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We prove the existence of common fixed points for three relatively asymptotically regular map-
pings defined on an orbitally complete ordered metric space using orbital continuity of one of the
involved maps. We furnish a suitable example to demonstrate the validity of the hypotheses of our
results.

1. Introduction and Preliminaries

Browder and Petryshyn introduced the concept of asymptotic regularity of a self-map at a
point in a metric space.

Definition 1.1 (see [1]). A self-map T on a metric space (X, d) is said to be asymptotically
regular at a point x ∈ X if limn→∞d(Tnx,Tn+1x) = 0.

Recall that the set O(x0;T) = {Tnx0 : n = 0, 1, 2, . . .} is called the orbit of the self-map
T at the point x0 ∈ X.

Definition 1.2 (see [2]). A metric space (X, d) is said to be T-orbitally complete if every
Cauchy sequence contained in O(x;T) (for some x inX) converges inX.
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Here, it can be pointed out that every complete metric space is T-orbitally complete
for any T, but a T-orbitally complete metric space need not be complete.

Definition 1.3 (see [1]). A self-map T defined on a metric space (X, d) is said to be orbitally
continuous at a point z in X if for any sequence {xn} ⊂ O(x;T) (for some x ∈ X), xn → z as
n → ∞ implies Txn → Tz as n → ∞.

Clearly, every continuous self-mapping of a metric space is orbitally continuous, but
not conversely.

Sastry et al. [3] extended the above concepts to two and three mappings and employed
them to prove common fixed point results for commuting mappings. In what follows, we col-
lect such definitions for three maps.

Definition 1.4 (see [3]). Let S,T,R be three self-mappings defined on a metric space (X, d).

(1) If for a point x0 ∈ X, there exists a sequence {xn} in X such that Rx2n+1 = Sx2n,
Rx2n+2 = Tx2n+1, n = 0, 1, 2, . . ., then the set O(x0;S,T,R) = {Rxn : n = 1, 2, . . .} is
called the orbit of (S,T,R) at x0.

(2) The space (X, d) is said to be (S,T,R)-orbitally complete at x0 if every Cauchy
sequence in O(x0;S,T,R) converges inX.

(3) The map R is said to be orbitally continuous at x0 if it is continuous on
O(x0;S,T,R).

(4) The pair (S,T) is said to be asymptotically regular (in short a.r.) with respect to R
at x0 if there exists a sequence {xn} in X such that Rx2n+1 = Sx2n, Rx2n+2 = Tx2n+1,
n = 0, 1, 2, . . ., and d(Rxn,Rxn+1) → 0 as n → ∞.

On the other side, Khan et al. [4] introduced the notion of an altering distance function,
which is a control function that alters distance between two points in a metric space. This
notion has been used by several authors to establish fixed point results in a number of sub-
sequent works, some of which are noted in [5–9]. In [5], Choudhury introduced the concept
of a generalized altering distance function in three variables which was further generalized
by Rao et al. [10] to four variables and is defined as follows.

Definition 1.5 (see [10]). A function ψ : [0,+∞)4 → [0,+∞) is said to be a generalized altering
distance function if

(i) ψ is continuous,

(ii) ψ is nondecreasing in each variable,

(iii) ψ(t1, t2, t3, t4) = 0 ⇔ t1 = t2 = t3 = t4 = 0.

F4 will denote the set of all functions ψ satisfying conditions (i)–(iii).

Simple examples of generalized altering distance functions with four variables are

ψ(t1, t2, t3, t4) = kmax{t1, t2, t3, t4}, k > 0;

ψ(t1, t2, t3, t4) =
max{t1, t2, t3, t4}

1 +max{t1, t2, t3, t4}
;

ψ(t1, t2, t3, t4) = t
p

1 + t
q

2 + t
r
3 + t

s
4, p, q, r, s ≥ 1.

(1.1)
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On the other hand, fixed point theory has developed rapidly inmetric spaces endowed
with a partial ordering. The first result in this direction was given by Ran and Reurings
[11]who presented its applications to matrix equations. Subsequently, Nieto and Rodrı́guez-
López [12] extended this result for nondecreasing mappings and applied it to obtain a unique
solution for a first order ordinary differential equation with periodic boundary conditions.
Thereafter, several authors obtained many fixed point theorems in ordered metric spaces. For
more details see [13–20] and the references cited therein.

In this paper, an attempt has been made to derive some common fixed point theorems
for three relatively asymptotically regularmappings defined on an orbitally complete ordered
metric space, using orbital continuity of one of the involved maps and conditions involving
a generalized altering distance function. The presented theorems generalize, extend, and
improve some recent results given in [7, 14, 21, 22]. In the hypotheses, we have considered
the space as not necessarily complete, the mapsR,S, andT as not necessarily continuous and
the range of S and Tmay not be contained in the range of R.

2. Results

2.1. Notations and Definitions

First, we introduce some further notations and definitions that will be used later.
If (X,�) is a partially ordered set, then x, y ∈ X are called comparable if x � y or

y � x holds. A subset K of X is said to be well ordered if every two elements of K are
comparable. If T : X → X is such that, for x, y ∈ X, x � y implies Tx � Ty, then the
mapping T is said to be nondecreasing.

Definition 2.1. Let (X,�) be a partially ordered set and S,T : X → X.

(1) [23] The pair (S,T) is called weakly increasing if Sx � TSx and Tx � STx for all
x ∈ X.

(2) [24] The pair (S,T) is called partially weakly increasing if Sx � TSx for all x ∈ X.

(3) [24] The mapping S is called a weak annihilator of T if STx � x for all x ∈ X.

(4) [24] The mapping S is called dominating if x � Sx for each x ∈ X.

Note that none of two weakly increasing mappings need to be nondecreasing. There
exist some examples to illustrate this fact in [23]. Obviously, the pair (S,T) is weakly
increasing if and only if the ordered pairs (S,T) and (T,S) are partially weakly increasing.
Following is an example of an ordered pair (S,T) which is partially weakly increasing but
not weakly increasing.

Example 2.2 (see [24]). Let X = [0, 1] be endowed with usual ordering.

(1) Let S,T : X → X be defined by Sx = x2 and Tx =
√
x. Clearly, (S,T) is partially

weakly increasing. But Tx =
√
x � x = STx for x ∈ (0, 1) implies that (T,S) is not

partially weakly increasing.

(2) Let S,T : X → X be defined by Sx = x2 and Tx = x3. Obviously, STx = x6 ≤ x for
all x ∈ X. Thus S is a weak annihilator of T.

(3) Let S : X → X be defined by Sx = n
√
x. Since x ≤ n

√
x = Sx for all x ∈ X, S is a

dominating map.
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Definition 2.3 (see [25, 26]). Let (X, d) be a metric space and f, g : X → X. The mappings f
and g are said to be compatible if limn→∞d(fgxn, gfxn) = 0, whenever {xn} is a sequence in
X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

Definition 2.4. Let X be a nonempty set. Then (X, d,�) is called an ordered metric space if

(i) (X, d) is a metric space,

(ii) (X,�) is a partially ordered set.

2.2. Main Results

The first main result is as follows.

Theorem 2.5. Let (X, d,�) be an ordered metric space. Let S,T,R : X → X be given mappings
satisfying

Ψ1
(
d
(
Sx,Ty

))
≤ ψ1

(
M[S,T,R]

(
x, y

))
− ψ2

(
M[S,T,R]

(
x, y

))
, (2.1)

for all x, y ∈ O(x0;S,T,R) (for some x0) such that Rx and Ry are comparable, where

M[S,T,R]
(
x, y

)
=
(
d
(
Rx,Ry

)
, d(Rx,Sx), d

(
Ry,Ty

)
,
1
2
[
d
(
Rx,Ty

)
+ d

(
Ry,Sx

)]
)
, (2.2)

and ψ1 and ψ2 are generalized altering distance functions (inF4) andΨ1(t) = ψ1(t, t, t, t). We assume
the following hypotheses:

(i) (S,T) is a.r. with respect to R at x0 ∈ X;

(ii) X is (S,T,R)-orbitally complete at x0;

(iii) (R,S) and (R,T) are partially weakly increasing;

(iv) S and T are dominating maps;

(v) S and T are weak annihilators of R;
(vi) for a nondecreasing sequence {xn}, xn � yn for all n and yn → u as n → ∞ imply that

xn � u for all n ∈ N.

Assume either

(a) S and R are compatible; S or R is orbitally continuous at x0 or

(b) T and R are compatible; T or R is orbitally continuous at x0.

Then S,T and R have a common fixed point. Moreover, the set of common fixed points of S,T, and R
in O(x0;S,T,R) is well ordered if and only if it is a singleton.

Proof. Since (S,T) is a.r. with respect to R at x0 in X, there exists a sequence {xn} in X such
that

Sx2n−2 = Rx2n−1, Tx2n−1 = Rx2n, ∀n ∈ N. (2.3)
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By the given assumptions, x2n−2 � Sx2n−2 = Rx2n−1 � SRx2n−1 � x2n−1, and x2n−1 � Tx2n−1 =
Rx2n � TRx2n � x2n. Thus, for all n ≥ 1, we have

xn � xn+1. (2.4)

In view of (i), we have

lim
n→∞

d(Rxn,Rxn+1) = 0. (2.5)

Now, we assert that {Rxn} is a Cauchy sequence in the metric space O(x0;S,T,R).
From (2.5), it will be sufficient to prove that {Rx2n} is a Cauchy sequence. We proceed

by negation and suppose that {Rx2n} is not a Cauchy sequence. Then, there exists ε > 0 for
which we can find two sequences of positive integers {m(i)} and {n(i)} such that for all pos-
itive integers i,

n(i) > m(i) > i, d
(
Rx2m(i),Rx2n(i)

)
≥ ε, d

(
Rx2m(i),Rx2n(i)−2

)
< ε. (2.6)

From (2.6) and using the triangular inequality, we get

ε ≤ d
(
Rx2m(i),Rx2n(i)

)

≤ d
(
Rx2m(i),Rx2n(i)−2

)
+ d

(
Rx2n(i)−2,Rx2n(i)−1

)
+ d

(
Rx2n(i)−1,Rx2n(i)

)

< ε + d
(
Rx2n(i)−2,Rx2n(i)−1

)
+ d

(
Rx2n(i)−1,Rx2n(i)

)
.

(2.7)

Letting i → ∞ in the above inequality and using (2.5), we obtain

lim
i→∞

d
(
Rx2m(i),Rx2n(i)

)
= ε. (2.8)

Again, the triangular inequality gives us

∣∣d
(
Rx2n(i),Rx2m(i)−1

)
− d

(
Rx2n(i),Rx2m(i)

)∣∣ ≤ d
(
Rx2m(i)−1,Rx2m(i)

)
. (2.9)

Letting i → ∞ in the above inequality and using (2.5) and (2.8), we get

lim
i→∞

d
(
Rx2n(i),Rx2m(i)−1

)
= ε. (2.10)

Similarly, we have

lim
i→∞

d
(
Rx2n(i)+1,Rx2m(i)−1

)
= ε. (2.11)

On the other hand, we have

d
(
Rx2n(i),Rx2m(i)

)
≤ d

(
Rx2n(i),Rx2n(i)+1

)
+ d

(
Rx2n(i)+1,Rx2m(i)

)

= d
(
Rx2n(i),Rx2n(i)+1

)
+ d

(
Tx2n(i),Sx2m(i)−1

)
.

(2.12)
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Then, from (2.5), (2.8), and the continuity of Ψ1, we get by letting i → ∞ in (2.1)

Ψ1(ε) ≤ lim
i→∞

Ψ1
(
d
(
Sx2m(i)−1,Tx2n(i)

))
. (2.13)

Now, using the considered contractive condition (2.1) for x = x2m(i)−1 and y = x2n(i), we have

Ψ1
(
d
(
Sx2m(i)−1,Tx2n(i)

))

≤ ψ1

(
d
(
Rx2m(i)−1,Rx2n(i)

)
, d

(
Rx2m(i)−1,Rx2m(i)

)
, d

(
Rx2n(i),Rx2n(i)+1

)
,

1
2
[
d
(
Rx2m(i)−1,Rx2n(i)+1

)
+ d

(
Rx2n(i),Rx2m(i)

)]
)

− ψ2

(
d
(
Rx2m(i)−1,Rx2n(i)

)
, d

(
Rx2m(i)−1,Rx2m(i)

)
, d

(
Rx2n(i),Rx2n(i)+1

)
,

1
2
[
d
(
Rx2m(i)−1,Rx2n(i)+1

)
+ d

(
Rx2n(i),Rx2m(i)

)]
)
.

(2.14)

Then, from (2.5), (2.10), (2.11), and the continuity of ψ1 and ψ2, we get by letting i → ∞ in the
above inequality

lim
i→∞

Ψ1
(
d
(
Sx2m(i)−1,Tx2n(i)

))
≤ ψ1(ε, 0, 0, ε) − ψ2(ε, 0, 0, ε) ≤ Ψ1(ε) − ψ2(ε, 0, 0, ε). (2.15)

Now, combining (2.13) with the above inequality, we get

Ψ1(ε) ≤ Ψ1(ε) − ψ2(ε, 0, 0, ε), (2.16)

which implies that ψ2(ε, 0, 0, ε) = 0, which is a contradiction since ε > 0. Hence {Rxn} is a
Cauchy sequence in O(x0;S,T,R). Since X is (S,T,R)-orbitally complete at x0, there exists
some z ∈ X such that Rxn → z as n → ∞.

Finally, we prove the existence of a common fixed point of the three mappings S,T,
and R.

We have

Rx2n+1 = Sx2n −→ z as n −→ ∞,

Rx2n+2 = Tx2n+1 −→ z as n −→ ∞.
(2.17)

Suppose that (a) holds. Since {S,R} are compatible, we have

lim
n→∞

SRx2n+2 = lim
n→∞

RSx2n+2 = Rz. (2.18)
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Also, x2n+1 � Tx2n+1 = Rx2n+2. Now

Ψ1(d(SRx2n+2,Tx2n+1))

≤ ψ1

(
d(RRx2n+2,Rx2n+1), d(RRx2n+2,SRx2n+2), d(Rx2n+1,Tx2n+1),

1
2
[d(RRx2n+2,Tx2n+1) + d(SRx2n+2,Rx2n+1)]

)

− ψ2

(
d(RRx2n+2,Rx2n+1), d(RRx2n+2,SRx2n+2), d(Rx2n+1,Tx2n+1),

1
2
[d(RRx2n+2,Tx2n+1) + d(SRx2n+2,Rx2n+1)]

)
.

(2.19)

Assume that R is orbitally continuous. Passing to the limit as n → ∞, we obtain

Ψ1(d(Rz, z)) ≤ ψ1(d(Rz, z), 0, 0, d(Rz, z)) − ψ2(d(Rz, z), 0, 0, d(Rz, z))

≤ Ψ1(d(Rz, z)) − ψ2(d(Rz, z), 0, 0, d(Rz, z)),
(2.20)

so ψ2(d(Rz, z), 0, 0, d(Rz, z)) = 0, which implies that

Rz = z. (2.21)

Now, x2n+1 � Tx2n+1 andTx2n+1 → z as n → ∞, so by the assumption we have x2n+1 � z and
(2.1) becomes

Ψ1(d(Sz,Tx2n+1)) ≤ ψ1

(
d(Rz,Rx2n+1), d(Sz,Rz), d(Tx2n+1,Rx2n+1) ,

1
2
[d(Rz,Tx2n+1) + d(Sz,Rx2n+1)]

)

− ψ2

(
d(Rz,Rx2n+1), d(Sz,Rz), d(Tx2n+1,Rx2n+1),

1
2
[d(Rz,Tx2n+1) + d(Sz,Rx2n+1)]

)
.

(2.22)

Passing to the limit as n → ∞ in the above inequality and using (2.21), it follows that

Ψ1(d(Sz, z)) ≤ ψ1

(
0, d(Sz, z), 0, 1

2
d(Sz, z)

)
− ψ2

(
0, d(Sz, z), 0, 1

2
d(Sz, z)

)

≤ Ψ1(d(Sz, z)) − ψ2

(
0, d(Sz, z), 0, 1

2
d(Sz, z)

)
,

(2.23)

which holds unless ψ2(0, d(Sz, z), 0, (1/2)d(Sz, z)) = 0, so

Sz = z. (2.24)
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Now, since x2n � Sx2n and Sx2n → z as n → ∞ implies that x2n � z, from (2.1)

Ψ1(d(Sx2n,Tz))

≤ ψ1

(
d(Rx2n,Rz), d(Rx2n,Sx2n), d(Rz,Tz),

1
2
(d(Rx2n,Tz) + d(Sx2n,Rz))

)

− ψ2

(
d(Rx2n,Rz), d(Rx2n,Sx2n), d(Rz,Tz),

1
2
(d(Rx2n,Tz) + d(Sx2n,Rz))

)
.

(2.25)

Passing to the limit as n → ∞, we have

Ψ1(d(z,Tz)) ≤ ψ1(0, 0, d(z,Tz), d(z,Tz)) − ψ2(d(z,Tz), 0, 0, d(z,Tz))

≤ Ψ1(d(z,Tz)) − ψ2(0, 0, d(z,Tz), d(z,Tz)),
(2.26)

which gives that

z = Tz. (2.27)

Therefore, Sz = Tz = Rz = z, hence z is a common fixed point of R,S, and T. The proof is
similar when S is orbitally continuous.

Similarly, the result follows when condition (b) holds.
Now, suppose that the set of common fixed points of S,T, and R in O(x0;S,T,R) is

well ordered. We claim that it cannot contain more than one point. Assume to the contrary
that Su = Tu = Ru = u and Sv = Tv = Rv = v but u/=v. By supposition, we can replace x by
u and y by v in (2.1) to obtain

Ψ1(d(u, v)) = Ψ1(d(Su,Tv))

≤ ψ1

(
d(Ru,Rv), d(Ru,Su), d(Rv,Tv), 1

2
[d(Ru,Tv) + d(Su,Rv)]

)

− ψ2

(
d(Ru,Rv), d(Ru,Su), d(Rv,Tv), 1

2
[d(Ru,Tv) + d(Su,Rv)]

)

= ψ1(d(u, v), 0, 0, d(u, v)) − ψ2(d(u, v), 0, 0, d(u, v))

< Ψ1(d(u, v)),

(2.28)

a contradiction. Hence, u = v. The converse is trivial.

Now, it is easy to state a corollary of Theorem 2.5 involving a contraction of integral
type.

Corollary 2.6. Let S,T, and R satisfy the conditions of Theorem 2.5, except that condition (2.1) is
replaced by the following: there exists a positive Lebesgue integrable function u on R+ such that∫ε
0 u(t)dt > 0 for each ε > 0 and that

∫Ψ1(d(Sx,Ty))

0
u(t)dt ≤

∫ψ1(M[S,T,R](x,y))

0
u(t)dt −

∫ψ2(M[S,T,R](x,y))

0
u(t)dt. (2.29)
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Then, S,T, and R have a common fixed point. Moreover, the set of common fixed points of S,T, and
R in O(x0;S,T,R) is well ordered if and only if it is a singleton.

Remark 2.7. If we take

ψ1(t1, t2, t3, t4) = max{t1, t2, t3, t4}, ψ2(t1, t2, t3, t4) = (1 − k)max{t1, t2, t3, t4}, (2.30)

for k ∈ (0, 1), then Ψ1(t) = t for all t ≥ 0, and the contractive condition (2.1) becomes

d
(
Sx,Ty

)
≤ kmax

{
d
(
Rx,Ry

)
, d(Rx,Sx), d

(
Ry,Ty

)
,
1
2
[
d
(
Rx,Ty

)
+ d

(
Ry,Sx

)]
}
,

(2.31)

which corresponds to the contraction given by Theorem 2.1 in [24] by taking ψ(t) = t and
ϕ(t) = (1−k)t. Hence, the result of Abbas et al. [24] is covered by Theorem 2.5 for three maps.

Other results could be derived for other choices of ψ1 and ψ2.

As consequences of Theorem 2.5, we may state the following corollaries.

Corollary 2.8. Let (X, d,�) be an ordered metric space. Let T,R : X → X be given mappings
satisfying

Ψ1
(
d
(
Tx,Ty

))
≤ ψ1

(
d
(
Rx,Ry

)
, d(Rx,Tx), d

(
Ry,Ty

)
,
1
2
[
d
(
Rx,Ty

)
+ d

(
Ry,Tx

)]
)

− ψ2

(
d
(
Rx,Ry

)
, d(Rx,Tx), d

(
Ry,Ty

)
,
1
2
[
d
(
Rx,Ty

)
+ d

(
Ry,Tx

)]
)
,

(2.32)

for all x, y ∈ O(x0;T,T,R) such that Rx and Ry are comparable, where ψ1 and ψ2 are generalized
altering distance functions (in F4) and Ψ1(t) = ψ1(t, t, t, t). We assume the following hypotheses:

(i) T is a.r. with respect to R at x0;

(ii) X is (T,R)-orbitally complete at x0;

(iii) T or R is orbitally continuous at x0;

(iv) (T,R) is partially weakly increasing;

(v) T is a dominating map;

(vi) T is a weak annihilator of R;

(vii) T and R are compatible.

Let for a nondecreasing sequence {xn} with xn � yn for all n, yn → u as n → ∞ imply that xn � u
for all n ∈ N.

Then T and R have a common fixed point. Moreover, the set of common fixed points of T and
R in O(x0;T,T,R) is well ordered if and only if it is a singleton.
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Corollary 2.9. Let (X, d,�) be an ordered metric space. Let T : X → X be a mapping satisfying

Ψ1
(
d
(
Tx,Ty

))
≤ ψ1

(
d
(
x, y

)
, d(x,Tx), d

(
y,Ty

)
,
1
2
[
d
(
x,Ty

)
+ d

(
y,Tx

)]
)

− ψ2

(
d
(
x, y

)
, d(x,Tx), d

(
y,Ty

)
,
1
2
[
d
(
x,Ty

)
+ d

(
y,Tx

)]
)
,

(2.33)

for all (x, y) ∈ O(x0;T) such that x and y are comparable, where ψ1 and ψ2 are generalized altering
distance functions (in F4) and Ψ1(t) = ψ1(t, t, t, t). We assume the following hypotheses:

(i) T is a.r. at some point x0 of X;

(ii) X is T-orbitally complete at x0;

(iii) T is a dominating map.

Let for a nondecreasing sequence {xn} with xn � yn for all n, yn → u as n → ∞ imply that xn � u
for all n ∈ N.

Then T has a fixed point. Moreover, the set of fixed points of T in O(x0;T) is well ordered if
and only if it is a singleton.

We present an example showing the usage of our results.

Example 2.10. Let the set X = [0,+∞) be equipped with the usual metric d and the order de-
fined by

x � y ⇐⇒ x ≥ y. (2.34)

Consider the following self-mappings on X:

Rx = 6x, Sx =

⎧
⎪⎨

⎪⎩

1
2
x, 0 ≤ x ≤ 1

2
,

x, x >
1
2
,

Tx =

⎧
⎪⎨

⎪⎩

1
3
x, 0 ≤ x ≤ 1

3
,

x, x >
1
3
.

(2.35)

Take x0 = 1/2. Then it is easy to show that

O(x0;S,T,R) ⊂
{

1
2k · 3l

: k, l ∈ N
}
, O(x0;S,T,R) = O(x0;S,T,R) ∪ {0} (2.36)

and all the conditions (i)–(vi) and (a)-(b) of Theorem 2.5 are fulfilled. Take ψ1(t1, t2, t3, t4) =
max{t1, t2, t3, t4} and ψ2(t1, t2, t3, t4) = (5/6)max{t1, t2, t3, t4}. Then contractive condition (2.1)
takes the form

∣∣∣∣
1
2
x − 1

3
y

∣∣∣∣ ≤
1
6
max

{∣∣6x − 6y
∣∣,
11
2
x,

17
3
y,

1
2

[∣∣∣∣6x − 1
3
y

∣∣∣∣ +
∣∣∣∣6y − 1

2
x

∣∣∣∣

]}
, (2.37)
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for x, y ∈ O(x0;S,T,R). Using substitution y = tx, t > 0, the last inequality reduces to

|3 − 2t| ≤ max
{
6|1 − t|, 11

2
,
17
3
t,
1
2

[∣∣
∣
∣6 −

1
3
t

∣
∣
∣
∣ +

∣
∣
∣
∣6t −

1
2

∣
∣
∣
∣

]}
, (2.38)

and can be checked by discussion on possible values for t > 0. Hence, all the conditions of
Theorem 2.5 are satisfied and S,T,R have a common fixed point (which is 0).

Remark 2.11. It was shown by examples in [22] that (in similar situations)

(1) if the contractive condition is satisfied just on O(x0;S,T,R), there might not exist a
(common) fixed point;

(2) under the given hypotheses (common), fixed point might not be unique in the
whole space X.
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[24] M. Abbas, T. Nazir, and S. Radenović, “Common fixed points of four maps in partially ordered metric
spaces,” Applied Mathematics Letters, vol. 24, no. 9, pp. 1520–1526, 2011.

[25] G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no.
4, pp. 261–263, 1976.

[26] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and
Mathematical Sciences, vol. 9, no. 4, pp. 771–779, 1986.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


