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The main aim of this paper is to discuss moment exponential stability for a stochastic reaction-
diffusion neural network with time-varying delays and p-Laplacian. Using the It6 formula, a delay
differential inequality and the characteristics of the neural network, the algebraic conditions for the
moment exponential stability of the nonconstant equilibrium solution are derived. An example is
also given for illustration.

1. Introduction

In many neural networks, time delays cannot be avoided. For example, in electronic neural
networks, time delays will be present due to the finite switching speed of amplifies. In
fact, time delays are often encountered in various engineering, biological, and economical
systems. On the other hand, when designing a neural network to solve a problem such as
optimization or pattern recognition, we need foremost to guarantee that the neural networks
model is globally asymptotically stable. However, the existence of time delay frequently
causes oscillation, divergence, or instability in neural networks. In recent years, the stability
of neural networks with delays or without delays has become a topic of great theoretical and
practical importance (see [1-16]).

The stability of neural networks which depicted by partial differential equations
was studied in [6, 7]. Stochastic differential equations were employed to research the
stability of neural networks in [8-11], while [12, 13] used stochastic partial differential
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equations to analysis this question. In [15], the authors studied almost exponential stability
for a stochastic recurrent neural network with time-varying delays. In addition, moment
exponential stability for a stochastic reaction-diffusion neural network with time-varying
delays is discussed in [16].

In this paper, we consider the stochastic reaction-diffusion neural network with time-
varying delays and p-Laplacian as follows:

2 0 _ aui n
du;(t,x) = I:kE a—xk<|Vui|P 2axk> - ai(wyu; + I+ > Tyig (u(t - 75(t), x)) | dt
=1

= (1.1)
m
+ D ou(ui(t, x))dWi(t), i=1,2,...,n, t>t, x€Q,
1=1
ou; ou; ou; )T :
— =(=—...,— ) =0, =1,2,...,n, t > ty, x € 0Q, 1.2
on <6x1 0xyy, ! tot=tor X 12
ui(to+s,x) = di(s,x), -Ti(t)) <s<0, 0<7(t)<m, i=1,2,...,n, x €Q. (1.3)

In (1.1), Vu; = (6ui/6x1,...,6ui/axm)T, p > 2is a common number. Q C R™ is a bounded
convex domain with smooth boundary 0Q2 and measure mesQ > 0. n denotes the numbers
of neurons in the neural network, u;(t, x) corresponds to the state of the ith neurons at time
t and in space x, the a;(u) is an amplification function. I; is output. gj(u;(t — 7, x)) denotes
the output of the jth neuron at time t — 7; and in space x, namely, activation function which
shows how neurons respond to each other. W(t) = (Wi(t),..., W, (1)) is an m-dimensional
Brownian motion which is defined on a complete probability space (S, ¥, P) with a natural
filtration {F}psy, (Le., Fi = o{W(s) : to < s < t}). o) = (o1(w1),...,0n(un))", 0i(w;) =
(oi(ui), ..., 0im(u;)). 0ij(u;) denotes the intensity of the stochastic perturbation. Functions
O'i]'(ui) and g; are subject to certain conditions to be specified later. T := (Tii)nxn is a real
constant matrix and represents weight of the neuron interconnections, namely, T;; denotes
the strength of jth neuron on the ith neuron at time t — 7; and in space x, and 7; € [0, 7]
corresponds to axonal signal transmission delay.

2. Definitions and Lemmas

Throughout this paper, unless otherwise specified, let | - | denote Euclidean norm. Define that
lxlP = (2, |x;|*)P’? and x|, = ity |xil” where x = (x,. ..,x,)" € R". Denote by C([-,0] x
Q; R™) the family of continuous functions ¢ from [-7,0] x Q to R". For every t > to and p > 2,
denote by L’;t ([-7,0]xQ; R") the family of all #;-measurable C([-7, 0] xQ; R") valued random

variables such that ||q§||;£,, = suprSQSOE(HqB(Q)Hg) < oo, where [|p(0)]l, = (Jo |(])(9,x)|”dx)1/p,
E(¢) denotes the expectation of random variable ¢.

Definition 2.1. The u(t,x) = (u1(t, x),..., u(t, x))7 is called a solution of problem (1.1)—(1.3)
if it satisfies following conditions (1), (2), and (3):
(1) u(t, x) adaPtS {F+ }tgto}

(2) forT € R :={t € R:t > to}, u(t, x) € C([ty, T]xQ, R"), and E(maxxeq f£[|u(t, x) P+
|[Vu(t, x)|P]dt) < +oo, where Vu(x,t) = (0u/0x1,...,0u/0x,);



Journal of Applied Mathematics 3

(3) forT € R , t € (o, T], it holds that

f u;(t, x)dx = f ¢,(to,x)dx+f Jto{kzrj:ai<|Vui|p22—;1)—ai(u)ui+li

+ZTiigi(”j(§ -7i(¢),x)) }dg dx
. (2.1)

m t
S ontanawias,
=1 7Q Y/t

i=1,...,n, (t,x)€(t), T]xQ, P as,
ui(to+s,x) = ¢i(s,x), -1.<s<0,i=1,...,n, Pas.
Definition 2.2. The u = u*(x) is called a nonconstant equilibrium solution of problem (1.1)-
(1.3) if and only if u = u*(x) satisfies (1.1) and (1.2).

Definition 2.3. The nonconstant equilibrium solution u*(x) of (1.1) about the given norm || ||
is called exponential stability in pth moment, if there are constants M > 0, 6 > 0 for every
stochastic field solution u(t, x) of problem (1.1)—(1.3) such that

E[[[u(t, x) - u]lq] < Me™¢), (22)
namely,
11msup log E[||u(t, x) — upllq] < —6. (2.3)
t— oo

The constant —6 on the right hand side in (2.3) is called Lyapunov exponent of every solution
of problem (1.1)-(1.3) converging on equilibrium about norm || - ||q.

In order to obtain pth moment exponential stability for a nonconstant equilibrium
solution of problem (1.1)—(1.3), we need the following lemmas.

Lemma 2.4 (see [17]). Let P = (pij)xn and Q = (§ij) nxy be two real matrices. The continuous

function u;(t) > 0 satisfies the delay differential inequalities

D+ul~(t) < zn: [pi]-uj(t) + qiju]-(t - Tj(f))], 0< Ti(t) <T,i=1,...,n. (24)
j=1

Ifpij > O0fori#jand q;; >0 (i,j =1,2,...,n) and —(P+Q) is an M-matrix, then there are constants
ki >0, a > 0 such that

ui(t) < ki <Z||¢,||> exp(—a(t-ty)), i=1,...,n, t>t, (2.5)

where ¢ = (¢p1, ..., 1) are initial functions. D* is right-hand upper derivate. || - || represents a norm.



4 Journal of Applied Mathematics

Lemma 2.5 (see [10]). Let p > 2, then there are positive constants e,(n) and d,(n) for any x =
(x1, .- .,xn)T € R" such that

p/2

n p/2 n n
ep(n) <Z|xl~|2> < ;]xiv’ < dy(n) <Zl:|xi|2> . (2.6)

i=1

Remark 2.6. If p = 2, Lemma 2.5 also holds with e, (n) = d,(n) = 1.
Suppose that o;j(u;), ai(u), and g; are Lipschitz continuous such that the following
conditions hold:

(Hl) |(O‘i(Ul) - O'i(Uz))(O'i(Ul) - O'l'(Uz))Tl < 2)Li|171 - Uz|2, i= 1,2,. .., n,
(HZ) |gi(vl) _gi(02)| < Ci|U] _02|r i= 1/2/~- - N,
(H3) (u-v)(ai(u)u - aj(v)v) > ajlu—v|*, forallu,v €R,i=1,2,...,n,

where ¢;, a;, and \; (1 <i < n) are positive constants.

3. Main Result

Set u(t,x) = (u1(t,x),...,uy(t,x))" as a solution of the problem (1.1)—(1.3) and u*(x) =
(ui(x),..., uy (x))T as a nonconstant equilibrium solution of the problem (1.1)-(1.3).

Theorem 3.1. Let p > 2 and (H1)—(H3) hold. Assume that there are positive constants €1, ..., &,
such that the matrix My = —=(pji + Gij) yun = PT + Q is an M-matrix, where

pij = —pbijai + p(p - 1)6ijki + (p = 1) [Tyj|cjei,  6i=1, 6;;=0 (i#]), i,j=1,...,m, (3.1)
.. .
i = |Tij|cie; 7, i,j=1,...,n,

then the nonconstant equilibrium solution of problem (1.1)—(1.3) about LP norm is exponential
stability in pth moment, that is, there are constants C1 > 0 and a > O, for any to € R* and any
¢ €LV such that

fo

E(llu(t,x) - u'l}) < Cre™t, >y, (32)

Proof. Set V;(u(t,x)) = |u;(t, x) — u; (x)[P. For every t > ty and dt > 0, by means of It6 formula
and (H3), one has that

k=1

*|P—2 * < a _ aui 6 " _zau;
AviGo) = plu =i —u»{z [ (755 ) - (17 5|

- (ai(w)u; — a;(u*)u;)

+§,Tii<gf(”j(t -1,%)) - g (1)) }dt
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+ 3= 1) |~ 0 s — 1) (04(0) — 03 (1)) (0u(w) — 03 (1))
+plus = uf 77 (i = ) (03(ws) = 03 (1) ) AW (8)
- - 0 o Ou; 0 o Ouf
< wi—ut P (i — [—(Vui’”z l>——< ol )]dt
p 2ol =i G =) |5 (19 5 )~ e (V41 5,
+ (-pai+p(p-1)\i)|ui

n
+p | Tyl s — |72 |
j=1

dt

Pl |uy (=75, %) —u;

i —u?) (0i(u) — o1 (u) ) dW (¢).

+ p|ui
(3.3)

Both sides of Inequality (3.3) are integrated about x over Q. Set V;(u) = [, Vi(u)dx = ||uj—u} ”5'
One has that

_ 0 ou; 0
* —ut) | — P22y *
(1 =) [axk < il 0x ) Ox ('Vul

+ (-pai+p(p-1)L) J‘ |u; — uf|Pdx dt
Q

ou’t
p-2 5%
_axk )] dx dt

dVi(u) < pZJ. |14
k=17Q

n
P [ b=l =l Tyl (7)o
]:

P § I J‘ |ui u; |P—2 (ui ll;‘) (Oil (ui) Oil (U:‘) )dx dWl(t)
=1 Y Q
(3.4)

Set (|Vui|P~>(0u;/9xx) — [V P2 (0uf /0xx))isy = (IVuilP 2 (Oui/ 0x1) — [V [P~ (0u; /0x1), .- .,
|V |P~2(0u; / 0xm) — |Vui|P~2(0u} / 0x,)). By (1.2), one has that

S 1= P2 (s — ) [ 2 ,p—2a”i>_i< P2a )]
;J‘thl ul " (s ui)[axk<|Vul| oxc ) " B |V | dx

*

m
= 1P (s — ut) VY 20 . p—Za”i>
jg |u1 U; | (ul U; )V (lvuzl o |Vu1 | e k:1d_x

_ ou; our
- . IR | p2 21 *|P=2
J‘Q v <|ul ur |7 (- ) <|Vul| o, |V | an> >dx

[ (w2192 (gl )Y
Q ! a.X'k ! a.X'k k=1 ! ! ! !
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our\™
= j | i p-2 i) . iids
80 0xk / ko1

*

ou\™
J‘ (P 1)|ul |P ZV(ul ur ) <|Vul p 28111 _ |Vu;<|p_2 U, > dx
axk ko1

Oxk

_m _ o ’f‘p_2 pzauz %P2 au, au:)
;J‘Q(P 1)|ul ul' (IV 4 |V I axk) <5xk Oxi dx

(3.5)

i

* | * —. aui *
(”i_ui)<|vui|p 2a—xk—|‘7u

where 7i is unit outer cotangent vector on 0Q. By (3.4), (3.5), (H1), and Young’s inequality,
one has that

axk axk axk

S ou; ou*
dVi(u) < —ZI (p-1)|w _u;«|p—2<|v s 2% ~ |Vu |p—2 u; > <6ul U] >dx
k=178

+ (-pai+p(p-1)Xi)||ui

n
+P_Z1 IG i - u:|P-2|ui - ul| |Tij|cj|u,-(t— Tj, X) — u;|dxdt
=

< (3.6)
P, fc | — |77 (i — ) (0 (us) — o (u?) ) dx AW (t)
=1

t

n n
x LIP
< Zpi]’ ||ui(t) - U; ||§dt + Zqij ”uj(t - T]-,x) —u; pd
=1

j=1

+ pZ IG |ui — |p_2 (ui — u}) (o (ui) — 03 (1) )dx AW (t),
=1

where p;; and g;; are defined by (3.1).
For At > 0, both sides of (3.6) are integrated about ¢ from ¢ to ¢ + At, then both sides of
(3.6) are calculated expectation. By the properties of Brownian motion, one has that

Elute + a0 - |] - EJuc) - 1]

n + . (
< Z {PijEU: ) 4i(s) = ””Eds] *+aiE U: B ”uj(s - Tj(s)) - u;f“:ds] }

j=1

3.7)



Journal of Applied Mathematics 7

t+At t+At

Since the integrals [," "~ E[||u;(s) —u; || ]ds and f E[|luj(s—1;) —ufllﬁ]ds are finite, by Fubini

theorem [18] and (3 7), one obtain that

E[||u,~(t+At)—u;*||Z] —E[”ui(t)—u;*” ] Zpl]f E[”ul(s) u?l| ]ds
(3.8)

+Zq1] JMM [Hu],(s—Tj(S)) _u;”Z] ds.

Set v;(t) = E[||lui(t) —u;‘||§]. Both sides of Inequality (3.8) are divided by At, let At — 0,
one has the following inequality:

D*vj(t) < Y [pijoi(t) + qijo; (t - 7;(1))]. (3.9)
j=1

By Lemma 2.4, there are positive constants K;, a« such that

[Hd)]—u exp(-a(t-t)), i=1,...,n t>t,  (3.10)

[l ;2] < k.3 |E
j=1

where ¢; is initial value. Set K = max{K; : 1 <i < n}, then

E [zn;”u] - u ] - u exp(—a(t—tp)), t>to. (3.11)
i
By (3.11) and Lemma 2.5, one obtains that
E[lu -] < e (m)d, (n)nsz: “E [||¢j - ul ||Z] exp(-a(t-t)), t2t.  (3.12)
In order to prove Theorem 3.1, we need the following lemma. O

Lemma 3.2. The nonconstant equilibrium solution of the problem (1.1)—(1.3), u*(x) satisfies
E(|lu*[l}) = 0.

Proof. Set Fi(u*(x)) = |u} (x)[P. Similar to (3.8) in proof of Theorem 3.1, one has that

Siou | Elbeatglas S [ e[

p
; p] ds > 0. (3.13)
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By (3.13) and the assumption that —(pji + §ij) s, = PT + Q is an M-matrix, one obtains that

_Z(Pﬂ + %)E[

] At<0, i=1,2,...,n (3.14)

Because of E[||u;||5] > 0and At > 0, one has that E(llu*llz) =0.
We continue the proof of Theorem 3.1 as the following.
By Lemma 3.2, one has that

<M, (3.15)

¢l -1,

where M > 0 is a common number. We derive every solution of problem (1.1)—(1.3) such that

lim sup~ 1og1-:[||u u||]< —a, (3.16)

t— o0

then a nonconstant equilibrium solution of problem (1.1)—(1.3) about L” norm is exponential
stability in pth moment. The proof of Theorem 3.1 is complete. O

In order to illustrate the application of the theorem, we give an example.

Example 3.3. Discuss the stochastic reaction-diffusion neural network with time-varying
delays and p-Laplacian as the following:

2 o o 2
dul(t,x) = [Za—< P 2(3_.1:11(> —aquy + I +ZT1jgj(uj(t—T]-(t),x)) dt
k=1

& (3.17)
+o1(ui(t, x))dW (1),
29 20Uy S
dua(t, x) = Lza_< Vo] a—xk) —ayuy + I + ;Tygj (uj(t - Tj(t),x))] dt (3.18)
+ 05 (a1, %)) AW (1),
i <%,%)T=O, i=12,t>4>0, x€0Q, (3:19)
on 0x1’ 0xp

ui(tO + S/x) = ¢i(5,x), _Ti(to) <s< O/ 0 < Ti(t) <T, i= 112/ X € Q/ (320)
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where

ar =12, a =18, o1(u) =0.2(u1 —uy), 02 (u2) = 0.3(uz — u3),
T =15, Ti» =0.5, T>, = 0.6, T»n =1,
(3.21)
gl(ul(t - Tl(t),x)) = 0.3u1(t - Tl(t),x),

(ua(t —12(t), x)) = 0.2ux(t — T2(t), x) cos(ua (t — 12(t), x)).

Set u*(x) = (u] (x),u?(x))T as a nonconstant equilibrium solution of (3.17) and (3.18). One
can derive that

|g1(v1) - g1(v2)| <03|vy —va|, ¢ =03;
|g2(01) = §2(v2)| <04Jv1 — 2], €2=04;

. (3.22)
|(01(Ul) - 01(v2))(01(v1) = 01(v2)) | <0.04[v1 —vo|, A1 =0.02;
|(02(01) - 02(0))(02(v1) - oz(vz))T| <0.09v;1 — 5|, Ap = 0.045.
Taking €; =1 (i = 1,2) and p = 3, one has that
2.58 —0.56
Ms = (—0.58 1.53 ) (3:23)

and Mj is an M-matrix. The nonconstant equilibrium solution of (3.17) and (3.18) about L?
norm is exponential stability in the 3rd moment.

Remark 3.4. The Theorem 3.1 extends the correlative results in [12, 13, 16] to the situation
related to the p-Laplacian.
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