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This paper studies the adaptive control problem of the Korteweg-de Vries-Burgers equation. Using
the Lyapunov function method, we prove that the closed-loop system including the parameter
estimator as a dynamic component is globally L2 stable. Furthermore, we show that the state of
the system is regulated to zero by developing an alternative to Barbalat’s lemma which cannot be
used in the present situation. The closed-loop system is shown to be well posed.

1. Introduction

In this paper, we are concerned with the problem of boundary adaptive control of the KdVB
equation:

ut − εuxx + uux + δuxxx = 0 , 0 < x < 1, t > 0,

ux(0, t) = ux(1, t) = 0, t > 0,

uxx(0, t) = ϕ0, t > 0,

uxx(1, t) = ϕ1, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

(1.1)

where the viscosity parameter ε > 0. The dispersion parameter δ > 0 is unknown, ϕ0 and ϕ1

are control inputs, and u0(x) is an initial state in an appropriate function space. When ε = 0,
the KdVB equation becomes the KdV equation; when δ = 0, it becomes the Burgers equation.
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The problem of control of the Burgers, KdV, and KdVB equations has received
extensive attention for several decades [1–7]. In [2], Liu and Krstic obtained the adaptive
control of the Burgers equation. Up to now, it seems not to have many discussions on the
adaptive control of the KdV and KdVB equation. In this paper we establish a Barbalat-like
lemma [8] and use the Lyapunov function method to prove that the system of the KdVB
equation is globally L2 stable under the boundary conditions. Using Banach fixed point
theorem, we proved the well-posedness of the KdVB equation under the given boundary
condition.

The rest of the paper is organized as follows. We present our main results in Section 2.
In Section 3, we establish the alternative to Barbalat’s lemma. In Section 4, we prove that
the KdVB equation with the previous adaptive boundary feedbacks is globally L2 stable. By
the alternative to Barbalat’s lemma, we show the regulation of the solution. In Section 5, we
establish the global existence and uniqueness of the solution with help of the Banach fixed
point theorem.

We now introduce some notations used throughout the paper. Hs(0, 1) denotes the
usual Sobolev space [9] for any s ∈ R. For s ≥ 0,Hs

0(0, 1) denotes the completion of C∞
0 (0, 1)

inHs(0, 1), where C∞
0 (0, 1) denotes the space of all infinitely differentiable functions on (0, 1)

with compact support in (0, 1). TheHm norm is defined in the usual way,m = 0, 1, 2, . . .. The
norm on L2(0, 1) is denoted by ‖ · ‖. It is easy to see that

‖u‖2 ≤ 2‖u‖2H2 . (1.2)

Let X be the Banach space and T > 0. We denote by Cn([0, T];X) the space of n times
continuously differentiable functions defined on [0, T] with values in X. We denote by (·, ·)
the scalar product of L2(0, 1).

2. Main Result

For notational convenience, in what follows, we denote

η̃0 = η0 − 1
6δ
, η̃1 = η1 − 1

6δ
, (2.1)

where η0 and η1 will be used as estimates of 1/6δ.
Consider the system

ut − εuxx + uux + δuxxx = 0,

ux(0, t) = ux(1, t) = 0,

uxx(0, t) = −k
[

u(0, t) + u(0, t)7
]

− η0
[

u(0, t) + u(0, t)3
]

,

uxx(1, t) = k
[

u(1, t) + u(1, t)7
]

+ η1
[

u(1, t) + u(1, t)3
]

,



Journal of Applied Mathematics 3

η̇0 = γ
[

u(0, t)2 + u(0, t)4
]

,

η̇1 = γ
[

u(1, t)2 + u(1, t)4
]

,

u(x, 0) = u0(x), η0(0) = η00, η1(0) = η01
(2.2)

satisfies the following theorem.

Theorem 2.1. Suppose that k > 0, γ > 0, the initial condition u0 ∈ H2(0, 1), and η00 ≥ 0, η01 ≥ 0. If
the problem (2.2) has a global solution (u, η0, η1), then one has the equilibrium u(x) ≡ 0, η̃0 = η̃1 = 0
is globally L2-stable, that is:

‖u(t)‖2 + δ

γ
η̃0(t)2 +

δ

γ
η̃1(t)2 ≤

∥

∥

∥u0
∥

∥

∥

2
+
δ

γ
η̃0(0)2 +

δ

γ
η̃1(0)2, ∀t ≥ 0 (2.3)

and u is regulated to zero in L2 sense:

lim
t→∞

‖u(t)‖ = 0. (2.4)

3. The Alternative to Barbalat’s Lemma

Recently, the Barbalat’s lemma has more and more important applications in control theory,
especially in the adaptive control theory. It is easy to connect with Lyapunov method to
analyze the stability and convergence of the system. In this section, we establish the following
alternative to Barbalat’s lemma [8].

Lemma 3.1. Suppose that the function f(t) defined on [0,∞) satisfies the following conditions:

(i) f(t) ≥ 0 for all t ∈ [0,∞),

(ii) f(t) is differentiable on [0,∞) and there exists a constant M such that f ′(t) ≤ M,
for all t ≥ 0,

(iii)
∫∞
0 f(t)dt <∞.

Then one has

lim
t→∞

f(t) = 0. (3.1)

Proof. Sincef ′(t) ≤M, for all t ≥ 0, we have f(t) is uniformly continuous, and

∣

∣

∣

∣f2(t)
∣

∣ − ∣

∣f1(t)
∣

∣

∣

∣ ≤ ∣

∣f2(t) − f1(t)
∣

∣, (3.2)

therefore |f(t)| is uniformly continuous.
Setting

F(t) =
∫ t

0

∣

∣f(τ)
∣

∣dτ, t ≥ 0, (3.3)

we have Ḟ(t) = |f(t)|, such that Ḟ(t) is also uniformly continuous.
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By the standard Barbalat’s lemma, we have limt→∞Ḟ(t) = 0, then

lim
t→∞

f(t) = 0. (3.4)

4. Proof of Stabilization

In this section, we prove our main result by the Lyapunov method. Nowwe present the proof
of Theorem 2.1; first we prove the stability of the system, and then we prove the exisetence
and uniqueness of the solution.

Step 1. Stability (2.3). We follow the Lyapunov approach: to this end, we introduce the energy
function

E =
∫1

0
u2dx (4.1)

and the Lyapunov function

V = E +
δ

γ

(

η̃20 + η̃
2
1

)

, (4.2)

where γ is a positive constant. Using (1.1) and integrating by parts, we obtain

V̇ = 2
∫1

0
u(εuxx − uux − δuxxx)dx +

2δ
γ

(

η0 − 1
6δ

)

η̇0 +
2δ
γ

(

η1 − 1
6δ

)

η̇1

= 2εuux|10 − 2ε
∫1

0
u2xdx − 2

3
u3
∣

∣

∣

1

0
− 2δuuxx|10 + δu2x

∣

∣

∣

1

0
+
2δ
γ

(

η0 − 1
6δ

)

η̇0 +
2δ
γ

(

η1 − 1
6δ

)

η̇1

= − 2ε
∫1

0
u2xdx − 2

3

(

u(1, t)3 − u(0, t)3
)

+ 2δu(0, t)ϕ0 − 2δu(1, t)ϕ1

+
2δ
γ

(

η0 − 1
6δ

)

η̇0 +
2δ
γ

(

η1 − 1
6δ

)

η̇1

≤ 2δu(0, t)ϕ0 − 2δu(1, t)ϕ1 − 2ε
∫1

0
u2xdx +

1
3

(

u(0, t)4 + u(0, t)2 + u(1, t)4 + u(1, t)2
)

+
2δ
γ

(

η0 − 1
6δ

)

η̇0 +
2δ
γ

(

η1 − 1
6δ

)

η̇1

= 2δu(0, t)ϕ0 − 2δu(1, t)ϕ1 − 2ε
∫1

0
u2xdx + 2δ

(

1
6δ

− η0 + η0
)

(

u(0, t)4 + u(0, t)2
)

+ 2δ
(

1
6δ

− η1 + η1
)

(

u(1, t)4 + u(1, t)2
)

+
2δ
γ

(

η0 − 1
6δ

)

η̇0 +
2δ
γ

(

η1 − 1
6δ

)

η̇1
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= − 2ε
∫1

0
u2xdx + 2δu(0, t)

[

ϕ0 + η0
(

u(0, t)3 + u(0, t)
)]

− 2δu(1, t)
[

ϕ1 − η1
(

u(1, t)3 + u(1, t)
)]

+ 2δ
(

1
6δ

− η0
)(

u(0, t)4 + u(0, t)2 − η̇0
γ

)

+ 2δ
(

1
6δ

− η1
)(

u(1, t)4 + u(1, t)2 − η̇1
γ

)

.

(4.3)

This leads us to select the adaptive feedback control:

η̇0 = γ
[

u(0, t)2 + u(0, t)4
]

,

η̇1 = γ
[

u(1, t)2 + u(1, t)4
]

,

ϕ0 = −k
[

u(0, t) + u(0, t)7
]

− η0
[

u(0, t) + u(0, t)3
]

,

ϕ1 = k
[

u(1, t) + u(1, t)7
]

+ η1
[

u(1, t) + u(1, t)3
]

,

(4.4)

where k is any positive constant. By this control, we obtain

V̇ ≤ −2ε
∫1

0
u2xdx − 2δk

[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

. (4.5)

Thus

‖u(t)‖2 + δ

γ
η̃0(t)2 +

δ

γ
η̃1(t)2 ≤

∥

∥

∥u0
∥

∥

∥

2
+
δ

γ
η̃0(0)2 +

δ

γ
η̃1(0)2, t ≥ 0. (4.6)

This shows that (2.3) holds.
And we have:

2ε
∫∞

0

∫1

0
u2xdx dt + 2δk

∫∞

0

[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

dt

≤
∥

∥

∥u0
∥

∥

∥

2
+
δ

γ
η̃0(0)2 +

δ

γ
η̃1(0)2.

(4.7)

Step 2. Regulation (2.4). To prove (2.4), it suffices to verify conditions (ii) and (iii) of
Lemma 3.1.

By (1.2) and (4.7), we obtain

∫∞

0

∥

∥

∥u(t)2
∥

∥

∥dt ≤ C(δ, γ, k)
[

∥

∥

∥u0
∥

∥

∥

2
+ η̃0(0)2 + η̃1(0)2

]

. (4.8)
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Here and in the sequel,C = C(δ, γ, k)denotes a generic positive constant depending on ε, γ, k,
which may vary from line to line. Thus condition (iii) of Lemma 3.1 is fulfilled. On the other
hand, using Young inequality and noting that a4 ≤ a8 + a2, a2 ≤ a6 + 1, we have

d

dt

(

‖u(t)‖2
)

= 2
∫1

0
u(εuxx − uux − δuxxx)dx

= 2εuux|10 − 2ε
∫1

0
u2xdx − 2

3
u3
∣

∣

∣

1

0
− 2δuuxx|10 + δu2x

∣

∣

∣

1

0

= − 2δu(0, t)
{

k
[

u(0, t) + u(0, t)7
]

+ η0
[

u(0, t) + u(0, t)3
]}

− 2δu(1, t)
{

k
[

u(1, t) + u(1, t)7
]

+ η1
[

u(1, t) + u(1, t)3
]}

− 2
3

[

u(1, t)3 − u(0, t)3
]

− 2ε
∫1

0
u2xdx

≤ − 2δk
[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

− 2δ
{

η0
[

u(0, t)2 + u(0, t)4
]

+ η1
[

u(1, t)2 + u(1, t)4
]}

+
1
3

[

u(0, t)2 + u(0, t)4 + u(1, t)2 + u(1, t)4
]

≤ − 2δk
[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

+ δk
[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

+ C(δ, k)
(

η20 + η
2
1

)

+ δk
[

u(0, t)2 + u(0, t)8 + u(1, t)2 + u(1, t)8
]

+ C(δ, k)

≤ C(δ, k)
(

1 + η20 + η
2
1

)

(4.9)

which, combining with (4.6), implies condition (ii) of Lemma 3.1.
Hence

lim
t→∞

‖u(t)‖ = 0. (4.10)

5. Well-Posedness

In this section, we use the Banach fixed point theorem to prove that the problem (2.2) is well
posed. To this end, for any constant T > 0, we first consider the following linear boundary
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value problem for any fixed λ ∈ C([0, 1] × [0, T]):

ut − εuxx + δuxxx + λux = 0,

ux(0, t) = ux(1, t) = 0,

uxx(0, t) = −k
[

λ(0, t) + λ(0, t)7
]

− η0
[

λ(0, t) + λ(0, t)3
]

,

uxx(1, t) = k
[

λ(1, t) + λ(1, t)7
]

+ η1
[

λ(1, t) + λ(1, t)3
]

,

η̇0 = γ
[

λ(0, t)2 + λ(0, t)4
]

,

η̇1 = γ
[

λ(1, t)2 + λ(1, t)4
]

,

u(x, 0) = u0(x), η0(0) = η00, η1(0) = η01.

(5.1)

We introduce some notation as follows.
If u1 and u2 are two solutions of the problem (5.1) corresponding to λ1 and λ2 respec-

tively, we set

z = u1 − u2, ω = λ1 − λ2. (5.2)

For a general function φ = φ(x, t), we set

∥

∥φ
∥

∥

∞ = max
0≤x≤1
0≤t≤T

∣

∣φ(x, t)
∣

∣

H2
0(0, 1) =

{

u ∈ H2(0, 1) : ux(0, t) = ux(1, t) = 0
}

.

(5.3)

Lemma 5.1. If λ ∈ C([0, T];C[0, 1]) and the initial data u0(x) ∈ H2
0(0, 1), then the problem (5.1)

has a unique weak solution u satisfying u ∈ C([0, T];H2
0(0, 1)). Moreover, one has

‖zx(t)‖2 ≤ T‖ω‖2∞F
(

‖λ1‖∞, ‖λ2‖∞,
∥

∥

∥z0x

∥

∥

∥

)

, (5.4)

where F(x1, x2, x3) is a positive continuous function.

Proof. We use the standard Galerkin method. This method relies on a number of prior
estimates which can be usually obtained by using Gronwall’s inequality.
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Step 1. Transformation to a Homogeneous Problem. In order to use the Galerkin meth-od, we
transform the problem (5.1) into a homogenous boundary value problem. We first assume
that λ is infinitely differentiable with respect to both x and t. Set

ψ =
1
6
(1 − x)3

{

−k
[

λ(0, t) + λ(0, t)7
]

− η0
[

λ(0, t) + λ(0, t)3
]}

+
1
6
x3
{

k
[

λ(1, t) + λ(1, t)7
]

+ η1
[

λ(1, t) + λ(1, t)3
]}

,

v = u − ψ.

(5.5)

Then it is clear that v satisfies the following equation:

vt − εvxx + δvxxx + λvx = f,

vx(0, t) = vx(1, t) = vxx(0, t) = vxx(1, t) = 0,

v(x, 0) = v0(x),

(5.6)

where

f(x, t) = −ψt + εψxx − δψxxx − λψx,

v0(x) = u0(x) − ψ(0) ∈ H2
0(0, 1).

(5.7)

Step 2. Approximate Problem. Set

H3
0(0, 1) =

{

ϕ ∈ H3(0, 1) : ϕx(0) = ϕx(1) = ϕxx(0) = ϕxx(1) = 0
}

. (5.8)

Let {ϕi}∞i=1 be an orthonormal basis inH2
0(0, 1) such that each function ϕi is inH3

0(0, 1). Since
v0(x) ∈ H2

0(0, 1), v
0(x) can be expanded as

v0(x) =
∞
∑

j=1

bjϕj(x). (5.9)

Set

vn(x, t) =
n
∑

j=1

aj(t)ϕj(x), v0
n(x) =

n
∑

j=1

bjϕj(x). (5.10)

Then we have

∥

∥

∥v0 − v0
n

∥

∥

∥

2

H2
=

∞
∑

j=n+1

b2j −→ 0, as n −→ ∞. (5.11)
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Consider the following approximate problem:

vnt − εvnxx + δvnxxx + λvnx = f, (5.12)

v(x, 0) = v0(x). (5.13)

Multiplying (5.12) by ϕi and integrating from 0 to 1, we obtain

n
∑

j=1

[

αij ȧj(t) + βij(t)aj(t)
]

= γi(t),

ai(0) = bi , i = 1, . . . , n,

(5.14)

where

αij =
(

ϕj, ϕi
)

,

βij = −ε(ϕjxx, ϕi
)

+ δ
(

ϕjxxx, ϕi
)

+
(

λϕjx, ϕi
)

,

γi(t) =
(

f, ϕi
)

.

(5.15)

Since the matrix αij is nonsingular, by the classical theory of ordinary differential equations,
the linear problem (5.14) has a unique continuously differential solution on [0, T]. Therefore,
the approximate problems (5.12) and (5.13) have a unique solution vn with vn ∈ C1

([0, T],H3
0).

Step 3. A Priori Estimate on vn. In what follows, we denote by c = c(ε, δ, T, λ, v0)
a positive generic constant, independent of n, which may vary from line to line. Multiplying
(5.12) by vn and integrating from 0 to 1, we have

d

dt

(

‖vn(t)‖2
)

= 2
∫1

0
vn

(

εvnxx − δvnxxx − λvnx + f
)

dx

= 2εvnvnx|10−2ε
∫1

0
v2
nxdx − 2δvnvnxx|10 + 2δv2

nx

∣

∣

∣

1

0
− 2λ

∫1

0
vnvnxdx+2

∫1

0
fvndx

= −2ε‖vnx(t)‖2 − 2(λvnx, vn) + 2
(

f, vn
)

≤ −2ε‖vnx(t)‖2 + ε‖vnx(t)‖2 + ‖λvn(t)‖2
ε

+
∥

∥f(t)
∥

∥

2 + ‖vn(t)‖2

≤ ∥

∥f(t)
∥

∥

2 +

(

1 +
‖λ‖2∞
ε

)

‖vn(t)‖2.

(5.16)
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By Gronwall-Bellman’s inequality and using inequality ‖v0
n − v0‖ ≤ ‖v0

n − v0‖H2 ,

‖vn(t)‖2 ≤
[

∥

∥

∥v0
n

∥

∥

∥

2
+
∫T

0

∥

∥f(t)
∥

∥

2
dt

]

exp

[(

1 +
‖λ‖2∞
ε

)

t

]

≤
[

2
∥

∥

∥v0
n

∥

∥

∥

2
+ 2

∥

∥

∥v0
n − v0

∥

∥

∥

2

H2
+
∫T

0

∥

∥f(t)
∥

∥

2
dt

]

exp

[(

1 +
‖λ‖2∞
ε

)

t

]

≤ c.

(5.17)

Step 4. A Priori Estimate on vnx. Multiplying (5.12) by vnxx and integrating from 0 to 1, we
have

d

dt

(

‖vnx(t)‖2
)

= 2
∫1

0
vnxx

(−εvnxx + δvnxxx + λvnx − f
)

dx

≤ −2ε‖vnxx(t)‖2 + ε‖vnxx(t)‖2 + ‖λvnx(t)‖2
ε

+

∥

∥f(t)
∥

∥

2

ε
+ ε‖vnxx(t)‖2

≤
∥

∥f(t)
∥

∥

2

ε
+
‖λ‖2∞‖vnx(t)‖2

ε
,

(5.18)

which implies

‖vnx(t)‖2 ≤
[

2
∥

∥

∥v0
nx

∥

∥

∥

2
+
1
ε

∫T

0

∥

∥f(t)
∥

∥

2
dt

]

exp

[

‖λ‖2∞
ε

]

≤ c.
(5.19)

Step 5. Existence and Uniqueness. By (5.17) and (5.19), we deduce that vn and vnx are
bounded in L∞([0, T], L2(0, 1)). Consequently, there exists a subsequence of {vn} denoted by
{vnk} such that vnk converges to a function v in the weak-star topology of L∞([0, T], L2(0, 1)).

It is easy to see that v is the weak solution of the problem (5.6) satisfying

v ∈ C
(

[0, T];H2
0(0, 1)

)

. (5.20)

Therefore, for any differentiable function λ, the problem (5.1) has a unique weak solution:

u = v + ψ ∈ C
(

[0, T];H2
0(0, 1)

)

. (5.21)

The estimate (5.4) can be proved in the same way as in the proof of (5.19). Finally, the
continuous differentiability assumption on λ can be relaxed by using (5.4). This completes
the proof.

Theorem 5.2. For the initial data u0(x) ∈ H2
0(0, 1), the problem (2.2) has a unique solution u

satisfying u ∈ C([0,∞];H2
0(0, 1)).
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Proof. Let T > 0 be any constant and λ ∈ C([0, 1] × [0, T]). By Lemma 5.1, the problem (5.1)
has a unique solution uwith u ∈ C([0, 1]× [0, T]). Hence we define the nonlinear mappingA
by

Aλ = u. (5.22)

Set R = 2‖u0x‖. By (5.4), we deduce that if T is small enough, then Amaps B(0, R) into
B(0, R) and A is a contractive mapping, where

B(0, R) = {λ ∈ C([0, 1] × [0, T]) : ‖λ‖∞ ≤ R}. (5.23)

Therefore, by the Banach fixed point theorem, A has a unique fixed point u∗. So the problem
(2.2) has a unique solution u∗ for T small enough. Since u∗ is also the solution of the linear
problem (5.1), by Lemma 5.1, we deduce that u∗ ∈ C([0, T];H2

0(0, 1)). By Theorem 2.1, the
solution u∗ can be continued to the whole real line, that is, u∗ ∈ C([0,∞];H2

0(0, 1)). This
completes the proof.

6. Conclusion

We have shown the adaptive boundary stabilization of the KdV-Burgers’ equation by
nonlinear boundary control. It seems yet not to be discussed. As for the adaptive case, we
establish an extension to Barbalat’s lemma to show the L2 regulation of the solution of the
KdV-Burgers’ equation. Also, we prove that the solution of the KdV-Burgers equation is well
posed. However, we want to get theH1 stability which implies boundedness of the solution.
We will solve this problem in the future.
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