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We first extend the definition of W,, from an infinite family of nonexpansive mappings to an infinite
family of strictly pseudocontractive mappings, and then propose an iterative scheme by the
viscosity approximation method for finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of an infinite family of k;-strictly pseudocontractive
mappings in Hilbert spaces. The results obtained in this paper extend and improve the recent
ones announced by many others. Furthermore, a numerical example is presented to illustrate the
effectiveness of the proposed scheme.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and induced norm || - ||. Let C be a
nonempty closed convex subset of H and let F : C x C — Rbe a bifunction. We consider the
following equilibrium problem (EP) which is to find z € C such that

EP:F(z,y) >0, VyeC. (1.1)

Denote the set of solutions of EP by EP(F). Given a mapping T : C — H, let F(x,y) = (Tx,
y—x) forall x,y € C. Then, z € EP(F) if and only if (Tx,y —x) > 0 for all y € C, that is, z
is a solution of the variational inequality. Numerous problems in physics, optimization, and
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economics reduce to find a solution of (1.1). Some methods have been proposed to solve the
equilibrium problem [1-13].

A mapping B : C — Cis called 0-Lipschitzian if there exists a positive constant 6 such
that

|Bx - By| <0||x-vy|, VYx,yeC. (1.2)
B is said to be 7-strongly monotone if there exists a positive constant 7 such that
(Bx-By,x-y) zn|x-y|’, VxyeC. (13)

A mapping S : C — C is said to be k-strictly pseudocontractive mapping if there exists a
constant 0 < k < 1 such that

l|Sx = Syl|” < ||lx - y||* + k||(I - S$)x = (I - S)y||, (1.4)

for all x,y € C and F(S) denotes the set of fixed point of the mapping S, thatis F(S) = {x €
C:Sx=x}.
If k =1, then S is said to a pseudocontractive mapping, that is,

152 = Syl* < llx =yl + (T = S)x - (1 = S)yl*, (1.5)
is equivalent to
(I-8S)x-(I-S)y,x-y)>0, (1.6)

forall x,y € C.

The class of k-strict pseudo-contractive mappings extends the class of nonexpansive
mappings (A mapping T is said to be nonexpansive if | Tx - Ty|| < ||x — y||, for all x, y € C).
That is, S is nonexpansive if and only if S is a O-strict pseudocontractive mapping. Clearly,
the class of k-strictly pseudocontractive mappings falls into the one between classes of
nonexpansive mappings and pseudo-contractive mapping.

In 2006, Marino and Xu [14] introduced the general iterative method and proved that
for a given xo € H, the sequence {x,} generated by the algorithm

Xn+1 = anY f(xn) + (I —a,B)Tx,, ne€N, (1.7)

where T is a self-nonexpansive mapping on H, f is an a-contraction of H into itself (i.e.,
If(x) = fy)ll € allx —y||, for all x,y € H and a € (0,1)), {a,} C (0,1) satisfies certain
conditions, B is strongly positive bounded linear operator on H, and converges strongly to
fixed point x* of T which is the unique solution to the following variational inequality:

((yf-B)x*,x*-x) <0, VxeF(T). (1.8)
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Tian [15] considered the following iterative method, for a nonexpansive mapping
T:H — H with F(T)#0,

X1 = Any f (xn) + (I — pa,F)Tx,, neN, (1.9)

where F is k-Lipschitzian and 7-strongly monotone operator. The sequence {x,} converges
strongly to fixed-point g in F(T) which is the unique solution to the following variational
inequality:

((rf-uF)q,p-q) <0, peF(T). (1.10)

For finding a common element of EP(F) N F(S), S. Takahashi and W. Takahashi [16]
introduced an iterative scheme by the viscosity approximation method for finding a common
element of the set of solution (1.1) and the set of fixed points of a nonexpansive mapping in
a Hilbert space. Let S : C — H be a nonexpansive mapping. Starting with arbitrary initial
point x; € H, define sequences {x,} and {u,} recursively by

F(un,y) + l(y —Up, Un—Xn) 20, YyeC,
Tn 1.11)

Xn41 = 0 f (xy) + (1 — a)Su,, Vne N.

They proved that under certain appropriate conditions imposed on {a,} and {r,}, the se-
quences {x,} and {u,} converge strongly to z € F(S) N EP(F), where z = Pr(synep(r) f (2).
Liu [17] introduced the following scheme: x; € H and

F(un,y) + Tl<y—un,un—xn> >0, VyeC,

Yn = Buttn + (1= Pu) Stty, (1.12)

Xn41 = nY f(xn) + (I —a,B)y,, VYneN,

where S is a k-strict pseudo-contractive mapping and B is a strongly positive bounded linear
operator. They proved that under certain appropriate conditions imposed on {a,}, {,}, and
{rn}, the sequence {x,} converges strongly to z € F(S) N EP(F), where z = Prs)ngp(r)(I — B +
Yf)(2).

In [18], the concept of W mapping had been modified for a countable family {T,},cn
of nonexpansive mappings by defining the sequence {W,},cn of W-mappings generated by
{Tu},en and {A,} C (0,1), proceeding backward

un,n+1 =1,
un,n = )LnTnun,rHl + (1 - /\n)I/
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U, = MU e + (1 - M),

U,p = LhUus + (1-M\2),

Wn = lln,l = .)L1T1un,2 + (1 - )Ll)I
(1.13)

Yao et al. [19] using this concept, introduced the following algorithm: x; € H and

F(uﬂ'y) + l<y—unrun -x,) 20, VYye(C,
T (1.14)

Xni1 = Onf (Xn) + Puxn + (1 — an — Bn) Wy, VYne N.

They proved that under certain appropriate conditions imposed on {a,} and {r,}, the se-
quences {x,} and {u,} converge strongly to z € "2; F(T;) N EP(F).
Colao and Marino [20] considered the following explicit viscosity scheme

F(uﬂ'y) + l<y—unrun -x,) 20, Yye(C,
T (1.15)

Xni1 = On? f(xn) + Puxn + (1= )] — anA)Wyou,, VneN,

where A is a strongly positive operator on H. Under certain appropriate conditions, the
sequences {x,} and {u,} converge strongly to z € N2; F(T;) N EP(F).

Motivated and inspired by these facts, in this paper, we first extend the definition of
W, from an infinite family of nonexpansive mappings to an infinite family of strictly pseudo-
contractive mappings, and then propose the iteration scheme (3.2) for finding an element of
EP(F) N, F(S;), where {S;} is an infinite family of k;-strictly pseudo-contractive mappings
of C into itself. Finally, the convergence theorem of the iteration scheme is obtained. Our
results include Yao et al. [19], Colao and Marino [20] as some special cases.

2. Preliminaries

Throughout this paper, we always assume that C is a nonempty closed convex subset of a
Hilbert space H. We write x, — x to indicate that the sequence {x,} converges weakly to x.
x, — x implies that {x, } converges strongly to x. We denote by N and R the sets of positive
integers and real numbers, respectively. For any x € H, there exists a unique nearest point in
C, denoted by Pcx, such that

lx—Pex|| < ||x-y|, VYyeC (2.1)

Such a Pc is called the metric projection of H onto C. It is known that Pc is nonexpansive.
Furthermore, forx € H and u € C,

u=Pex = (x-uu-y)>0, VyeC (2.2)



Journal of Applied Mathematics 5

It is widely known that H satisfies Opial’s condition [21], that is, for any sequence {x,} with
X, — x, the inequality

lim inf||x, — x|| < lim inf||x, — y|| (2.3)

holds for every y € H with y #x.
In order to solve the equilibrium problem for a bifunction F : C x C — R, we assume
that F satisfies the following conditions:

(A1) F(x,x) =0, forall x € C.
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0, forall x,y € C.
(A3) limyoF(tz+ (1 -t)x,y) < F(x,y), forallx,y,z € C.

(A4) For each x € C,y — F(x,y) is convex and lower semicontinuous.
Let us recall the following lemmas which will be useful for our paper.
Lemma 2.1 (see [22]). Let F be a bifunction from C x C into R satisfying (A1), (A2), (A3), and (A4).
Then, for any r > 0 and x € H, there exists z € C such that

F(Zry)+%(y—Z,Z—x)20, Yy eC. (2.4)

Furthermore, if T,x = {z € C: F(z,y) + (1/r)(y — 2,z — x) > 0,Yy € C}, then the following hold:
(1) T, is single-valued.

(2) T, is firmly nonexpansive, that is,

|T,x - Ty|* < (T,x-T,y,x-y), Vx,yeH (2.5)

(8) F(T;) = EP(F).

(4) EP(F) is closed and convex.
Lemma 2.2 (see [23]). Let S : C — H be a k-strictly pseudo-contractive mapping. Define T : C —
H by Tx = Ax + (1 - X)Sx for each x € C. Then, as \ € [k, 1), T is nonexpansive mapping such that
F(T) = F(S).

Lemma 2.3 (see [24]). In a Hilbert space H, there holds the inequality
lx+yl” <llxI”+2(y, x +y), Vx,yeH. (2.6)

Lemma 2.4 (see [25]). Let H be a Hilbert space and C be a closed convex subset of H,and T : C —
C a nonexpansive mapping with F(T) #0. If {x,} is a sequence in C weakly converging to x and if
{(I=T)x,} converges strongly to y, then (I - T)x = y.
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Lemma 2.5 (see [26]). Let {x,} and {z,} be bounded sequences in a Banach space E and {y,} be a
sequence in [0, 1] satisfying the following condition

0 < lim infy, < lim supy, <1. (2.7)

n— oo

Suppose that x,.1 = YuXn + (1 = Yn) 2y, n > 0 and limy, -, o, sup(||zn+1 — Zall = || Xn+1 — xull) < 0. Then
limy, — o5 || 20 — x| = 0.

Lemma 2.6 (see [27]). Assume that {a,} is a sequence of nonnegative real numbers such that

aps1 < (1 - bn)an +b,6,, n>0, (2-8)

where {by,} is a sequence in (0,1) and {6, } is a sequence in R, such that

(i) X bi = 0.

(ii) limy, — o sSUp 6, < 00r 372 |by 64| < o0.

Then, lim,, _, o, a,, = 0.

Let {S;} be an infinite family of k;-strictly pseudo-contractive mappings of C into itself,
we define a mapping W, of C into itself as follows,

un,n+1 =1,
U,n = 1uS, Uy + (1 — 1)1,

un,k = Tkslkun,kﬂ + (1 - Tk)I/ (29)

ll,,,z = Tzs’zung + (1 - Tz)I,
Wn = LIn,l = 715’111,1,2 + (1 — Tl)I,

where 0 < 77 <1, S; = o] + (1 -03)S; and 0; € [k;, 1) fori € N. We can obtain S; is a
nonexpansive mapping and F(S;) = F(S!) by Lemma 2.2. Furthermore, we obtain that W, is
a nonexpansive mapping.

Remark 2.7. If k; = 0, and 0; = 0 for i € N, then the definition of W,, in (2.9) reduces to the
definition of W, in (1.13).

To establish our results, we need the following technical lemmas.

Lemma 2.8 (see [18]). Let C be a nonempty closed convex subset of a strictly convex Banach space.
Let {S:} be an infinite family of nonexpansive mappings of C into itself and let {7;} be a real sequence
such that 0 < 7; < b < 1 for every i € N. Then, for every x € C and k € N, the limit lim,, _, o, U, kX
exists.
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In view of the previous lemma, we will define

Wx = lim W,x = limU,1x, xeC. (2.10)

n—oo

Lemma 2.9 (see [18]). Let C be a nonempty closed convex subset of a strictly convex Banach space.
Let {S} be an infinite family of nonexpansive mappings of C into itself such that (2, F(S}) #0 and
let {7;} be a real sequence such that 0 < 7; <b <1 for every i € N. Then, F(W) = N2, F(S}) #0.

The following lemmas follow from Lemmas 2.2, 2.8, and 2.9.

Lemma 2.10. Let C be a nonempty closed convex subset of a strictly convex Banach space. Let {S;} be
an infinite family of k;-strictly pseudo-contractive mappings of C into itself such that (2, F(S;) #0.
Define S; = ;I + (1 - 0;)S; and o; € [k;, 1) and let {7;} be a real sequence such that 0 < 7; <b <1
for every i € N. Then, F(W) = NZ,F(Si) = N2, F(S}) #0.

Lemma 2.11 (see [28]). Let C be a nonempty closed convex subset of a Hilbert space. Let {S’} be an
infinite family of nonexpansive mappings of C into itself such that (2, F(S}) # 0 and let {7;} be a real
sequence such that 0 < 7; < b < 1 for every i € N. If K is any bounded subset of C, then

lim sup||[Wx - W,x|| = 0. (2.11)
n—=0yeK

3. Main Results

Let H be a real Hilbert space and F be a k-Lipschitzian and #-strongly monotone operator
withk >0,17>0,0< pu <2n/k?>and 0 < t < 1. Then, for t € min{0, {1,1/7}}, S = (I — tuF) :
H — H is a contraction with contractive coefficient 1 — t7 and 7 = (1/2)u(21 — pk?).

In fact, from (1.2) and (1.3), we obtain

1Sx = Sy||* = ||x -y - tu(Fx ~ Fy)||*
= lx = ylI* + P4 | Fx — Fy||" - 2tu(Fx ~ Fy, x - y)
< e =yl” + K20 x = y||” - 2tmplx ~ (3.1)
< (1-tu(2n - pk?) )2 -y’

<(1- tT)2||x - y||2.

Thus, S = (1 - tuF) is a contraction with contractive coefficient 1 — t7 € (0, 1).
Now, we show the strong convergence results for an infinite family k;-strictly pseudo-
contractive mappings in Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and F be a
bifunction from C xC — R satisfying (A1)—(A4). Let S; : C — C be a k;-strictly pseudo-contractive
mapping with (2, F(Si) N EP # 0 and {t;} be a real sequence such that 0 < 7; <b <1,i € N. Let
f be a contraction of H into itself with p € (0,1) and B be k-Lipschitzian and rn-strongly monotone
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operator on H with coefficients k,n > 0,0 < p < 2n/k?,0 <r < (1/2)p(2n — uk*)/p = (t/p) and
T < 1. Let {x,} be a sequence generated by

F(””’y)+%<y_unlun_xn>20, VyEC,

Yn = 6nun + (1 - 6n)Wnun/ (32)
Xne1 = An? () + P + (1= Pu)] — panB)y,, Vne€N,
where u, =T\, x, and {W,, : C — C} is the sequence defined by (2.9). If {a,}, {Bn}, {04}, and {1}

satisfy the following conditions:

(i) {an} C (0,1), limy, oty =0, 232 ay = 0,

)
(ii) 0 < limy, —, o inf B, < lim, s SUP B < 1,
(iii) 0 < limy, —, o inf &, < limy, —, o SUP 6 < 1, liMy— 05 |Ops1 — O =
)

(iv) {An} € (0,00), limy o0 Ay > 0, limy, - o[ A1 — Ay = 0.

Then {x,} converges strongly to z € (2 F(Si) N EP #@, where z is the unique solution of
variational inequality

Jlim sup((rf —uB)z,p-z) <0, Vpe ﬁF(Si) NEP #0, (3.3)

i=1

that is, z = Prwynepry (I — uB +1 f)z, which is the optimality condition for the minimization problem

L (uBz,z) - h(2), (3.4)

min
zeN®, F(S;))NEP2

where h is a potential function for v f (i.e., h'(z) = rf(z) for z € H).

Proof . We divide the proof into five steps.
Step 1. We prove that {x,} is bounded.

Noting the conditions (i) and (ii), we may assume, without loss of generality, that
a,/(1-p,) <min{l,1/7}. For x,y € C, we obtain

(1= )1 ) = (L= )1 = anpB)y |
0o e (o )
< (=) (1- 7257 ) I

= (1= pn—am)|lx -y

(3.5)
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Take p € N2, F(Si) NEP #0. Since u, = T),x, and p = T),p, then from Lemma 2.1, we know
that, forany n € N,

lun = p|| = | T0, %0 = To,p|| < |20 —p||- (3.6)

Furthermore, since W,p = p and (3.6), we have

[y =Pl = [|6nttn + (1 = 62) Waren = p|
= [16n (1tn = p) + (1 = &) (Wntt = p) | 57)
< Onlun = pll + (1 = 6) [[Wasn — p|
< lun=pll < llxn = pll
Thus, it follows from (3.7) that

l|xns1 = pll = lletar f (xn) + Puxn + ((1 = Bu)I = petaB)yn —p||
= |laur (f (xn) = f(P)) + au(rf (p) — uBp)
+Pn(xn = p) + (1= Pu)] = peaB) (yu = p) ||
< atB||xn = pll + an|lrf (p) = uBp|| + Bullxn - p|
+ (1= Bu—Tan) lyn —pll
(1= an(t=1p))||xu = p|l + aullrf (p) - uBp||
Irf () - 1B }

! T-1P

(3.8)

IN

IN

max{ |z —p
By induction, we have

n>1. (3.9)

lIrf (p) - uBp||
e~ < ma - L2,

Hence, {x,} is bounded and we also obtain that {u,}, {W,u,}, {y.}, {Bya}, and {f(x,)} are
all bounded. Without loss of generality, we can assume that there exists a bounded set K ¢ C
such that {u, }, {Wau,}, {yn}, {Byn}, {f(x4)} € K, foralln € N.

Step 2. We show that lim,, _, oo ||x, — xp1]| = 0.
Let x,11 = (1 = Bu) 2z + Puxn. We note that

_ Xt = Pun _ @t fn) + (1= )] ~ patuB)yn (3.10)

Zy = 7
" 1-p6, 1-p,
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and then
a1 7 f(Xna1) + (1= Pui1) I = pani1 B) Yt
Zp+l — Zn =
1- ,Bn+1
aurfe) + (1= o) - pa,B)y, 1)
1-p,
ay Xp
=T [;1 (7f (xXn1) = pBYnsn) = .y (rf(xn) = pBYn) + Yns1 = Yn.
Therefore,
Xyl
|zns1 = zall < 1= ﬁ (||Tf(x,,+1)|| + ”/43yn+1”)
(3.12)
rf ) || + |#Bynl]) + [[yne1 = yal|-
It follows from (3.2) that
”yn+l - yn” = |6nr1ttne1 + (1 = 6ps1) Wisttni1 = (Onthy + (1 = 0,) Wity ||
< |6n+1 - 6n|||un” + 6n+1||un+1 - un” + (1 - 6n+1)”Wn+1un+1 - Wnun” (313)
+ |6n+1 - 6n|”Wnun”‘
We will estimate ||t,41 — ty|. From w41 = T, Xp41 and u, = T, x,, we obtain
1
F(uni,y) + (Y = thnst, U1 = Y1) 20, Yy €C, (3.14)
n+1
1
F(un,y) + A—(y —Up, Un—Yn) 20, VYyeC. (3.15)
Taking v = u, in (3.14) and y = 1,41 in (3.15), we have
F(uper, un) + _<un — Up+1, Un+l — xn+1> >0,
/\n+1
(3.16)

1
F(unz un+1) + T(un+l — Up, Up — xn) > 0.
n

So, from (A2), one has

<un+1 —u, un; Xn _ un+1)t_ ;er—l > >0, (317)
n n+
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furthermore,

<un+1 —Up,Up — Upt1 — Xn — i(urﬁ—l - xn+1)> > 0. (318)
)Ln+1

Since lim, _, A, > 0, we assume that there exists a real number such that A,, > a > 0 for all
n € N. Thus, we obtain

A
||un+1 - un||2 < <un+1 —Up, Xps1 — Xp + <1 - A_n) (Uns1 — xn+1)>

n+1
(3.19)
< lutnser — un”{”xnﬂ = x| + |1~ )L_n [ttne1 — xpaall t,
n+1
which means
lttni1 = | < ||%ne1 — 20| + |1 - )L_n ltns1 — Xpaal]
n+1
1 3.20
< X1 = x| + EMnH = Mall[ttns1 = Xua || ( )
< lxner = x|l + Li|Ansr — Anl,
where L = sup{||ttp+1 — x4l : 1 € N}
Next, we estimate ||W,;1u,41 — Wyu,||. Notice that
IWhattp — Wity || = [Wasthner — Wity + Wi, — Wau,||
(3.21)
< ||un+1 - un” + “Wn+1”n - Wnun”-
From (2.9), we obtain
”Wn+1un - Wnun“ = ||T1$,1un+1,2un - Tlsllun,Zun ”
< Tl||un+l,2un - un,Zun”
= 71 || 2 SyU i1 sty — T2Sy U 314 |
< || Uns1 s — Uy aun|| (3.22)

where L, > 0 is a constant such that ||U 11, nr1un — Uppsrtinl|| < Lo, forall n e N.
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Substituting (3.20) and (3.22) into (3.21), we obtain

n
”Wn+1un+1 - Wnun” < ||xn+1 - xn“ + L1|An+1 - J\n| + LZHTi- (323)
i=1

Hence, we have
”yn+1 - yn” <641 = Ol ([l + (Wit |l) + (|01 — Xal|

+(1-06,41)L v+ L1l A1 — Ay
( +1) 21:—117' 1| +1 | (3.24)

n
< L3|6n+1 - 6n| + ||xn+1 - xn” + (1 - 6n+1)L2HTi + L1|)‘n+1 - )‘n|1
i=1

where L3 = sup{||un|| + [|Whun| : n € N}.
Furthermore,

an
zni1 = zall € == (||7f (ener) || + || By ||)

1= Pun
2 (s + B
(3.25)
+ |xne1 = x|l + Lafdns1 = A + Lo (1 = 6n+1)1i[7i
+ L3|6,41 — 6l
It follows from (3.25) that
Zn+1 = Znall = 1Xns1 = X4l
< T s Gl By ) + 25 e fGeoll+ Mbwal)
+ Ly Ay = A + Lo (1 - 5n+1)ﬁ7‘i + L3|6p41 — 04l
i=1
By the conditions (i), (iii), and (iv), we obtain
nh_r)l;) sup([|zn+1 = Zull = |01 — xnl]) 0. (3.27)

Hence, by Lemma 2.5, one has

lim ||z, — x| = 0, (3.28)
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which implies
nlLIIc}o”an = xn” = nlgrc}o(l - ﬁn) ”Zn - xn” =0. (3.29)

Step 3. We claim that lim,, _, oo [|[Wu,, — u,|| = 0.
Notice that

IWu, — u,|| = |Wu,, — Wy, + Wiy, — |
< Wy = Wy || + [[Watky — uy|| (3.30)

< sup||[Wu - Wyul| + Wiy, — .
uek

It follows from (3.2) that

”Wnun - un” = ”Wnun “YntYn— un”

< Nlyn =l + [IWaten = |

(3.31)
= |y = ttall + EulWarten — 1|
< ”xn - un” + ”yn - xn” + 6n||Wnun - un”-
By the condition (iii), we obtain
1
Wty — || < TG (l2cn = wnll + || vn = xa]])- (3.32)

First, we show lim,, _, oo ||, — 14, || = 0. From (3.2), for all p € N, F(S;)NEP(F), applying
Lemma 2.3 and noting that || - || is convex, we obtain

%1 = PII* = lewr f Gen) + Buren + (1= Bu) I = peuB)yn — |’
= [l (7 £ (x2) + pByn) + u(xn =) + (1= ) (v = p) I
< [|Ba(xn =) + (1= ) (yn = P)I” + 200 (rf (xu) + 4By, X1 =p) ~ (333)
< Ballxa=plI* + (1= ) lyn = pII* + 200l £ (o) + Byl |01 |

< Bullxa = plI* + (1= ) lln = pII”* + 200l () + Byl | 01 = |-
Since u, = Ty, x,, p = Ty, p, we have

I < (x0 —p,ttn — p)

lan = pI* = T2, - To,p
(3.34)
1

= 5 (b= I+ llen = pI = o = a7,
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which implies
[ = pII* < 12 = I = ln = 0l (335)
Substituting (3.35) into (3.33), we have

o (336)

s = pII* < lloen = PII* = (1= ) 1 = sll* + 2|7 () + By || 2 = p
which means

(1= )l =l < [l = pII” = s = pI* + 20007 Co) + Byl |01 = p|
< et = xall (1 =PIl + lleer = plI) + 2|7 n) + Byl | 2001 = pI-

(3.37)
Noticing lim,, _, xt, = 0 and lim,,_, o, inf(1 — 3,) > 0, we have
lim [lxy - uy|| = 0. (3.38)

Second, we show limy, , oo ||y — x| = 0. It follows from (3.2) that

”yn - xn” < "]/n - xn+1|| + len+1 - xn”
= ”anrf(xn) +ﬂnxn + ((1 _ﬂn)l _ﬂanB)]/n - ]/n” + ||xn+1 - xn” (339)

< |7 f (xn) + uBYn|| + Bullxn = Y| + 1%ns1 = xnll-
This implies that
(1= Bu) [lyn = xul| < anl|7f(xn) + pByn|| + X041 = xnll. (3.40)
Noticing lim, —, o, &, = 0, lim,, _, o, inf(1 — ) > 0 and (3.30), we have
Tim [y, = xu| = 0. (341)
Thus, substituting (3.41) and (3.38) into (3.32), we obtain
Hm [[Whuy, — || = 0. (342)
Furthermore, (3.42), (3.30), and Lemma 2.11 lead to

Jim [[Wy, = || = 0. (3.43)
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Step 4. Letting z = Praw)nep(r) (I — uB + 7 f)z, we show
nh—I}go sup((rf —uB)z,x, —z) <0. (3.44)
We know that Prw)nepr)(I — uB + 7 f) is a contraction. Indeed, for any x,y € H, we have

|| Pewyneecr) (I = uB + 7 f)x = Prowyrerr) (I - pB + 1 f)y |
<|(I-uB+rf)x—(I-puB+rf)y|l (345)
<@A-t+rp)|x -yl
and hence Prwynep(ry (I — uB + 7 f) is a contraction due to (1 — 7 +rf) € (0,1). Thus, Banach’s
Contraction Mapping Principle guarantees that Prw)nep(r)(I — uB + 7 f) has a unique fixed
point, which implies z = Prw)ngpr)(I — uB +7f)z.
Since {u,,} C {u,} is bounded in C, without loss of generality, we can assume that
{un,} — w, it follows from (3.43) that Wu,, — w. Since C is closed and convex, C is weakly
closed. Thus we have w € C.

Let us show w € F(W). For the sake of contradiction, suppose that w ¢ F(W), that is,
Ww #w. Since {u,,} — w, by the Opial condition, we have

lim inf||u,, - w| < lim inf|lu,, - Wao||
< lim inf{{[uy, = W || + [Wun, - W} (3.46)

< lim inf{ iy, — Wity || + [, - ]}
n— oo

It follows (3.43) that

lim inf||u,, — w| < lim inf|ju,, - w||. (3.47)
n— oo n— oo

This is a contradiction, which shows that w € F(W).
Next, we prove that w € EP(F). By (3.2), we obtain

F(un,y) + %(y — Up, Uy — Xp) > 0. (3.48)
It follows from (A2) that
1
r(y = Up, Un — Xn) > F(y,un). (3.49)

Replacing n by n;, we have

<y — Up,, %(uni - xn,.)> > F(y, un,). (3.50)
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Since (1/\y,) (Up, —xn,) — 0and {u,,} — w, it follows from (A4) that F(y,w) > 0forally € C.

Putz; =ty + (1 -t)wforallt € (0,1] and y € C. Then, we have z; € C and then F(z;, w) > 0.
Hence, from (A1) and (A4), we have

0=F(zt,zt) <tF(zi,y) + (1 - t)F(z1,y) <tF(z1,v), (3.51)

which means F(z;,y) > 0. From (A3), we obtain F(w,y) > 0 for y € C and then w € EP(F).
Therefore, w € F(W) N EP(F).
Since z = Praw)nep(r) (I — uB + 1 f)z, it follows from (3.38), (3.42), and Lemma 2.11 that
lim sup((rf — uB)z,x, — z) < im ((rf — uB)z,x,, — z)
= lim ((rf — uB)z, xy, — Un,)
+ Iim ((rf — uB)z, up, — Wi, )
e (3.52)
+ Iim ((rf — uB)z, Wy,un, — Wuy,)

+ lim ((rf — uB)z, Wu,, — z)

((rf -uB)z,w-z) <0.
Step 5. Finally we prove that x, — w asn — oo. In fact, from (3.2) and (3.7), we obtain

et = I =l £ i) + Bt + (1= Bo)] = ptaB) s — ol
lanr (f (x) = f ()) + an (7 f (w) — pBw)
+Bu(n = ) + (1= fu)T = pauB) (yn - @) ||°

anr<f(xn) - f(w), xps1 — w> + an<rf(w) - pBw, xp11 - w>

+ Bulxn — w, X1 = w) + (1= Pu)I = panB) (Yn - w), Xn1 — w)

2 2
— + p—
anrﬁ”xn w” 2”xn+1 w” + an(rf(w) —wa,an,l _ w)

IN

2 2 —wl*+ _ol2
+ﬁn”xn w|| +2”xn+1 wl| +(1—[3n—an7‘)”yn w” 2||xn+1 w||

1-a,(t—-rp
=

0 = I + st = ) + an(rf (@) = pBew, X1 = @),
(3.53)
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which implies

1-a,(t-71p)

”xn+1_w”2_ 1+a ( _ ﬁ) |xn_w”2
Zan(T rﬁ) rf(w) — uBw, x,11 — w
" Wra(r-rp) (r—rp) S Bl
< (1= an(7 = 7B))llxn - wlf?
2a, (T —1p)

(1 +ay(t-1B)) (T -1P) (rf(w) — uBw, xp41 — w).

From condition (i) and (3.7), we know that > ; &, (7 —7) = oo and lim; _, o, sup(2/(1+a, (T -
rP)) (T —1P))(rf(w) — pBw, x,.1 — w) < 0. we can conclude from Lemma 2.6 that x, — w as
n — oo. This completes the proof of Theorem 3.1. O

Remark3.2. If r=1,u=1,B=1and 6; =0, k; =0, 0; = 0 for i € N, then Theorem 3.1 reduces
to Theorem 3.5 of Yao et al. [19]. Furthermore, we extend the corresponding results of Yao
et al. [19] from one infinite family of nonexpansive mapping to an infinite family of strictly
pseudo-contractive mappings.

Remark 3.3. If y=1and 6; =0, k; =0, 0; = 0 for i € N, then Theorem 3.1 reduces to Theorem
10 of Colao and Marino [20]. Furthermore, we extend the corresponding results of Colao and
Marino [20] from one infinite family of nonexpansive mapping to an infinite family of strictly
pseudo-contractive mappings, and from a strongly positive bounded linear operator A to a
k-Lipschitzian and 7-strongly monotone operator B.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H and F be a
bifunction from C x C — R satisfying (A1)—(A4). Let S : C — C be a nonexpansive mapping
with F(S) N EP #0. Let f be a contraction of H into itself with p € (0,1) and B be k-Lipschitzian
and m-strongly monotone operator on H with coefficients k,q; > 0,0 < pu < 2n/k*>, 0 < r <
(1/2)u(2n - pk®)/p=1/Pand T < 1. Let {x,} be sequence generated by

F(un,y) + %(y—un,un -x,) >0, VyeC,

Yn = Sty + (1 = 6,)Snity, (3.55)

Xp+1 = anrf(xn) +pnxn + ((1 _ﬂn)I _ﬂanB)yn/ Vn e N,

where u, = Ty, x,. If {a,}, {Pn}, }, and {\,,} satisfy the following conditions:

(i) {an} € (0,1), limy, oy =0, > a4y, = 00,

(iid

)

(ii) 0 < limy, —, o inf B, < lim, s SUP B < 1,
) 0 <limy,_, o inf 6, < limy, o SUP 6, < 1, limy o5 |Ops1 — 64| =
)

@iv) {An} € (0,00), limy, o Ay > 0, lim,, o |Aps1 — Ay| = 0.
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Then {x,} converges strongly to z € F(S) N EP # 0, where z is the unique solution of varia-
tional inequality

nlgn sup((rf —uB)z,p—-z) <0, Vpe F(S)NEP#0, (3.56)

that is, z = Pr(synep(r) (I = pB + 7 f)z.

Proof . By Theorem 3.1, letting k; = 0, 0; =0, 7, = 1and S; = S for i € N, we can obtain
Theorem 3.4. O

4. Numerical Example

Now, we present a numerical example to illustrate our theoretical analysis results obtained
in Section 3.

Example 41. Let H =R, C = [-1,1],S, =1, 7, =7 € (0,1), A\, =1,n € N,F(x,y) =0, for
alx,y e C,B=1,r=pu=1, f(x) = (1/10)x, for all x, with contraction coefficient g = 1/5,
6,=1/2,a,=1/n,p,=1/4+1/2nfor every n € N. Then {x,} is the sequence generated by

9
Xn+1 = <1 - m)xnr (41)

and {x,} — 0,as n — oo, where 0 is the unique solution of the minimization problem

9 -
224 c. 42
r}(‘lelgzox +c (4.2)

Proof. We divide the proof into four steps.
Step 1. We show

T\, x=Pcx, VYxeH, (4.3)
where
=, x¢cC
Pex = 4 Il (4.4)
X, x eC.

Since F(x,y) = 0, for all x,y € C, due to the definition of T),(x), for all x € H, by
Lemma 2.1, we obtain

Twwx={zeC:(y-zz-x)2>0,YyeC}. (4.5)

By the property of Pc, for x € C, we have Ty, x = Pcx = Ix. Furthermore, it follows
from (3) in Lemma 2.1 that

EP(F) = C. (4.6)
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Step 2. We show that

It follows from (2.9) that

W1 = Ul,l = 7'15’1111,2 + (1 - T1)I = 7'15'1 + (1 - Tl)I,
W2 = UQJ = 715’1112,2 + (1 - T1)I
= T15’1 (TzSéUzlg + (1 - Tz)I) + (1 - Tl)I
= Tszs’lslz + T1(1 - 72)5'1 + (1 - Tl)l,
W3 = U3,1 = 7'15'1113,2 + (1 - T1)I
= 7'15’1 (TQSIZU3,3 + (1 - Tz)I) + (1 - Tl)I
= 7'17'25’15'2113,3 + T1(1 - 1'2)5'1 + (1 - Tl)I
= T1T25’15,2(T3SSU3,4 + (1 — T3)I) + T1(1 - 7'2)5’1 + (1 — Tl)I

= T1T2T3S,15,25;) + T1T2(1 - T3)S’15,2 + T1(1 — Tz)s,l + (1 - T1)I.

Furthermore, we obtain

! ! ! ! ! ! !
W, =U,1 =773 T,5,5,5; - S+ 112 -+ Tne1 (1 = 14) 515, - -+ S,

Ty Tua(1=T31)S,Sy -S4+ (1-1)S, + (1 -7y

Since S; = I, T; = T for i € N, one has
W, = [T"+Tn_1(1—T)+-'-+T(1—T)+ (1—7')]1:1.
Step 3. We show that
9
Xn+l = <1 - m)xn/
{x,} — 0,asn — oo, where 0 is the unique solution of the minimization problem

9,
min—x- +C.
xeC 20

19

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Table 1: This table shows the value of sequence {x,} on each iteration step (initial value x; = 0.2).

n Xp n Xn
1 0.2000 17 0.0017
2 0.0200 18 0.0016
3 0.0110 19 0.0016
4 0.0077 20 0.0015
5 0.0060 21 0.0014
9 0.0032 26 0.0012
10 0.0029 27 0.0011
14 0.0021 30 0.0010
15 0.0019 31 0.0009
16 0.0018 32 0.0009

In fact, we can see that B = I is k-Lipschitzian and 7-strongly monotone operator on
H with coefficient k = 1,7 = 3/4 such that 0 < u < 217/k?,0 < r < (1/2)u(2n - puk?)/p =7/B,
sowe take r =y =1.Since S|, = I, n € N, we have

(F(S) = H. (4.13)
i=1
Furthermore, we obtain
(F(S:) NEP(F) = C = [-1,1]. (4.14)

i=1

Next, we need prove {x,} — 0,asn — co. Since v, = u, for alln € N, we have
ant f (xn) + Puxn + ((1 = u)I — payB)yy,

9 (4.15)
(1 - _>xn1

Xn+1

10n
foralln € N.
Thus, we obtain a special sequence {x,} of (3.2) in Theorem 3.1 as follows
9
1= (1= —— )x,. 4.1
tu1 = (1= 157 ) (416)

By Lemma 2.6, it is obviously that x, — 0, 0 is the unique solution of the minimization
problem

9,
— 4.17
Ijrclelélzox +c, ( )

where c is a constant number.
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0.2

0.18 J
0.16 | J
0.14 1
0.12 1
0.1 1
0.08 J

The value of sequence

0.06 1
0.04 1
0.02 J

0 5 10 15 20 25 30 35

Iteration steps

Figure 1: The corresponding graph at x = 0.2.

Step 4. Finally, we use software Matlab 7.0 to give the numerical experiment results
and then obtain Table 1 which show that the iteration process of the sequence {x,} is a
monotonedecreasing sequence and converges to 0. From Table 1 and the corresponding graph
Figure 1, we show that the more the iteration steps are, the more slowly the sequence {x,}
converges to 0. O
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