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According to the integrated pest management strategies, we propose a model for pest control
which adopts different control methods at different thresholds. By using differential equation
geometry theory and the method of successor functions, we prove the existence of order one
periodic solution of such system, and further, the attractiveness of the order one periodic solution
by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to
illustrate the feasibility of our main results. Our results show that our method used in this paper
is more efficient and easier than the existing ones for proving the existence of order one periodic
solution.

1. Introduction

It is of great value to study pest management method applied in agricultural production;
entomologists and the whole society have been paying close attention to how to control
pests effectively and to save manpower and material resources. In agricultural production,
pesticides-spraying (chemical control) and release of natural enemies (biological control) are
the ways commonly used for pest control. But if we implement chemical control as soon as
pests appear, many problems are caused: the first is environmental pollution; the second is
increase of costs including human andmaterial resources and time; the third is killing natural
enemies, such as parasitic wasp; the last is pests’ resistance to pesticides, which brings great
negative effects instead of working as well as had been expected [1–3]. The second way,
which controls pests with the help of the increasing natural enemies, can avoid problems
caused by chemical control and gets more and more attention. So many scholars have been
studying and discussing it [4–8]. Considering the effectiveness of the chemical control and
nonpollution and limitations of the biological one, people have proposed the method of
integrated pest management (IPM), which is a pest management system integrating all
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appropriate ways and technologies to control economic injury level (EIL) caused by pest
populations in view of population dynamics and its relevant environment. In the process of
practical application, people usually implement the following two schemes for the integrated
pest management: one is to implement control at a fixed time to eradicate pests [9, 10]; the
other is to implement measures only when the amount of pests reaches a critical level, which
is to make the amount less than certain economic impairment level, not to wipe out pests
[11–13]. Salazar conducted an experiment of broad bean being damaged by bean sprouts
worm in 1976 and found “crops’ compensation to damage of pests”, that is, yields of crops
which had been damaged a little by pests in the early growth are actually higher than those
without damage. In other words, we do not want to wipe out pests but to control them to a
certain economic injury level (EIL). So, the second is used most in the process of agricultural
industry. Tang and Cheke [14] first proposed the “Volterra” model in the from of a state-
dependent impulsive model:

x′(t) = x(t)
(
a − by(t)

)
,

y′(t) = y(t)(−d + cx(t)),
x /=ET,

Δx(t) = −αx(t),
Δy(t) = q,

x = ET,

(1.1)

and they applied this model to pest management and proved existence and stability of
periodic solution of first and second order. Then Tang and Cheke [14] also proposed bait-
dependent digestive model with state pulse:

x′(t) = x(t)
(
a − by(t)

)
,

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d

)
,

x /=hmax,

Δx(t) = −αx(t),
Δy(t) = q,

x = hmax,

(1.2)

they had the existence of positive periodic solution and stability of orbit. Recently Jiang
and Lu et al. [15–17] have proposed pest management model with state pulse and phase
structure and several predator-prey models with state pulse and had the existence of semi-
trivial periodic solution and positive periodic solution and stability of orbit.

It is worth mentioning that the vast majority of research on population dynamics
system with state pulse considers single state pulse, which is to say, only when the amount
of population reaches the same economic threshold can measures be taken (e.g., chemical
control and biological control); but this single state-pulse control does not confirm to
reality. In fact, we often need to use different control methods under different states in
real life. For example, in the process of pest management, when the amount of pests is
small, biological control is implemented; when the amount is large, combination control is
applied. Tang et al. [18] have investigated and developed a mathematical model with hybrid
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impulsive model:

x′(t) = rx(t)(1 − δx(t)) − bx(t)y(t), x < ET,

y′(t) = y(t)(cx(t) − a), t = λm,

x(t+) =
(
1 − p1

)
x(t),

y(t+) =
(
1 − p2

)
y(t),

x(t) = ET,

y(λ+m) =
(
1 + p3

)
y(λ+) + q, t = λm.

(1.3)

Motivated by Tang, on the basis of the above analysis, we set up the following predicator-prey
system with different control methods in different thresholds:

x′(t) = x(t)
(
a − by(t)

)
,

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d

)
,

x /=h1, h2 or x = h1, y > y∗,

Δx(t) = 0,
Δy(t) = δ,

x = h1, y � y∗,

Δx(t) = −αx(t),
Δy(t) = −βy(t) + q,

x = h2,

(1.4)

where x(t) and y(t) represent, respectively, the prey and the predator population densities
at time t; a, b, λ, h1, h2 and d are all positive constants and h1 < h2; y∗ = a/b. α, β ∈ (0, 1)
represent the fraction of pest and predator, respectively, which die due to the pesticide when
the amount of prey reaches economic threshold h2 and q is the release amount of predator.
λbx(t)/(1+ bhx(t)) is the per capita functional response of the predator. When the amount of
the prey reaches the threshold h1 at time th1 , controlling measures are taken (releasing natural
enemies) and the amount of predator abruptly turns to y(th1) + δ. When the amount of the
prey reaches the threshold h2 at time th2 , spraying pesticide, and releasing natural enemies
and the amount of prey and predator abruptly turn to (1 − α)x(th2) and (1 − β)y(th2) + q,
respectively. Refer to [17] Liu et al. for details.

2. Preliminaries

First, we give some basic definitions and lemmas.

Definition 2.1. A triple (X,Π, R+) is said to be a semidynamical system if X is a metric space,
R+ is the set of all nonnegative real, andΠ(P, t) : X ×R+ → X is a continuous map such that:

(i) Π(P, 0) = P for all P ∈ X;

(ii) Π(P, t) is continuous for t and s;

(iii) Π(Π(P, t)) = Π(P, t + s) for all P ∈ X and t, s ∈ R+. Sometimes a semi-dynamical
system (X,Π, R+) is denoted by (X,Π).
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Definition 2.2. Assuming that

(i) (X,Π) is a semi-dynamical system;

(ii) M is a nonempty subset of X;

(iii) function I : M → X is continuous and for any P ∈ M, there exists a ε > 0 such that
for any 0 < |t| < ε,Π(P, t) /∈ M.

Then, (X,Π,M, I) is called an impulsive semi-dynamical system.
For any P , the function ΠP : R+ → X defined as ΠP (t) = Π(P, t) is continuous, and

we callΠP (t) the trajectory passing through point P . The set C+(P) = {Π(P, t)/0 ≤ t < +∞} is
called positive semitrajectory of point P . The set C−(P) = {Π(P, t)/ −∞ < t ≤ 0} is called the
negative semi-trajectory of point P .

Definition 2.3. One considers state-dependent impulsive differential equations:

x′(t) = P
(
x, y

)
,

y′(t) = Q
(
x, y

)
,

(
x, y

)
/∈ M

(
x, y

)
,

Δx(t) = α
(
x, y

)
,

Δy(t) = β
(
x, y

)
,

(
x, y

) ∈ M
(
x, y

)
,

(2.1)

where M(x, y) and N(x, y) represent the straight line or curve line on the plane, M(x, y)
is called impulsive set. The function I is continuous mapping, I(M) = N, I is called the
impulse function. N(x, y) is called the phase set. We define “dynamic system” constituted
by the definition of solution of state impulsive differential equation (2.1) as “semicontinuous
dynamic systems”, which is denoted as (Ω, f, I,M).

Definition 2.4. Suppose that the impulse setM and the phase setN are both lines, as shown in
Figure 1. Define the coordinate in the phase setN as follows: denote the point of intersection
Q between N and x-axis as O, then the coordinate of any point A in N is defined as the
distance between A and Q and is denoted by yA. Let C denote the point of intersection
between the trajectory starting from A and the impulse set M, and let B denote the phase
point of C after impulse with coordinate yB. Then, we define B as the successor point of A,
and then the successor function of point A is that f(A) = yB − yA.

Definition 2.5. A trajectory Π̃(P0, t) is called order one periodic solution with period T if there
exists a point P0 ∈ N and T > 0 such that P = Π(P0, t) ∈ M and P+ = I(P) = P0.

We get these lemmas from the continuity of composite function and the property of
continuous function.

Lemma 2.6. Successor function defined in Definition 2.1 is continuous.

Lemma 2.7. In system (1.4), if there existA ∈ N, B ∈ N satisfying successor function f(A)f(B) <
0, then there must exist a point P (P ∈ N) satisfying f(P) = 0 the function between the point of A
and the point of B, thus there is an order one periodic solution in system (1.4).
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Figure 1: Successor function defined.

Next, we consider the model (1.4) without impulse effects:

x′(t) = x(t)
(
a − by(t)

)
,

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d

)
.

(2.2)

It is well known that the system (2.2) possesses

(I) two steady states O(0, 0)-saddle point, and R(d/b(λ − dh), a/b) = R(x∗, y∗)(λ >
dh)-stable centre;

(II) a unique closed trajectory through any point in the first quadrant contained inside the point
R.

In this paper, we assume that the condition λ > dh holds. By the biological background
of system (1.4), we only consider D = {(x, y) : x ≥ 0, y ≥ 0}. Vector graph of system (2.2) can
be seen in Figure 2.

This paper is organized as follows. In the next section, we present some basic
definitions and an important lemmas as preliminaries. In Section 3, we prove existence for
an order one periodic solution of system (1.4). The sufficient conditions for the attractiveness
of order one periodic solutions of system (1.4) are obtained in Section 4. At last, we state
conclusion, and the main results are carried out to illustrate the feasibility by numerical
simulations.
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Figure 2: Illustration of vector graph of system (2.2).

3. Existence of the Periodic Solution

In this section, we will investigate the existence of an order one periodic solution of system
(1.4) by using the successor function defined in this paper and qualitative analysis. For this
goal, we denote thatM1 = {(x, y)/x = h1, 0 ≤ y ≤ a/b}, and thatM2 = {(x, y) | x = h2, y ≥ 0}.
Phase set of set M is that N1 = I(M1) = {(x, y) | x = h1, a/b < y ≤ (a/b) + δ} and that
N2 = I(M2) = {(x, y) | x = (1 − α)h2, y ≥ q}. Isoclinic line is denoted, respectively, by lines:
L1 = {(x, y) | y = a/b, x ≥ 0} and L2 = {(x, y) | x = d/b(λ − dh), y ≥ 0}.

For the convenience, if P ∈ Ω −M, F(P) is defined as the first point of intersection of
C+(P) and M, that is, there exists a t1 ∈ R+ such that F(P) = Π(P, t1) ∈ M, and for 0 < t <
t1,Π(P, t) /∈ M; if B ∈ N,R(B) is defined as the first point of intersection of C−(P) andN, that
is, there exists a t2 ∈ R+ such that R(B) = Π(B,−t2) ∈ N, and for −t < t < 0,Π(B, t) /∈ N. For
any point P , we denote yP as its ordinate. If the point P(h, yP ) ∈ M, then pulse occurs at the
point P , the impulsive function transfers the point P into P+ ∈ N. Without loss of generality,
unless otherwise specified we assume the initial point of the trajectory lies in phase set N.

Due to the practical significance, in this paper we assume the set always lies in the left
side of stable centre R, that is, h1 < d/b(λ − dh) and (1 − α)h2 < d/b(λ − dh).

In the light of the different position of the set N1 and the set N2, we consider the
following three cases.

Case 1 (0 < h1 < d/b(λ − dh)). In this case, set M1 and N1 are both in the left side of stable
center R (as shown in Figure 3). Take a point B1(h1, (a/b) + ε) ∈ N1 above A, where ε > 0
is small enough, then there must exist a trajectory passing through B1 which intersects with
M1 at point P1(h1, yp1), we have yp1 < a/b. Since p1 ∈ M1, pulse occurs at the point P1,
the impulsive function transfers the point P1 into P+

1 (h1, yp1 + δ) and P+
1 must lie above B1,

therefore inequation (a/b) + ε < yp1 + δ holds, thus the successor function of B1 is f(B1) =
yp1 + δ − ((a/b) + ε) > 0.
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Figure 3: 0 < h1 < (d/b(1 − dh))(a/b) < yP2 + δ + < yP1 + δ.

On the other hand, the trajectory with the initial point P+
1 intersects M1 at point

P2(h1, yp2), in view of vector field and disjointness of any two trajectories, we know yp2 <
yp1 < a/b. Supposing the point P2 is subject to impulsive effects to point P+

2 (h1, yp+2
), where

yp+2
= yp2 + δ, the position of P+

2 has the following two cases.

Subcase 1.1 (a/b < yp2 + δ < yp1 + δ). In this case, the point P+
2 lies above the point A and

below P+
1 , then we have f(P+

1 ) = yp2 + δ − (yp1 + δ) < 0.
By Lemma 2.7, there exists an order one periodic solution of system (1.4), whose initial

point is between B1 and P+
1 in set N1.

Subcase 1.2 (a/b ≥ yp2 + δ (as shown in Figure 4)). The point P+
2 lies below the point A, that

is, P+
2 ∈ M1, then pulse occurs at the point P+

2 , the impulsive function transfers the point P+
2

into P++
2 (h1, yp2 + 2δ).

If a/b < yp2 + 2δ < yp1 + δ, like the analysis of Subcase 1.1, there exists an order one
periodic solution of system (1.4).

If a/b > yp2 + 2δ, that is, P++
2 ∈ M1, then we repent the above process until there

exists k ∈ Z+ such that P++
2 jumps to Pi+

2 ((h1, yp2 + (k + 2)δ) after k times’ impulsive
effects which satisfies a/b < yp2 +(k+2)δ < yp1 +δ. Like the analysis of Subcase 1.1,
there exists an order one periodic solution of system (1.4).

Now, we can summarize the above results as the following theorem.

Theorem 3.1. If λ > dh, 0 < h1 < d/b(λ − dh), then there exists an order one periodic solution of
the system (1.4).
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Figure 4: 0 < h1 < (d/b(1 − dh))(a/b) > yP2 + δ.

Remark 3.2. It shows from the proved process of Theorem 3.1 that the number of natural
enemies should be selected appropriately, which aims to reduce releasing impulsive times
to save manpower and resources.

Case 2 (h2 < d/b(λ − dh)). In this case, setM2 andN2 are both in the left side of stable center
R, in the light of the different position of the set N2, we consider the following two cases.

Subcase 2.1 (0 < h1 < (1−α)h2 < h2 < d/b(λ−dh)). In this case, the setN2 is in the right side of
M1 (as shown in Figure 5). The trajectory passing through point A which tangents to N2 at
point A intersects with M2 at point P0(h2, yp0). Since the point P0 ∈ M2, then impulse occurs
at point P0. Supposing the point P0 is subject to impulsive effects to point P+

0 ((1 − α)h2, yP+
0
),

where yP+
0
= (1 − β)yP0 + q, the position of P+

0 has the following three cases:
(1) ((1−β)yP0+q > a/b). Take a point B1((1−α)h2, ε+a/b) ∈ N2 aboveA, where ε > 0 is

small enough. Then theremust exist a trajectory passing through the pointB1 which intersects
with the set M2 at point P1(h2, yP1). In view of continuous dependence of the solution on
initial value and time, we know yP1 < yP0 and the point P1 is close to P0 enough, so we have
the point P+

1 is close to P+
0 enough and yP+

1
< yP+

0
, then we obtain f(B1) = yP+

1
− yB1 > 0.

On the other hand, the trajectory passing through point B tangents to N1 at point B.
Set F(S) = P2(h2, yP2) ∈ M2. Denote the coordinates of impulsive point P+

2 ((1 − α)h2, yP+
2
)

corresponding to the point P2(h2, yP2).

If yS ≥ yP+
0
then yP+

2
< yP+

0
< yS. So we obtain f(S) = yP+

2
− yS < 0. There exists an

order one periodic solution of system (1.4), whose initial point is between the point
B1 and the point S in set N2 (Figure 5).

If yS < yP+
0
and yP+

2
≤ yS, we have f(S) = yP+

2
−yS ≤ 0, we conclude that there exists

an order one periodic solution of system (1.4).



Journal of Applied Mathematics 9

P+
1

P+
2

B1

L1

M1

N1

R
A

0

S

N2

P+
0

P0

P1

P2

B

M2

Y

X

Figure 5: h2 < d/b(1 − dh), h1 < (1 − α)h2 < h2.

If yS < yP+
0
and yP+

2
> yS, from the vector field of system (1.4), we know the

trajectory of system (1.4) with any initiating point on the N2 will ultimately stay
in Ω1 = {(x, y)/0 ≤ x ≤ h1, y ≥ 0} after one impulsive effect. Therefore there is no
an order one periodic solution of system (1.4).

(2) ((1 − β)yP0 + q < a/b (as shown in Figure 6)). In this case, the point P+
0 lies below

the point A, that is, (1 − β)yP0 + q < a/b, thus the successor function of the point A is f(A) =
(1 − β)yP0 + q − a/b < 0.

Take another point B1((1−α)h2, ε) ∈ N2, where ε > 0 is small enough. Then there must
exist a trajectory passing through the point B1 which intersects M2 at point P1(h2, yP1) ∈ M2.
Suppose the point P1(h2, yP1) is subject to impulsive effects to point P+

1 ((1 − α)h2, yP+
1
), then

we have yP+
1
> ε. So we have f(B1) = yP+

1
− ε > 0.

From Lemma 2.7, there exists an order one periodic solution of system (1.4), whose
initial point is between B1 and A in set N2.

(3) ((1 − β)yP0 + q = a/b). P+
0 coincides with A, and the successor function of A is that

f(A) = 0, so there exists an order one periodic solution of system (1.4) which is just a part of
the trajectory passing through the A.

Now, we can summarize the above results as the following theorem.

Theorem 3.3. Assuming that λ > dh and 0 < h1 < (1 − α)h2 < h2 < d/b(λ − dh).

If yP+
0
≤ yA, there exists an order one periodic solutions of the system (1.4).

If yP+
0
> yA, if yS ≥ yP+

0
or yS < yP+

0
, and yS > yP+

2
, there exists an order one periodic

solutions of the system (1.4).

If yP+
0
> yA, yS < yP+

0
and yS < yP+

2
, there is no an order one periodic solutions of the system

(1.4). The trajectory of system (1.4)with any initiating point on theN2 will ultimately stay
in Ω1 = {(x, y)/0 ≤ x ≤ h1, y ≥ 0} after one impulsive effect.
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Figure 6: h2 < d/b(1 − dh), (1 − β)yP0 + q < a/b.

Subcase 2.2 (0 < (1−α)h2 < h1 < h2 < d/b(λ−dh)). In this case, the setN2 is on the left side of
N1. Any trajectory from initial point (x+

0 , y
+
0 ) ∈ N2 will intersect with M1 at some point with

time increasing. By the analysis of Case 1, the trajectory from initial point (x+
0 , y

+
0 ) ∈ N2 on

the set N2 will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}. Similarly, any trajectory
from initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will stay in the region

Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1} after one impulsive effect or free from impulsive effect.

Theorem 3.4. If λ > dh, 0 < (1 − α)h2 < h1 < h2 < d/b(λ − dh), there is no an order one periodic
solutions to the system (1.4), and the trajectory with initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥

0, y ≥ 0, x ≤ h2} will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Case 3 (d/b(λ − dh) < h2). In this case, the set M2 is on the right side of stable center R. In
the light of the different position of N2, we consider the following two subcases.

Subcase 3.1 (h1 < (1 − α)h2 < d/b(λ − dh) < h2). In this case, the set M2 is in the right side of
R. Then there exists a unique closed trajectory Γ1 of system (1.4) which contains the point R
and is tangent toM2 at the point A.

Since Γ1 is closed trajectory, we take their the minimal value δmin of abscissas at the
trajectory Γ1, namely, δmin ≤ x holds for any abscissas of Γ1.

(1) (h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2). In this case, there is a trajectory, which
contains the point R(d/b(λ − dh), a/b) and is tangent to the N2 at the point B intersects
M2 at a point P1(h2, yP1) ∈ M2. Suppose point P1 is subject to impulsive effects to point
P+
1 ((1−α)h2, yP+

1
), here yP+

1
= (1−β)yP1+q. The position of P+

1 has the following three sub-cases.

If (1 − β)yP1 + q < a/b (Figure 7), the point P+
1 lies below the point B. Like the

analysis of Subcase 2.1(2), we can prove there exists an order one periodic solution
to the system (1.4) in this case.
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Figure 7: h1 < (1 − α)h2 < δmin < d/(λ − hd)(1 − β)yP1 + q < a/b.
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Figure 8: h1 < (1 − α)h2 < δmin < d/(λ − hd)(1 − β)yP1 + q > a/b.

If (1 − β)yP1 + q > a/b, the point P+
1 lies above the point B; the trajectory from

initiating point P+
1 intersects with the line L1 at point C. If h1 ≤ yC (Figure 8),

we have yP1 > yP2 and yP+
1

> yP+
2
, then the successor function of P+

1 is that
f(P+

1 ) = yP+
2
− yP+

1
< 0. Then, we know that there exists an order one periodic

solution of system (1.4), whose initial point is between the point P+
1 and B in set

N2. If h1 > yC (Figure 9), there is a trajectory which is tangent to the N1 at a point
D intersects withM2 at a point P3(h2, yP3) ∈ M2, P3 jumps to P+

3 after the impulsive
effects. If yP+

3
≤ yB1 , we can easily know that there exists an order one periodic

solution of system (1.4). If yP+
3
> yB1 , by the qualitative analysis of the system (1.4),

we know that trajectory with any initiating point on the N2 will ultimately stay in
Γ1 after a finite number of impulsive effects.

If (1 − β)yP1 + q = a/b, the point P+
1 coincides with the point B, and the successor

function of the point B is that f(B) = 0; then there exists an order one periodic
solution which is just a part of the trajectory passing through the point B.
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Figure 9: h1 < (1 − α)h2 < δmin < d/(λ − hd) < h2(1 − β)yP1 + q > a/b, h1 > yc.

Now, we can summarize the above results as the following theorem.

Theorem 3.5. Assuming that λ > dh and h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2.

If (1 − β)yP1 + q ≤ a/b, there exists an order one periodic solution to the system (1.4).

If (1 − β)yP1 + q > a/b and h1 ≤ yC, then there exists an order one periodic solution to the
system (1.4).

If (1 − β)yP1 + q > a/b, h1 > yC and yP+
3
≤ yB1 , then there exists an order one periodic

solution to the system (1.4).

(2) (h1 < δmin < (1 − α)h2 < d/b(λ − dh) < h2). In this case, denote the closed trajectory Γ1
of system (1.4) intersects with N2 two points A1((1 − α)h2, yA1) and A2((1 − α)h2, yA2) (as shown
in Figure 10). Since A ∈ M2, impulse occurs at the point A. Suppose point A is subject to impulsive
effects to point P+

0 ((1 − α)h2, yP+
0
), here yP+

0
= (1 − β)(a/b) + q.

If (1 − β)(a/b) + q = yA1 or (1 − β)(a/b) + q = yA2 , then P+
0 coincides with A1 or P+

0
coincides with A2, and the successor function of A1 or A2 is that f(A1) = 0 or f(A2) = 0.
So, there exists an order one periodic solution of system (1.4) which is just a part of the
trajectory Γ1.

If (1−β)(a/b) + q < yA2 , the point P
+
0 lies below the pointA2. Like the analysis of Subcase

2.1(2), we can prove there exists an order one periodic solution to the system (1.4) in this
case.

If (1 − β)(a/b) + q > yA1 (as shown in Figure 11), the point P+
0 is above the point A1.

Like the analysis of Subcase 3.1(1), we obtain sufficient conditions of existence of order one
periodic solution to the system (1.4).

Theorem 3.6. Assuming that λ > dh, h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2.

If (1 − β)(a/b) + q ≤ yA2 , there exists an order one periodic solution to the system (1.4).

If (1 − β)(a/b) + q > yA1 and h1 ≤ yC, then there exists an order one periodic solution to
the system (1.4).
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If (1 − β)(a/b) + q > yA1 , (1 − β)yP1 + q > a/b, h1 > yC, and yP+
3
≤ yB1 , then there exists

an order one periodic solution to the system (1.4).

(3) (yA2 < (1−β)(a/b)+q < yA1 ). In this case, we note that the point P+
0 must lie between the

pointA1 and the pointA2 (As shown in Figure 12). Taking a point B1 ∈ M2 such that B1 jumps toA2

after the impulsive effect, denoteA2 = B+
1 . Since yP+

0
> yB+

1
, we have yA > yB1 . Let R(B1) = B+

2 ∈ N2,
take a point B2 ∈ M2 such that B2 jumps to B+

2 after the impulsive effects, then we have yB+
1
> yB+

2
,

yB1 > yB2 . This process continues until there exists a B+
K ∈ N2 (K ∈ Z+) satisfying yB+

k
< q. So

we obtain a sequence {B+
k}k=1,2,...,K of the set M2 and a sequence {Bk}k=1,2,...,K of set N2 satisfying

R(Bk−1) = B+
k ∈ N2, yB+

k−1 > yB+
k
. In the following, we will prove the trajectory of system (1.4) with

any initiating point of set N2 will ultimately stay in Γ1.

From the vector field of system (1.4), we know the trajectory of system (1.4) with any
initiating point between the pointA1 andA2 will be free from impulsive effect and ultimately
will stay in Γ1.
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For any point below A2, it must lie between B+
k
and B+

k−1, here k = 2, 3, . . . , K + 1 and
A2 = B+

1 . After k times’ impulsive effects, the trajectory with this initiating point will arrive at
some point of the set N2 which must be between A1 and A2, and then ultimately stay in Γ1.

Denote the intersection of the trajectory passing through the point B which tangents to
N1 at point Bwith the setN2 at S((1−α)h2, yS). With time increasing, the trajectory of system
(1.4) from any initiating point on segment A1S intersect with the setN2 at some point which
is below A2; so just like the analysis above we obtain, it will ultimately stay in Γ1. So for any
point below S, will ultimately stay in region Γ1 with time increasing.

Now, we can summarize the above results as the following theorem.

Theorem 3.7. Assuming that λ > dh, h1 < δmin < (1 − α)h2 < d/b(λ − dh) < h2, and yA2 <
(1 − β)(a/b) + q < yA1 , there is no periodic solution in system (1.4), and the trajectory with any
initiating point on the set N2 will stay in Γ1 or in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Subcase 3.2 (0 < (1−α)h2 < h1 < d/b(λ−dh) < h2). In this case, the setN2 is on the left side of
the set N1 and M2 in the right side of R. Like the analysis of Subcase 2.2, we can know that
any trajectory with initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will stay in the

region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1} after one impulsive effect or free from impulsive
effect.

4. Attractiveness of the Order One Periodic Solution

In this section, under the condition of existence of order one periodic solution to system (1.4)
and the initial value of pest population x(0) ≤ h2, we discuss its attractiveness. We focus on
Case 1 and Case 2; by similar method, we can obtain similar results about Case 3.
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Theorem 4.1. Assuming that λ > dh, h1 < d/(b(λ − dh)) and δ ≥ a/b.
If yP+

0
> yP+

2
> yP+ or yP+

0
< yP+

2
< yP+ (Figure 14), then

(I) there exists a unique order one periodic solution of system (1.4),

(II) if (1 − α)h2 < h1, order one periodic solution of system (1.4) is attractive in the region
Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}.

Proof. By the derivation of Theorem 3.1, we know there exists an order one periodic solution
of system (1.4). We assume trajectory P̂P+ and segment PP+ formulate an order one periodic
solution of system (1.4), that is, there exists a P+ ∈ N2 such that the successor function of P+

satisfies f(P+) = 0. First, we will prove the uniqueness of the order one periodic solution.
We take any two points C1(h1, yC1) ∈ N1, C2(h1, yC2) ∈ N1 satisfying yC2 > yC1 > yA,

then we obtain two trajectories whose initiate points are C1 and C2 intersects the set M1

two pointsD1(h1, yD1) andD2(h1, yD2), respectively, (Figure 13). In view of the vector field of
system (1.4) and the disjointness of any two trajectories without impulse, we know yD1 > yD2 .
Suppose the points D1 and D2 are subject to impulsive effect to points D+

1 (h1, yD+
1
) and

D+
2 (h2, yD+

2
), respectively, then we have yD+

1
> yD+

2
and f(C1) = yD+

1
− yC1 , f(C2) = yD+

2
− yC2 ,

so we get f(C1) − f(C2) < 0, thus we obtain the successor function f(x) is decreasing
monotonously of N1, so there is a unique point P+ ∈ N1 satisfying f(P+) = 0, and the
trajectory ̂P+PP+ is a unique order one periodic solution of system (1.4).

Next, we prove the attractiveness of the order one periodic solution ̂P+PP+ in the
region Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}. We focus on the case yP+

0
> yP+

2
> yP+ ; by

similar method, we can obtain similar results about case yP+
0
< yP+

2
< yP+ (Figure 14).

Take any point P+
0 (h1, yP+

0
) ∈ N1 above P+. Denote the first intersection point

of the trajectory from initiating point P+
0 (h1, yP+

0
) with the set M1 at P1(h1, yP1), and

the corresponding consecutive points are P2(h1, yP2), P3(h1, yP3), P4(h1, yP4), . . . , respectively.
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Figure 14: Order one periodic solution is attractive (Theorem 4.1).

Consequently, under the effect of impulsive function, the corresponding points after pulse
are P+

1 (h1, yP+
1
), P+

2 (h1, yP+
2
), P+

3 (h1, yP+
3
), . . . .

Due to conditions yP+
0
> yP+

2
> yP+ , yP+

k
= yPk + δ, δ ≥ a/b and disjointness of any two

trajectories, then we get a sequence {P+
k
}k=1,2,... of the set N1 satisfying

yP+
1
< yP+

3
< · · · < yP+

2k−1 < yP+
2k+1

< · · · < yP+ < · · · < yP+
2k
< yP+

2k−2 < · · · < yP+
2
< yP+

0
. (4.1)

So the successor function f(P+
2k−1) = yP+

2k
− yP+

2k−1 > 0 and f(P+
2k) = yP+

2k+1
− yP+

2k
< 0 hold.

Series {yP2k−1}k=1,2,... increases monotonously and has upper bound, so limk→∞ yP+
2k−1 exists.

Next, we will prove limk→∞ yP+
2k−1 = yP+ . Set limk→∞ P2k−1 = C+, we will prove P+ = C+.

Otherwise P+ /=C+, then there is a trajectory passing through the point C+ which intersects
the set M1 at point C̃, then we have yC̃ > yP , yC̃+ > yP+ . Since f(C+) ≥ 0 and P+ /=C+,
according to the uniqueness of the periodic solution, then we have f(C+) = yC̃+ − yC+ > 0,
thus yC+ < yP+ < yC̃+ hold. Analogously, let trajectory passing through the point C+ which

intersects the set M1 at point ˜̃C, and the corresponding consecutive points is
˜̃̃
C, then yC̃ >

y ˜̃̃
C
> yp > y ˜̃C

, yC̃+ > y ˜̃̃
C

+ > y ˜̃C
+ > yp+ > yC+ , then we have f( ˜̃C

+
) = y ˜̃̃

C
+ − y ˜̃C

+ > 0, this is,

contradict to the fact that C+ is a limit of sequence {P+
2k−1}k=1,2,..., so we obtain P+ = C+. So, we

obtain limk→∞ yP+
2k−1 = yP+ . Similarly, we can prove limk→∞ yP+

2k
= yP+ .

From above analysis, we know there exists a unique order one periodic solution in
system (1.4), and the trajectory from initiating any point of the N1 will ultimately tend to be
order one periodic solution ̂P+PP+.
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Figure 15: Attractneness of order one periodic solution (Theorem 4.3).

Any trajectory from initial point (x+
0 , y

+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will

intersect with N1 at some point with time increasing on the condition that (1 − α)h2 < h1 <
h2 < d/b(λ−dh); therefore the trajectory from initial point onN1 ultimately tends to be order
one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive in
the region Ω0. This completes the proof.

Remark 4.2. Assuming that λ > dh, h1 < h2 < d/b(λ − dh) and δ ≥ a/b, if yP+ < yP+
0
< yP+

2
or

yP+ > yP+
0
> yP+

2
then the order one periodic solution is unattractive.

Theorem 4.3. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh) and yP+
0
< yA (as shown

in Figure 15), then

(I) There exists an odd number of order one periodic solutions of system (1.4) with initial value
between C+

1 and A in setN2.

(II) If the periodic solution is unique, then the periodic solution is attractive in region Ω2, here
Ω2 is open region which is constituted by trajectory ĜB, segment BH, segment HE, and
segment EG.

Proof. (I) According to the Subcase 2.1(2), f(A) < 0 and f(C+
1 ) > 0, and the continuous

successor function f(x), there exists an odd number of root satisfying f(x) = 0, then we
can get there exists an odd number of order one periodic solutions of system (1.4)with initial
value between C+

1 and A in set N2.
(II) By the derivation of Theorem 3.3, we know there exists an order one periodic

solution of system (1.4) whose initial point is between C+
1 and P+

0 in the set N2. Assume
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trajectory P̂+P and segment PP+ formulate the unique order one periodic solution of system
(1.4) with initial point P+ ∈ N2.

On the one hand, take a point C+
1 ((1 − α)h2, yC+

1
) ∈ N2 satisfying yC+

1
= ε < q and

yC+
1
< yP+ . The trajectory passing through the point C+

1 ((1 − α)h2, ε) which intersects with
the set M2 at point C2(h2, yC2), that is, F(C

+
1 ) = C2 ∈ M2, then we have yC2 < yP , thus

yC+
2
< yP+ , since yC+

2
= (1 − β)yC2 + q > ε. So, we obtain f(C+

1 ) = yC+
2
− yC+

1
= yC+

2
− ε > 0;

Set F(C+
2 ) = C3 ∈ M2, because yC+

1
< yC+

2
< yP+ , we know yC2 < yC3 < yP , then we have

yC+
2
< yC+

3
< yP+ and f(C+

2 ) = yC+
3
−yC+

2
> 0. This process is continuing, then we get a sequence

{C+
k
}k=1,2,... of the set N2 satisfying

yC+
1
< yC+

2
< · · · < yC+

k
< · · · < yP+ (4.2)

and f(C+
k
) = yC+

k+1
−yC+

k
> 0. Series {yC+

k
}k=1,2,... increase monotonously and have upper bound,

so limk→∞ yC+
k
exists. Like the proof of Theorem 4.1, we can prove limk→∞ yC+

k
= yP+ .

On the other hand, set F(P+
0 ) = D1 ∈ M2, then D1 jumps to D+

1 ∈ N2 under the
impulsive effects. Since yP+ < yP+

0
< yA, we have yP < yD1 < yP0 , thus we obtain yP+ <

yD+
1
< yP+

0
, f(P+

0 ) = yD+
1
− yP+

0
< 0. Set F(D+

1 ) = D2 ∈ M2, then D2 jumps to D+
2 ∈ N2 under

the impulsive effects. We have yP+ < yD+
2
< yD+

1
; this process is continuing, we can obtain a

sequence {D+
k}k=1,2,..., of the set N2 satisfying

yP+
0
> yD+

1
> yD+

2
> · · · > yD+

k
> · · · > yP+ (4.3)

and f(D+
k) = yD+

k+1
−yD+

k
< 0. Series {yD+

k
}k=1,2,... decreases monotonously and has lower bound,

so limk→∞ yD+
k
exists. Similarly, we can prove limk→∞ yD+

k
= yP+ .

Any point Q ∈ N2 below A must be in some interval [yD+
k+1
, yD+

k
)k=1,2,..., [yD+

1
, yP+

0
),

[yP+
0
, yA), [yC+

k
, yC+

k+1
)k=1,2,.... Without loss of generality, we assume the point Q ∈ [yD+

k+1
, yD+

k
).

The trajectory with initiating point Q moves between trajectory ̂D+
k
Dk+1 and ̂D+

k+1Dk+2 and
intersects with M2 at some point between Dk+2 and Dk+1; under the impulsive effects, it
jumps to the point of N2 which is between [yD+

k+2
, yD+

k+1
), then trajectory Π̃(Q, t) continues to

move between trajectory ̂D+
k+1Dk+2 and ̂D+

k+2Dk+3. This process can be continued unlimitedly.
Since limk→∞yD+

k
= yP+ , the intersection sequence of trajectory Π̃(Q, t), and the set N2 will

ultimately tend to the point P+. Similarly, if Q ∈ [yC+
k
, yC+

k+1
), we also can get the intersection

sequence of trajectory Π̃(Q, t) and the set N2 will ultimately tend to point P+. Thus, the
trajectory initiating any point below A ultimately tend to the unique order one periodic
solution ̂P+PP+.

Denote the intersection of the trajectory passing through the point B which tangents
to N1 at the point B with the set N2 at a point S((1 − α)h2, yS). The trajectory from any
initiating point on segment AS will intersect with the set N2 at some point below A with
time increasing. So like the analysis above, we obtain the trajectory from any initiating point
on segment ASwill ultimately tend to be the unique order one periodic solution ̂P+PP+.

Since the trajectory with any initiating point of the Ω2 will certainly intersect with
the set N2, then from the above analysis, we know the trajectory with any initiating point
on segment AS will ultimately tend to be order one periodic solution ̂P+PP+. Therefore, the
unique order one periodic solution ̂P+PP+ is attractive in the region Ω2. This completes the
proof.
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Figure 16: Attractneness of order one periodic solution (Theorem 4.5).

Remark 4.4. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh), and yC+
1
< yA < yP+

0
,

then the order one periodic solution with initial point between A and P+
0 is unattractive.

Theorem 4.5. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh), yP+
0
> yP+

1
> yA

(Figure 16) then, there exists a unique order one periodic solution of system (1.4) which is attractive
in the region Ω2, here Ω2 is open region which enclosed by trajectory ĜB, segment BH, segment HE

and segment EG.

Proof. By the derivation of Theorem 3.3, we know there exists an order one periodic solution
of system (1.4). We assume trajectory P̂+P and segment PP+ formulate an order one periodic
solution of system (1.4), that is, P+ ∈ N2 is its initial point satisfying f(P+) = 0. Like the proof
of Theorem 4.1, we can prove the uniqueness of the order one periodic solution of system
(1.4).

Next, we prove the attractiveness of the order one periodic solution ̂P+PP+ in the
region Ω2.

Denote the first intersection point of the trajectory from initiating point P+
0

with the impulsive set M2 at P1(h, yP1), and the corresponding consecutive points are
P2(h, yP2), P3(h, yP3), P4(h, yP4) · · · respectively. Consequently, under the effect of impulsive
function I, the corresponding points after pulse are P+

1 (h, yP+
1
), P+

2 (h, yP+
2
), P+

3 (h, yP+
3
), . . . . In

view of yP+
0
> yP+

1
> yA and disjointness of any two trajectories, we have

yP+
1
< yP+

3
< · · · < yP+

2k−1 < yP+
2k+1

< · · ·yP+
2k
< yP+

2k−2 < yP+
2
< yP+

0
. (4.4)

So f(P+
2k−1) = yP+

2k
−yP+

2k−1 > 0 and f(P+
2k) = yP+

2k+1
−yP+

2k
< 0 hold. Like the proof of Theorem 4.1,

we can prove limk→∞ yP+
2k−1 = limk→∞ yP+

2k
= yP+ .
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Figure 17: The time series and phase diagram for system (1.4) starting from initial value (0.85, 0.2) (red),
(0.8, 0.5) (green), and (0.75, 0.11) (blue), δ = 0.6, h1 = 1 < x∗.

The trajectory from initiating point between B+
0 and P+

0 will intersect with impulsive
set N2 with time increasing, under the impulsive effects it arrives at a point of N2 which
is between [yP+

2k−1 , yP+
2k+1

) or [yP+
2k
, yP+

2k−2). Then like the analysis of Theorem 4.3, we know the
trajectory from any initiating point between B+

0 and P+
0 will ultimately tend to be order one

periodic solution ̂P+PP+.
Denote the intersection of the trajectory passing through point B which tangents toN1

at point B with the set N2 at S. Since the trajectory from initiating any point below S of the
set N2 will certain intersect with set N2, next we only need to prove the trajectory with any
initiating point below S of the set N2 will ultimately tend to be order one periodic solution
̂P+PP+.
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Figure 18: The time series and phase diagram for system (1.4) starting from initial value (0.8, 0.1) (red),
(0.7, 0.5) (green), and (0.75, 0.3) (blue) α = 0.6, β = 0.3, q = 0.8, h2 = 1.8, h1 < h2 < x∗.

Assume a point B0 of set M2 jumps to B+
0 under the impulsive effect. Set R(B0) = B+

1 ∈
N2. Assume point B1 of set N2 jumps to B+

1 under the impulsive effect. Set R(B1) = B+
2 ∈ N2.

This process is continuing until there exists a BK+
0
∈ N (K+

0 ∈ N2) satisfying yBK+
0
< q. So we

obtain a sequence {Bk}k=0,1,2,...,K0
of set M2 and a sequence {B+

k}k=0,1,2,...,K0
of set N2 satisfying

R(Bk−1) = B+
k , yB+

k
< yB+

k−1 . For any point of set N2 below B+
0 , it must lie between B+

k+1 and B+
k

here k = 1, 2, . . . , K0. After K0 + 1 times’ impulsive effects, the trajectory with this initiating
point will arrive at some point of the setN2 which must be between B+

0 and P+
0 , and then will

ultimately tend to order one periodic solution ̂P+PP+. There is no order one periodic solution
with the initial point below B+

0 .
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Figure 19: The time series and phase diagram for system (1.4) starting from initial value (1, 0.7) (red), (1.4,
0.5) (green), and (1.2,1) (blue) α = 0.6, β = 0.3, q = 0.8, h2 = 3.5, h1 < x∗ < h2.

The trajectory with any initiating point in segment ASwill intersect with the setN2 at
some point below B+

0 with time increasing. Like the analysis above, we obtain the trajectory
initiating any point on segment AS will ultimately tend to be the unique order one periodic
solution ̂P+PP+.

From above analysis, we know there exists a unique order one periodic solution in
system (1.4), and the trajectory from any initiating point below S will ultimately tend to be
order one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive
in the region Ω2. This completes the proof.
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5. Conclusion

In this paper, a state-dependent impulsive dynamical model concerning different control
methods at different thresholds is proposed, we find a new method to study existence and
attractiveness of order one periodic solution of such system. We define semicontinuous
dynamical system and successor function, demonstrate the sufficient conditions that system
(1.4) exists order one periodic solution with differential geometry theory and successor
function. Besides, we successfully prove the attractiveness of the order one periodic solution
by sequence convergence rules and qualitative analysis.The method can be also extended to
mechanical dynamical systems with impacts, for example [19, 20].

These results show that the state-dependent impulsive effects contribute significantly
to the richness of the dynamics of the model. The conditions of existence of order one periodic
solution in this paper have more extensively applicable scope than the conditions given in
[14]. Our results show that, in theory, a pest can be controlled such that its population size is
no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of
times, or according to a periodic regime. The methods of the theorems are proved to be new
in this paper, and these methods are more efficient and easier to operate than the existing
research methods which have been applied the models with impulsive state feedback control
[16–18, 21], so they are deserved further promotion. In this paper, according to the integrated
pest management strategies, we propose a model for pest control which adopts different
control methods at different thresholds, the corresponding control is exerted, which leads to
the two state impulses in model. Certainly, many biological systems will always be described
by three or more state variables, which are the main work in the future.

In order to testify the validity of our results, we consider the following example.

x′(t) = x(t)
(
0.4 − 0.5y(t)

)
,

y′(t) = y(t)
(

0.25x(t)
1 + 0.1x(t)

− 0.6
)
,

x /=h1, h2 or x = h1, y > y∗,

Δx(t) = 0,
Δy(t) = δ,

x = h1, y � y∗,

Δx(t) = −αx(t),
Δy(t) = −βy(t) + q,

x = h2,

(5.1)

where α, β ∈ (0, 1), δ > 0, q > 0, 0 < h1 < h2. Now, we consider the impulsive effects influences
on the dynamics of system (5.1).

Example 5.1. Existence and attractiveness of order one periodic solution.
We set h1 = 1, α = 0.6, β = 0.8, q = 0.8, h2 = 1.8, initiating points are (0.85, 0.2) (red),

(0.8, 0.5) (green), and (0.75, 0.11) (blue), respectively. Figure 17 shows that the conditions of
Theorems 3.1 and 4.1 hold, system (5.1) exists order one periodic solution. The trajectory
from different initiating must ultimately tend to be the order one periodic solution. Therefore,
order one periodic solution is attractive.

Example 5.2. Existence and attractiveness of positive periodic solution.
We set h1 = 0.7, α = 0.6, β = 0.8, q = 0.8, h2 = 1.8, h1 < (1 − α)h2 < x∗, initiating points

are (0.8, 0.1) (red), (0.7, 0.5) (green), and (0.75, 0.3) (blue), respectively. Figure 18 shows that
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the conditions of Theorems 3.3 and 4.3 hold, there exists order one periodic solution of the
system (5.1), and the trajectory from different initiating must ultimately tend to be the order
one periodic solution. Therefore, order one periodic solution is attractive.

Example 5.3. Existence and attractive of positive periodic solutions.
We set h1 = 0.7, α = 0.6, β = 0.8, q = 0.8, h2 = 3.5, h1 < (1 − α)h2 < x∗ < h2,

initiating points are (1, 0.7) (red), (1.4, 0.5) (green), and (1.2, 1) (blue) as shown in Figure 19.
Therefore, the conditions of Theorems 3.6 and 4.5 hold, then system (5.1) exists order one
periodic solution, and it is attractive.

Acknowledgment

This Project supported by the National Natural Science Foundation of China (no. 10872118).

References

[1] B. Liu, Y. J. Zhang, L. S. Chen, and L. H. Sun, “The dynamics of a prey-dependent consumptionmodel
concerning integrated pest management,” Acta Mathematica Sinica, vol. 21, no. 3, pp. 541–554, 2005.

[2] X. Song, M. Hao, and X. Meng, “A stage-structured predator-prey model with disturbing pulse and
time delays,” Applied Mathematical Modelling, vol. 33, no. 1, pp. 211–223, 2009.

[3] P. Georgescu, H. Zhang, and L. Chen, “Bifurcation of nontrivial periodic solutions for an impulsively
controlled pest management model,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 675–
687, 2008.

[4] Z. Xiong, Y. Xue, and S. Li, “A food chain system with Holling IV functional responses and impulsive
effect,” International Journal of Biomathematics, vol. 1, no. 3, pp. 361–375, 2008.

[5] B. Liu, Y. Zhang, and L. Chen, “Dynamic complexities of a Holling I predator-prey model concerning
periodic biological and chemical control,” Chaos, Solitons and Fractals, vol. 22, no. 1, pp. 123–134, 2004.

[6] G. Jiang, Q. Lu, and L. Peng, “Impulsive ecological control of a stage-structured pest management
system,”Mathematical Biosciences and Engineering, vol. 2, no. 2, pp. 329–344, 2005.

[7] Z. Gao, “PD observer parametrization design for descriptor systems,” Journal of the Franklin Institute,
vol. 342, no. 5, pp. 551–564, 2005.

[8] Z. W. Gao and D. W. C. Ho, “On state-space realization of Bezout factorizations in singular systems,”
Dynamics of Continuous, Discrete & Impulsive Systems A, vol. 13, no. 3-4, pp. 387–410, 2006.

[9] A. D’Onofrio, “Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable
eradication in presence of vaccine failures,” Mathematical and Computer Modelling, vol. 36, no. 4-5,
pp. 473–489, 2002.

[10] X. Z. Meng and L. S. Chen, “A stage-structured SI eco-epidemiological model with time delay and
impulsive controlling,” Journal of Systems Science & Complexity, vol. 21, no. 3, pp. 427–440, 2008.

[11] L. Nie, J. Peng, Z. Teng, and L. Hu, “Existence and stability of periodic solution of a Lotka-Volterra
predator-prey model with state dependent impulsive effects,” Journal of Computational and Applied
Mathematics, vol. 224, no. 2, pp. 544–555, 2009.

[12] D. Baı̆nov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications,
Longman Scientific & Technical, New York, NY, USA, 1993.

[13] X. Meng and Z. Li, “The dynamics of plant disease models with continuous and impulsive cultural
control strategies,” Journal of Theoretical Biology, vol. 266, no. 1, pp. 29–40, 2010.

[14] S. Tang and R. A. Cheke, “State-dependent impulsive models of integrated pest management (IPM)
strategies and their dynamic consequences,” Journal of Mathematical Biology, vol. 50, no. 3, pp. 257–292,
2005.

[15] S. Tang, Y. Xiao, L. Chen, and R. A. Cheke, “Integrated pest management models and their dynamical
behaviour,” Bulletin of Mathematical Biology, vol. 67, no. 1, pp. 115–135, 2005.

[16] G. Jiang, Q. Lu, and L. Peng, “Impulsive ecological control of a stage-structured pest management
system,”Mathematical Biosciences and Engineering, vol. 2, no. 2, pp. 329–344, 2005.

[17] B. Liu, Y. Zhang, and L. Chen, “Dynamic complexities of a Holling I predator-prey model concerning
periodic biological and chemical control,” Chaos, Solitons and Fractals, vol. 22, no. 1, pp. 123–134, 2004.



Journal of Applied Mathematics 25

[18] S. Tang, G. Tang, and R. A. Cheke, “Optimum timing for integrated pest management: modelling
rates of pesticide application and natural enemy releases,” Journal of Theoretical Biology, vol. 264, pp.
623–638, 2010.

[19] J. Awrejcewicz, K. Tomczak, and C.-H. Lamarque, “Controlling system with impacts,” International
Journal of Bifurcation and Chaos, vol. 9, no. 3, pp. 547–553, 1999.
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