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The finite difference method discretization of Helmholtz equations usually leads to the large spare
linear systems. Since the coefficient matrix is frequently indefinite, it is difficult to solve iteratively.
In this paper, a modified symmetric successive overrelaxation (MSSOR) preconditioning strategy
is constructed based on the coefficient matrix and employed to speed up the convergence rate of
iterativemethods. The idea is to increase the values of diagonal elements of the coefficient matrix to
obtain better preconditioners for the original linear systems. Compared with SSOR preconditioner,
MSSOR preconditioner has no additional computational cost to improve the convergence rate
of iterative methods. Numerical results demonstrate that this method can reduce both the
number of iterations and the computational time significantly with low cost for construction and
implementation of preconditioners.

1. Introduction

The finite difference method is one of the most effective and popular techniques in com-
putational electromagnetics and seismology, such as time-harmonic wave propagations, scat-
tering phenomena arising in acoustic and optical problems, and electromagnetics scattering
from a large cavity. More information about applications of this method in electromagnetics
can be found in [1–5].

In this paper, we focus on the following form of the complex Helmholtz equation:

−Δu − pu + iqu = f in Ω,

u = g on ∂Ω.
(1.1)
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Here Ω is a bounded region in R
2. p and q are real continuous coefficient functions on Ω,

while f and g are given continuous functions on Ω and ∂Ω, respectively.
To conveniently find numerical solutions of (1.1), the Laplace operator is approxi-

mated by using the second-order accurate 5-point difference stencil:
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Making use of the above stencil, the following linear system is obtained:

Ax =
(
A − h2D + ih2E

)
x = b, (1.3)

where D(E) is a diagonal matrix whose diagonal elements are just the values of p(q) at the
mesh points and A is the symmetric positive definite M-matrix arising from the discrete
Laplace operator and is of the block tridiagonal form
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, pk, qk ≥ 0,

pk + qk = nk−1 − nk if nk ≤ nk−1,

(Onk−1×sk − Ink−1 Onk−1×tk)
T , sk, tk ≥ 0,

sk + tk = nk − nk−1 if nk > nk−1,

k = 2, 3, . . . , m.

(1.5)

Obviously, from the linear systems (1.3), it is not difficult to find that the matrix
A is a complex symmetric coefficient matrix. Matrix A becomes highly indefinite and ill-
conditioned as p is a sufficiently large positive number. So, large amount of computation
times and memory are needed in order to solve the linear systems (1.3) efficiently.
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As is well known, direct methods and iterative methods can be employed to solve
the linear systems (1.3). The former is widely employed when the order of the coefficient
matrix A is not too large and is usually regarded as robust methods. The memory and
the computational requirements for solving the large sparse linear systems may seriously
challenge the most efficient direct solution method available today. Currently, the latter
employed to solve the large sparse linear systems is popular. The reason is that iterative
methods are easier to implement efficiently on high performance computers than direct
methods. In practice, a natural choice is that we make use of iterative methods instead of
direct methods to solve the large sparse linear systems.

At present, Krylov subspace methods are considered as one kind of the important
and efficient iterative techniques for solving the large sparse linear systems because these
methods are cheap to be implemented and are able to fully exploit the sparsity of the
coefficient matrix. It is well known that the convergence speed of Krylov subspace methods
depends on the distribution of the eigenvalues of the coefficient matrix [6]. When the
coefficient matrix is typically extremely ill-conditioned and highly indefinite, the convergence
of Krylov subspace methods can be unacceptably slow. In this case, Krylov subspace methods
are not competitive without a good preconditioner. That is, preconditioning technique is
a key ingredient for the success of Krylov subspace methods in applications. The idea of
preconditioning technique is based on consideration of the linear system with the same
solution as the original equation. The problem is that each preconditioning technique is suited
for a different type of problem. Until current days, no robust preconditioning technique
appears for all or at least much types of problems. Finding a good preconditioner to solve
a given large sparse linear systems is often viewed as a combination of art and science.

In recent years, a great deal of effort has been invested in solving indefinite linear
systems from the discrete Helmholtz equations. Most of the work has been aimed at de-
veloping effective preconditioning techniques. In general, there exist two classes of pre-
conditioners for Helmholtz equations: the “operator-based” preconditioning technique and
the “matrix-based” preconditioning technique.

The former is built based on an operator, such as the Laplace preconditioner [2,
3, 7–9], Analytic ILU [10], the Separation-of-variables [11]. The purpose of this class of
preconditioners is that the spectrum of the corresponding preconditioned matrix is favorably
clustered. Its advantage is that this operator does not have to be a representation of the inverse
of the Helmholtz operator.

The latter is established based on an approximation of the inverse of the coefficient
matrix. For this class, one of the natural and simplest ways of structuring a preconditioner
is to employ a diagonal or block diagonal of the coefficient matrix as a preconditioner
[12]. The above two diagonal preconditioners have no remarkable reduce with respect to
the iterative number and CPU time. Another one of the simplest preconditioners is to
perform an incomplete factorization (ILU) of the coefficient matrix [1]. The main idea of ILU
factorizations depends on the implementation of Gaussian elimination which is used, see the
survey [13] and the related references therein.

When the coefficient matrix of the linear systems (1.1) is complex symmetric and
indefinite, it is difficult to solve iteratively. Using the symmetric successive overrelaxation
(SSOR) as a preconditioner preserves the symmetry of the iterative matrix and also taking
little initialization cost, which in some cases makes it preferable over other factorization
methods such as ILU. So far, some variant SSOR preconditioning techniques have been
proposed to improve the convergence rate of the corresponding iterative method for solving
the linear systems. Mazzia and Alan [14] introduced a shift parameter to develop a shifted
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SSOR preconditioner for solving the linear systems from an electromagnetics application. Bai
in [15] used a (block) diagonal matrix instead of the diagonal matrix of the coefficient matrix
to establish a modified (block) SSOR preconditioner for the second-order selfadjoint elliptic
boundary value problems. Chen et al. [16] used a diagonal matrix with a relaxation parameter
instead of the diagonal matrix of the coefficient matrix to establish a modified block SSOR
preconditioner for the Biot’s consolidation equations. Ran and Yuan in [17] also discussed a
class ofmodified (block) SSOR preconditioners for linear systems from steady incompressible
viscous flow problems. We refer the reader to [18, 19] for a general discussion.

Although the SSOR preconditioner with Krylov subspace methods can improve
convergence improvement, the disadvantage of the SSOR preconditioner is that the con-
vergence rate may still remain unsatisfactorily slow in some cases, especially in indefinite
linear systems. In this paper, a modified symmetric successive overrelaxation (MSSOR) pre-
conditioning strategy is presented, which can significantly improve the convergence speed
and CPU time. Ourmotivation for this method arises from the solution of complex symmetric
and indefinite linear systems from the discrete Helmholtz equations. The idea is to increase
the values of diagonal elements of the coefficient matrix to obtain better preconditioners for
the original linear systems, which is different from [14–17]. Thismodification does not require
any significant computational cost as compared with the original SSOR preconditioner and
also requires no additional storage cost.

The remainder of this paper is organized as follows. In Section 2, the MSSOR pre-
conditioner for solving the resulting linear system is presented. In Section 3, numerical
experiments are given to illustrate the efficiency of the presented preconditioner. Finally, in
Section 4 some conclusions are drawn.

2. Modified SSOR Preconditioner

To improve the convergence rate of iterative methods, an appropriate preconditioner should
be incorporated. That is, it is often preferable to solve the preconditioned linear system as
follows:

P−1Ax = P−1b, (2.1)

where P , called the preconditioner, is a nonsingular matrix. The choice of the preconditioner
P plays an important role in actual implements. In general, the preconditioner P is chosen
such that the condition number of the preconditioned matrix P−1A is less than that of the
original matrix A. Based on the excellent survey of [13] by Benzi, a good preconditioner
should meet the following requirements:

(1) the preconditioned system should be easy to solve;

(2) the preconditioner should be cheap to construct and apply.

Certainly, the best choice for P−1 is the inverse ofA. However, it is unpractical in actual
implements because the cost of the computation of A−1 may be high. If A is a symmetric
positive definite matrix, the approximation of A−1 can be replaced by SSOR or multigrid.
However, in fact, the Helmholtz equation often results in an indefinite linear system, for
which SSOR or multi-grid may be not guaranteed to converge.

To introduce the modified SSOR preconditioner, a brief review of the classical and
well-known SSOR preconditioner is needed. The SSOR preconditioner is established by
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the SSOR iterative method, which is a symmetric version of the well-known SOR iterative
method. Based on matrix splitting, the coefficient matrix A is split as follows:

A = D +L +LT , (2.2)

where D and L are the diagonal parts and strictly lower triangular of A. According to the
foregoing matrix splitting (2.2), the standard SSOR preconditioner [6, 20] is defined by

PSSOR = (D +L)D−1
(
D +LT

)
. (2.3)

It is difficult to show theoretically the behavior of a preconditioner when the coefficientmatrix
A is a large, sparse, and symmetric indefinite. The SSOR iterative method is not convergent,
but PSSOR may be still used as a preconditioner. By a simple modification on the original
indefinite linear systems (1.3), we establish the following coefficient matrix:

A = A + h2D + h2Ei = D̃ +L +LT , (2.4)

where

D̃ = diag(A) + h2D + h2Ei. (2.5)

Obviously,A is a symmetric and positive stableH-matrix. To increase the values of diagonal
elements of the coefficient matrix to obtain better preconditioners for the original linear
systems and reduce computation times and amount of memory, based on (2.4), the MSSOR
preconditioner is defined by

PMSSOR =
(
D +L

)
D−1(D +LT

)
, (2.6)

with

D = diag
(∣∣∣D̃

∣∣∣
)
,

∣∣∣D̃
∣∣∣ =

∣∣∣d̃ii

∣∣∣ (i = 1, 2, . . . , n). (2.7)

This idea is based on an absolute diagonal scaling technique, which is cheap and easy to
implement.

Since the coefficient matrix of the linear systems (1.3) is neither positive definite nor
Hermitian with p being a sufficiently large positive number, the Conjugate Gradient (CG)
method [21] may breakdown. To solve the complex symmetric linear systems, van der Vorst
and Melissen [22] proposed the conjugate orthogonal conjugate gradient (COCG) method,
which is regarded as an extension of CG method.

To solve the linear systems (1.3) efficiently, (1.3) is transformed into the following form
with the preconditioner PMSSOR, that is,

PMSSOR

(
A − h2D + ih2E

)
x = PMSSORb. (2.8)
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Then the MSSOR preconditioned COCG (PCOCG) method can be employed to solve the
preconditioned linear systems (2.8).

In the following, we give the MSSOR preconditioned COCG method for solving the
linear systems (2.8). The MSSOR preconditioned COCG (PCOCG) algorithm is described as
follows

Algorithm PCOCG [22]: given an initial guess x0

(1) v0 = b −Ax0;

(2) p−1 = 0; β−1 = 0;

(3) w0 = P−1
MSSORv0 ; ρ0 = vT

0w0;

(4) for i = 0, 1, 2, . . .

(5) pi = wi + βi−1pi−1;

(6) ui = Api;

(7) μi = uT
j pj ; if μi = 0 then quit (failure);

(8) α = ρi/μi;

(9) xi+1 = xi + αpi; vi+1 = vi − αui

(10) if xi+1 is accurate enough, then quit (convergence);

(11) wi+1 = P−1
MSSORvi+1;

(12) ρi+1 = vT
i+1wi+1; if |ρi+1| too small, then quit (failure);

(13) βi = ρi+1/ρi;

(14) End for i.

It is not difficult to find that the main computation of algorithm PCOCG involves one
matrix-vector multiplication and two triangular linear systems. These computations are very
easy to implement. The main advantage is no extra computational cost in construction of
MSSOR preconditioner.

Note that the transpose in all dot products in this algorithm is essential [23]. Mean-
while, note that two different breakdowns of this algorithm may occur: one is that if
vT
i+1P

−1
MSSORvi+1 is too small, but vi+1 exists (line 12), algorithm PCOCG breaks down and the

other is that when the search direction pi /= 0, but pTi Api = 0 (line 7), algorithm PCOCG breaks
down. The breakdown can be fixed to some extent by restarting the process [22], such as
the restarted process in GMRES [24]. However, breakdown scarcely happens in the actual
computation of the Helmholtz equation.

3. Numerical Experiments

In this section, some numerical experiments are given to demonstrate the performance of
both preconditioner PSSOR and preconditioner PMSSOR for solving the Helmholtz equation.

Example 3.1 (see [25]). Consider the following complex Helmholtz equation:

−Δu − pu + iqu = f in Ω,

u = g on ∂Ω,
(3.1)
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Table 1: Iteration numbers for the two-dimensional Helmholtz equations for h = 1/19 meshes, using
COCG with the preconditioner PSSOR and PMSSOR for solving the complex symmetric indefinite linear
systems.

(p, q)
h Preconditioner (800, 10) (800, 20) (800, 30) (800, 40) (800, 60)

1/19
PSSOR

IT 246 242 239 214 196
CPU(s) 0.8438 0.8125 0.7813 0.7344 0.7031

PMSSOR
IT 138 133 126 117 96

CPU(s) 0.25 0.2188 0.2031 0.1875 0.1719

Table 2: Iteration numbers for the two-dimensional Helmholtz equations for h = 1/34 meshes, using
COCG with the preconditioner PSSOR and PMSSOR for solving the complex symmetric indefinite linear
systems.

(p, q)
h Preconditioner (1400, 40) (1500, 40) (1600, 40) (1700, 40) (1800, 40)

1/34
PSSOR

IT 230 274 310 336 399
CPU(s) 3.2813 3.9375 4.8438 4.7188 5.6719

PMSSOR
IT 214 228 237 249 260

CPU(s) 1.4375 1.5156 1.6563 1.6250 1.7188

Table 3: Iteration numbers for the two-dimensional Helmholtz equations for h = 1/64 and p = 4100, using
COCG with the preconditioner PSSOR and PMSSOR.

q
h Preconditioner 100 120 150 160 180

1/64
PSSOR

IT 471 456 374 349 309
CPU(s) 32.9344 30.9688 27.9844 26.0156 21.0938

PMSSOR
IT 373 366 347 326 293

CPU(s) 12.4688 12.2500 11.6094 10.9063 9.4219

Table 4: Iteration numbers for the two-dimensional Helmholtz equations for h = 1/119 and q = 2000, using
COCG with the preconditioner PSSOR and PMSSOR.

p
h Preconditioner 15000 15500 16000 16500 17000

1/119
PSSOR

IT 148 153 147 165 179
CPU(s) 55.3594 57.4531 57.8594 52.4844 67.625

PMSSOR
IT 134 137 139 144 146

CPU(s) 22.625 22.9063 23.2813 23.7344 24.625

where Ω = [0, 1] × [0, 1] and p ≥ 0 and q ≥ 0 are real constants. Discretizing (3.1) with the
approach above in introduction, we obtain the complex symmetric indefinite linear systems
Ax = (A − h2D + ih2E) x = b, and f and g are adjusted such that b = Ae (e = (1, 1, . . . , 1)T ).

All tests are started from the zero vector, preformed in MATLAB with machine
precision 10−16. The COCG iteration terminates if the relative residual error satisfies
‖r(k)‖2/‖r(0)‖2 < 10−6 or the iteration number is more than 500.

In Tables 1, 2, 3, and 4, we present some iteration results to illustrate the convergence
behaviors of the COCG method preconditioned by PSSOR and PMSSOR to solve the complex
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symmetric indefinite linear systems with the different values of p and q. In Tables 1–4, (·, ·)
denotes the values of p and q. “CPU(s)” denotes the time (in seconds) required to solve a
problem. “IT” denotes the number of iteration.

From Tables 1–4, it is not difficult to find that when the COCGmethod preconditioned
by PSSOR and PMSSOR is used to solve the complex symmetric indefinite linear systems, the
convergence rate of the preconditioner PMSSOR is more efficient than that of the preconditioner
PSSOR by the iteration numbers and CPU time. That is, the preconditioner PMSSOR outperforms
the preconditioner PSSOR under certain conditions. Compared with the preconditioner PSSOR,
the preconditioner PMSSOR may be the “preferential” choice under certain conditions.

4. Conclusions

In this paper, MSSOR preconditioned COCG algorithm has been applied for solving the
complex symmetric indefinite systems arising from Helmholtz equations. Due to the re-
duction of the iteration numbers and CPU time, the MSSOR preconditioner presented is
feasible and effective. Without extra costs, MSSOR preconditioner is more efficient than SSOR
preconditioner.
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