c1, . . . , cr) ∈ Bk, then there is ε, 0 < ε ≤ ε0, and δ > 0 such that (1.1), (1.2) has a unique
solution x(t, c(ε), ε) for all |ε| < ε such that c(0) = c = (cr ⊕ Pn−rHd) and |c(ε) − c| < δ.

Proof. The existence and uniqueness of a solution x(t, c, ε) for |ε| < ε0 with x(0, c, ε) = c ∈ R
n

follows directly from conditions (i), (ii), and (iii) of Theorem 2.2. Now

Φ0(c1, . . . , cr) = PrHN(cr ⊕ Pn−rHd, α, η, 0
)
= 0,

det
∂Φi

0(c1, . . . , cr)
∂cj

|(c1,...,cr)=(c1,...,cr) /= 0,
(3.6)

for some (c1, . . . , cr) ∈ Bk, thus it follows from the implicit function theorem that there is
ε, 0 < ε ≤ ε0 such that (3.3) has a unique solution (c1, . . . , cr) = (c1(ε), . . . , cr(ε)), with
|(c1(ε), . . . , cr(ε)) − (c1, . . . , cr)| < δ, for all ε, |ε| < ε. From this it follows that x(t, c(ε), ε) is
a unique solution of the BVP (1.1), (1.2) which satisfies the initial value x(0, c(ε), ε) = c(ε)
and c(0) = c = (cr ⊕ Pn−rHd) and |c(ε) − c| < δ, where c(ε) = (cr(ε) ⊕ cn−r(cr(ε), ε)).
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We now consider the BVP (1.1), (1.2) in the case r = n; that is, L is the zero matrix,
which is sometimes called the totally degenerate case.

Theorem 3.3 (compare with Theorem 3.8, page 69 of Cronin [14]). If r = n, a necessary
condition in order that (2.7) has a solution for each ε with |ε| < ε0 for some ε0 > 0 is d = 0; that
is,

∫η

0
NY
(
η
)
Y−1(s)E(s)ds +

∫1

0
RY (1)Y−1(s)E(s)ds = �. (3.7)

Theorem 3.4. Let the conditions (i), (ii), and (iii) of Theorem 2.2 hold, and let k1 > 0, k > 0 and
ε0 > 0 be small enough so that (1.1) has a unique solution x(t, c, ε) defined on [0, 1]×Bk1 × [−ε0, ε0].
If r = n, d = 0, and

Φε(c) = −
∫η

0
NY
(
η
)
Y−1(s)F(s, x(s, c, ε), ε)ds

−
∫1

0
RY (1)Y−1(s)F(s, x(s, c, ε), ε)ds + g

(
c, x
(
η
)
, x(1)

)
,

(3.8)

then there is ε, 0 < ε ≤ ε0, and δ > 0 such that (1.1), (1.2) has a unique solution x(t, c(ε), ε) for all
|ε| < ε such that c(0) = c and |c(ε) − c| < δ.

Proof. If r = n and d = 0, then Pn−r = 0. This implies Pr = I. Since Pn−r = 0, it follows that
H = I, the identity matrix.

The existence and uniqueness of a solution x(t, c(ε), ε) for |ε| < ε < ε0 with x(0, c, ε) =
c ∈ R

n follows directly from conditions (i), (ii) and (iii) of Theorem 2.2. Now

Φ0(c) = −
∫η

0
NY
(
η
)
Y−1(s)F(s, x(s, c, 0), 0)ds

−
∫1

0
RY (1)Y−1(s)F(s, x(s, c, 0), 0)ds + g

(
c, x
(
η
)
, x(1)

)
.

(3.9)

If Φ0(c) = 0,

det
∂Φi

0(c)
∂cj

|c=c /= 0, (3.10)

for some c = (c1, . . . , cn) ∈ Bk; thus it follows from the implicit function theorem that there is
ε, 0 < ε ≤ ε0 such that (3.8) has a unique solution c = c(ε), with |c − c| < δ, for all ε, |ε| < ε.
From this it follows that x(t, c(ε), ε) is a unique solution of the BVP (1.1), (1.2)which satisfies
the initial values x(0, c(ε), ε) = c(ε) ∈ R

n for all ε, |ε| < ε such that c(0) = c and |c(ε) − c| < δ.
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4. Some Examples

To find c for ε small using Theorem 2.6, we need to compute Φ0(c) from (3.3). We apply
Theorem 3.2 to show the existence of solutions.

Example 4.1. α = 1, rank Lα=1 = 1 < 2, �i ≡ 0 for i = 1, 2.
Consider the BVP

y′′ = εf
(
t, y, y′, ε

)
+ e(t),

y′(0) = εg1

(
y(0), y′(0), y

(
1
2

)
, y′
(
1
2

)
, y(1), y′(1)

)
,

y(1) − y

(
1
2

)
= εg2

(
y(0), y′(0), y

(
1
2

)
, y′
(
1
2

)
, y(1), y′(1)

)
,

(4.1)

where f ∈ C([0, 1] × R
2 × (−ε0, ε0);R), e ∈ C[0, 1], g ∈ C(R6;R2). Then the BVP (4.1) is

equivalent to

⎛

⎝
x′
1

x′
2

⎞

⎠ =
(
0 1
0 0

)(
x1

x2

)
+ ε

(
0

f(t, x1, x2, ε)

)
+
(

0
e(t)

)
, (4.2)

(
0 1
0 0

)(
x1(0)
x2(0)

)
+
(

0 0
−α 0

)

⎛

⎜⎜⎜
⎝

x1

(
1
2

)

x2

(
1
2

)

⎞

⎟⎟⎟
⎠

+
(
0 0
1 0

)(
x1(1)
x2(1)

)

=

⎛

⎜⎜⎜
⎝

εg1

(
c1, c2, x1

(
1
2

)
, x2

(
1
2

)
, x1(1), x2(1)

)

εg2

(
c1, c2, x1

(
1
2

)
, x2

(
1
2

)
, x1(1), x2(1)

)

⎞

⎟⎟⎟
⎠

,

(4.3)

where

M =
(
0 1
0 0

)
, N =

(
0 0
−α 0

)
, R =

(
0 0
1 0

)
,

E(t) =
(

0
e(t)

)
, F(t, x, ε) =

(
0

f(t, x1, x2, ε)

)
,

g
(
c1, c2, x1

(
η
)
, x2
(
η
)
, x1(1), x2(1)

)
=

(
g1
(
c1, c2, x1

(
η
)
, x2
(
η
)
, x1(1), x2(1)

)

g2
(
c1, c2, x1

(
η
)
, x2
(
η
)
, x1(1), x2(1)

)

)

,

Y (t) = eAt =
(
1 t
0 1

)
, Y0(t) = Y (t)Y−1(0) =

(
1 t
0 1

)
.

(4.4)
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By Lemma 2.4, we find L:

L = M +NY0
(
η
)
+ RY0(1)

=
(
0 1
0 0

)
+
(

0 0
−α 0

)(
1 η
0 1

)
+
(
0 0
1 0

)(
1 1
0 1

)

=
(

0 1
1 − α 1 − αη

)
.

(4.5)

The resonance happens if det(L) = −1 + α = 0; that is the case where α = 1. For α = 1, rank
Lα=1 = 1; that is,

Lα=1 =
(
0 1
0 1 − η

)
. (4.6)

Let E1 denote the null space of Lα=1. Thus e1 =
(
1
0

)
is a basis for Ker(Lα=1), and

Ker(Lα=1) = Span e1. Let P1 be the matrix projection onto Ker(Lα=1). P1 =
(
1 0
0 0

)
. P2 =

I − P1 =
( 0 0
0 1

)
. Set H = (1/(1 − η))

(
1−η −1
0 1

)
so that HLα=1 = P2. In system (4.2), (4.3) let

f(t, x1, x2, ε) = x1x
2
2, e(t) = cos 4πtg1(c1, c2, x1(1/2), x2(1/2), x1(1), x2(1)) = −x2

1(1), and let
g2(c1, c2, x1(1/2), x2(1/2), x1(1), x2(1)) = 2x1(1/2)/256π4. We need to show that P1Hd = 0
which is a necessary condition in order to apply Theorem 2.6:

P1Hd = 2
(
1 0
0 0

)
⎛

⎝
1
2

−1
0 1

⎞

⎠

⎛

⎜
⎝

0
∫1/2

0

(
1
2
− s

)
cos 4πsds −

∫1

0
(1 − s) cos 4πsds

⎞

⎟
⎠

= 2

⎛

⎜
⎝

−
∫1/2

0

(
1
2
− s

)
cos 4πsds +

∫1

0
(1 − s) cos 4πsds

0

⎞

⎟
⎠.

(4.7)

Since
∫1/2
0 (1/2 − s) cos 4πsds =

∫1
0 (1 − s) cos 4πsds = 0, it follows that P1Hd = 0. From the

boundary condition (4.3), we have x2(0) = c2 = 0. Then, by the variation of constants formula,
we obtain

x(t, c, 0) =
(
1 t
0 1

)(
c1
0

)
+
∫ t

0

(
1 t − s
0 1

)(
0

cos 4πs

)
ds. (4.8)

Thus the BVP (4.2), (4.3) has a solution if α = 1, ε = 0; namely, x1(t, c, 0) = c1 + ((1 −
cos 4πt)/16π2), x2(t, c, 0) = sin 4πt/4π , x1(0) = x1(1/2) = x1(1) = c1, x2(0) = x2(1/2) =
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x2(1) = 0. Setting ε = 0, thus f(t, c1 + (1 − cos 4πt)/16π2, sin 4πt/4π, 0) = sin24πt/16π2(c1 +
(1−cos 4πt)/16π2), g1(c1, x1(1/2), x1(1)) = −c21 and g2(c1, x1(1/2), x1(1)) = 2c1/256π4. Hence

Φ0(c1) =
∫1/2

0
f

(
s, c1 +

1 − cos 4πs
16π2

,
sin 4πs
4π

, 0
)
ds

+
∫1

1/2

{
2(1 − s)f

(
s, c1 +

1 − cos 4πs
16π2

,
sin 4πs
4π

, 0
)}

ds

+ g1

(
c1, x1

(
1
2

)
, x1(1)

)
− 2g2

(
c1, x1

(
1
2

)
, x1(1)

)

= −c21 +
c1

128π2
+

3
2048π4

.

(4.9)

If c1 ≈ −3.5023 × 10−3 or c1 ≈ 4.2938 × 10−3, then Φ0(c1) = 0 and

∂Φ0(c1)
∂c1

|(c1≈−3.5023 × 10−3) /= 0,
∂Φ0(c1)
∂c1

|(c1≈4.2938 × 10−3) /= 0. (4.10)

Hence by Theorem 3.2 there is ε, 0 < ε ≤ ε0 and δ > 0 such that the BVP (4.2), (4.3) has
a unique solution x(t, c(ε), ε) which satisfies the initial values x(0, c(ε), ε) = c(ε) ∈ R

2 for all
|ε| < ε such that c(0) = (c1, 0) and |c(ε) − c(0)| < δ.

Example 4.2. Rank L = 2 < 3.
Consider the BVP

⎛

⎝
x′
1

x′
2

x′
3

⎞

⎠ =

⎛

⎝
0 1 0
−1 0 0
0 0 0

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ + ε

⎛

⎜
⎝

f1(t, x1, x2, x3, ε)

f2(t, x1, x2, x3, ε)

f3(t, x1, x2, x3, ε)

⎞

⎟
⎠, (4.11)

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠

⎛

⎝
x1(0)
x2(0)
x3(0)

⎞

⎠ +

⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠

⎛

⎝
x1(π)
x2(π)
x3(π)

⎞

⎠ +

⎛

⎝
0 0 0
1 −1 0
0 0 0

⎞

⎠

⎛

⎜
⎝

x1(2π)

x2(2π)

x3(2π)

⎞

⎟
⎠

=

⎛

⎜⎜
⎝

�1 + εg1(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

�2 + εg2(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

�3 + εg3(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

⎞

⎟⎟
⎠,

(4.12)
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where fi ∈ C([0, 1] × R
3 × (−ε0, ε0);R), i = 1, 2, 3, � = (�1, �2, �3) ∈ R

3, g ∈ C(R9;R3),

e(t) ≡ 0, A =

⎛

⎝
0 1 0
−1 0 0
0 0 0

⎞

⎠, M =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠, N =

⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠,

R =

⎛

⎝
0 0 0
1 −1 0
0 0 0

⎞

⎠, Y (t) =

⎛

⎝
cos t sin t 0
− sin t cos t 0

0 0 1

⎞

⎠, Y−1(t) =

⎛

⎝
cos t − sin t 0
sin t cos t 0
0 0 1

⎞

⎠,

Y0(π) =

⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠, Y0(2π) =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠,

F(t, x1, x2, x3, ε) =

⎛

⎜
⎝

f1(t, x1, x2, x3, ε)

f2(t, x1, x2, x3, ε)

f3(t, x1, x2, x3, ε)

⎞

⎟
⎠,

g(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

=

⎛

⎜⎜
⎝

g1(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

g2(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

g3(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

⎞

⎟⎟
⎠.

(4.13)

By Lemma 2.4, the problem of solving (4.11), (4.12) is reduced to that of solving Lc =
εN(c, α, η, ε) + d for c provided solutions x(t, c, ε) of initial value problems exist on [0, 1]
for each (c, ε). Thus we find L:

L = M +NY0(π) + RY0(2π)

=

⎛

⎝
2 0 0
1 1 0
0 0 0

⎞

⎠.
(4.14)

Since rank L = 2, it follows that the matrix L is singular. Let E3 denote the null space of L.

Thus e3 =
( 0

0
1

)
is a basis for Ker(L), and Ker(L) = Span e3. Let P3 be the matrix projection

onto Ker(L). P3 =
( 0 0 0

0 0 0
0 0 1

)
. So P2 = I − P3 =

( 1 0 0
0 1 0
0 0 0

)
. Set H =

(
1/2 0 0
−1/2 1 0
0 0 1

)
so that HL = P2.

N(c, α, η, ε) = −
∫π

0
NY (π)Y−1(s)

⎛

⎜
⎝

f1(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

f2(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

f3(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

⎞

⎟
⎠ds

−
∫2π

0
RY (2π)Y−1(s)

⎛

⎜
⎝

f1(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

f2(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

f3(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)

⎞

⎟
⎠ds
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+

⎛

⎜
⎜
⎝

g1(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

g2(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

g3(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π))

⎞

⎟
⎟
⎠

=

⎛

⎜
⎝

N1
(
c, α, η, ε

)

N2
(
c, α, η, ε

)

N3
(
c, α, η, ε

)

⎞

⎟
⎠.

(4.15)

Since d = 0, it follows that P3Hd = 0. Thus a necessary condition of Theorem 2.6 holds. We
also have P2Hd = 0. To obtain Φ0(c) we must first calculate x(t, c, 0); that is the solution of
x′ = A(t)x + e(t). By Lemma 2.3, and boundary condition (4.12), x′ = A(t)x has a solution

x(t) with x(0) = c = (c1, c2, c3)
T . We note that at ε = 0, P2Hd = P2c, where P2c =

( 1 0 0
0 1 0
0 0 0

)( c1
c2
c3

)

and P2Hd = 0. Hence c1 = 0 and c2 = 0. Thus

x(t, c, 0) =

⎛

⎝
cos t sin t 0
− sin t cos t 0

0 0 1

⎞

⎠

⎛

⎝
0
0
c3

⎞

⎠. (4.16)

Thus the BVP (4.11), (4.12) has a solution if ε = 0; namely, x1(t, c, 0) = x2(t, c, 0) = 0 and
x3(t, c, 0) = c3, and thus �i = 0, i = 1, 2, x3(π) = c3 = −�3, and x3(2π) = c3:

P3HN(c, α, η, ε) =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠

⎛

⎜⎜⎜⎜⎜
⎝

1
2

0 0

−1
2

1 0

0 0 1

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎝

N1
(
c, α, η, ε

)

N2
(
c, α, η, ε

)

N3
(
c, α, η, ε

)

⎞

⎟
⎠

=

⎛

⎝
0
0

N3
(
c, α, η, ε

)

⎞

⎠,

(4.17)

where

N3
(
c, α, η, ε

)
=
∫π

0
f3(s, x1(s, c, ε), x2(s, c, ε), x3(s, c, ε), ε)ds

+ g3(c1, c2, c3, x1(π), x2(π), x3(π), x1(2π), x2(2π), x3(2π)).
(4.18)

Thus Φε(c3) = N3(c3 ⊕ c2(c3, ε), α, η, ε), where c3 = P3c = (0, 0, c3) and c2 = P2c = (c1, c2, 0).
Setting ε = 0, we have Φ0(c3) = N3(c3, α, η, 0), where c2(c3, 0) = P2Hd = 0. Writing out the
components and setting ε = 0, we obtain x1(t, c, 0) = x2(t, c, 0) = 0 and x3(t, c, 0) = c3. Hence

Φ0(c3) =
∫π

0
f3(s, x1(s, 0, 0, c3, 0), x2(s, 0, 0, c3, 0), x3(s, 0, 0, c3, 0), 0)ds

+ g3(c3, x3(π), x3(2π)),
(4.19)
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where xi(π) = xi(2π) = 0, i = 1, 2, x3(π) = c3 = −�3, and x3(2π) = c3. Let
f3(t, x1(t, 0, 0, c3, 0), x2(t, 0, 0, c3, 0), x3(t, 0, 0, c3, 0), 0) = −c23 sin t, and g3(c3, x3(π), x3(2π)) =
c43. Hence

Φ0(c3) = −
∫π

0

{
c23 sin s

}
ds + c43

= c23 cos t|π0 + c43.

(4.20)

If c3 = ±√2, then Φ0(c3) = 0 and

∂Φ0(c3)
∂c3

|(c3=±√2) /= 0. (4.21)

Hence by Theorem 3.2 there is ε, 0 < ε ≤ ε0 and δ > 0 such that the BVP (4.11), (4.12) has a
unique solution x(t, c(ε), ε) which satisfies the initial values x(0, c(ε), ε) = c(ε) ∈ R

3 for all
|ε| < ε such that c(0) = (0, 0, c3) and |c(ε) − c(0)| < δ.
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