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We have analyzed the effects of variable heat flux and internal heat generation on the flow and
heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity
transformations are used to transform the governing equations to a set of coupled nonlinear
ordinary differential equations. The obtained differential equations are solved approximately by
the homotopy perturbation method (HPM). The effects of various parameters governing the flow
and heat transfer in this study are discussed and presented graphically. Comparison of numerical
results is made with the earlier published results under limiting cases.

1. Introduction

The flow and heat transfer characteristics inside thin films have attracted the interest of
many researchers. This is due to their several applications in engineering such as foodstuff
processing, reactor fluidization, wire and fiber coating, cooling of metallic plates, drawing
of a polymer sheet, aerodynamic extrusion of plastic sheets, continuous casting, rolling,
annealing, and tinning of copper wires. In the extrusion process, this understanding is crucial
for maintenance of the surface quality of the extrudate. The coating process requires a smooth
surface for the best product appearance and for such properties as low friction, transparency,
and strength. As the quality of product in the extrusion processes depends considerably
on the flow and heat transfer characteristics of a thin liquid film over a stretching sheet,
analysis of momentum and heat transfer in such processes is essential. Crane [1] gave an
exact similarity solution for the problem of steady two-dimensional boundary layer flow
caused by the stretching of a sheet which moves in its own plane with velocity varying
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linearly with distance from a fixed point. The problem of flow, heat, and mass transfer over
a stretching sheet in the presence of suction or blowing was examined by P. S. Gupta and
A. S. Gupta [2]. Grubka and Bobba [3] analytically considered the stretching sheet problem
for a surface moving with a linear velocity and with a variable surface temperature. Ali [4]
investigated flow and heat transfer characteristics due to a stretching surface with velocity
and temperature distributions being of a power-law type. Vajravelu [5] presented analytical
and numerical schemes to solve the problem of convective heat transfer over a stretching
sheet with suction and blowing. Pop and Na [6] analyzed the unsteady flow past a wall
which starts impulsively to stretch from rest. They found that the unsteady flow solution
would approach the steady flow situation after long passage of time. Mahapatra and Gupta
[7] analyzed stagnation-point flow towards a stretching surface in the presence of free stream
velocity.

In all the above studies, the steady or unsteady boundary layer equation is considered
and the boundary conditions are prescribed at the stretching sheet and on the fluid at infinity.
Wang [8] first studied the flow problem within a thin liquid film on an unsteady stretching
surface, where the similarity transformation was used to transform the governing partial
differential equations to a nonlinear ordinary differential equation with an unsteadiness
parameter. Andersson et al. [9] studied the flow problem of a power-law fluid film on an
unsteady stretching surface considered by Wang [8]. Later Andersson et al. [10] extended
Wang’s problem [8] to the case of heat transfer. Dandapat et al. [11] investigated the effect
of the thermocapillarity on the flow and heat transfer in a thin liquid film over an unsteady
stretching sheet. Chen [12] numerically studied the heat transfer occurring in a thin liquid
film of a power-law fluid over an unsteady stretching sheet. Wang [13] presented exact
analytical solutions to the unsteady momentum and heat transfer problem within a liquid
film whose motion is caused solely by the linear stretching of a horizontal elastic sheet. The
HAM solutions for the flow behavior of a power-law fluid due to an unsteady stretching
surface in the case of finite thickness were presented by Wang and Pop [14]. The effect
of variable thermal properties on flow and heat transfer in a liquid film over an unsteady
stretching sheet was analyzed by Dandapat et al. [15] for viscous Newtonian fluids and by
Mahmoud and Megahed [16] for power-law fluids. Noor and Hashim [17] investigated the
effects of thermocapillarity and a magnetic field in a thin liquid film on an unsteady elastic
stretching sheet. A recent study on boundary layer behavior for flow over a semi-infinite
unsteady stretching surface was done by Abd El-Aziz [18]. He studied the effect of Hall
currents on the flow and heat transfer of an electrically conducting fluid over an unsteady
stretching surface in the presence of a strong magnetic field. Very recently, Aziz et al. [19]
analyzed the influence of internal heat generation on flow and heat transfer in a thin liquid
film on an unsteady stretching sheet.

To the best of the authors’ knowledge, there are very few papers, with the exception
of Megahed [20] and Liu and Megahed [21], considering the heat transfer aspects in a liquid
film flow over an unsteady stretching sheet subject to variable surface heat flux conditions.
Motivated by above literature, the purpose of the present study is to investigate the heat
generation effect on thin film flow and heat transfer over an unsteady stretching surface in
the presence of variable heat flux and thermal radiation.

2. Formulation of the Problem

Consider the unsteady flow of a Newtonian fluid in a thin liquid film over a stretching
surface. The elastic sheet issues from a narrow slit at the origin of a Cartesian coordinate
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system as shown in Figure 1. The continuous surface aligned with the x-axis at y = 0 moves
in its own plane with a velocityU(x, t). A thin liquid film of uniform thickness h(t) lies on the
horizontal surface. The surface heat flux q(x, t) at the stretching sheet varies with the power
of distance x from the slit and with the inverse power of time factor t as

q = −κ∂T
∂y

= −T0 dx2

β(1 − at)2
, (2.1)

where κ is the thermal conductivity, T0 is a (positive or negative; heating or cooling) reference
temperature, d is a constant, and a � t−1 is a positive constant with dimension reciprocal
time. The governing time-dependent boundary layer equations for mass, momentum, and
energy conservation are given by
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where u and v are the velocity components along the x and y directions, respectively. ρ is the
fluid density, T is the temperature of the fluid, t is the time, μ is the viscosity of the fluid, qr is
the radiative heat flux, and cp is the specific heat at constant pressure. The Q term is the heat
generated (>0) or absorbed (<0) per unit volume and is defined as [19]

Q =
κρU

μx
B∗(T − T0), (2.5)

where B∗ is the temperature-dependent heat generation/absorption. That is, B∗ is positive in
the case of generation of heat and negative in the case of absorption of heat within the fluid
system.

The appropriate boundary conditions for the present problem are

u = U(x, t), v = 0, −κ∂T
∂y

= q(x, t) at y = 0,

∂u

∂y
=

∂T

∂y
= 0 at y = h(t),

v =
dh

dt
at y = h,

(2.6)

where U(x, t) is the surface velocity of the stretching sheet defined later, h is the thickness
of the liquid film. The flow is caused by stretching the elastic surface at y = 0 such that the
continuous sheet moves in the x-direction with the velocity [8]:

U =
bx

1 − at
, (2.7)
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Figure 1: Schematic diagram of the physical configuration.

where a and b are positive constants with dimension(time)−1, such that a < 1/t is required so
as to allow the stretching of the elastic sheet.

The radiative heat flux qr is employed according to Rosseland approximation [22] such
that

qr = −4σ
∗

3k∗
∂T4

∂y
, (2.8)

where σ∗ is the Stefan-Boltzmann constant, k∗ is the mean absorption coefficient. Following
Raptis [23], we assume that the temperature differences within the flow are small such that
T4 may be expressed as a linear function of the temperature. Expanding T4 in a Taylor series
about T0 and neglecting higher-order terms, we have

T4 ∼= 4T3
0T − 3T4

0 . (2.9)

The special form of the surface velocity (2.7) and the surface heat flux (2.1) allows
the system of partial differential equations (2.3) and (2.4) to be transformed into a system of
coupled nonlinear ordinary differential equations by using the following similarity transfor-
mation:

η =
(

b

μ/ρ

)1/2

(1 − at)−1/2β−1y,

u = bx(1 − at)−1f ′(η),
v = −

(
μb

ρ

)1/2

(1 − at)−1/2βf
(
η
)
,

T = T0 − T0

(
dx2

κ
√
ρb/μ

)
(1 − at)−3/2θ

(
η
)
,

θ =
T0 − T

ΔT
, ΔT = T0

(
dx2

κ
√
ρb/μ

)
(1 − at)−3/2,

(2.10)
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where β is yet an unknown constant denoting the dimensionless thin film thickness, defined
by [17]

β =
(

b

μ/ρ

)1/2

(1 − at)−1/2h(t). (2.11)

Using (2.10), the mathematical problem defined in (2.2)–(2.4) are then transformed
into the following set of ODEs:

f ′′′ + γ

[
ff ′′ − f ′2 − Sf ′ − S

2
ηf ′′

]
= 0, (2.12)

(
1 + R

Pr

)
θ′′ + γ

[
fθ′ − 2f ′θ − 3

2
Sθ − S

2
ηθ′ +

B∗

Pr
θ

]
= 0, (2.13)

subject to the boundary conditions:

f(0) = 0, f ′(0) = 1, θ′(0) = −1, (2.14)

f ′′(1) = 0, θ′(1) = 0, (2.15)

f(1) =
S

2
, (2.16)

where primes denote differentiation with respect to η, S = a/b is the unsteadiness parameter,
Pr = μcp/κ is the Prandtl number, γ = β2 is the dimensionless film thickness, and R =
16σ∗T3

0/3k
∗κ is the radiation parameter.

The physical quantities of interest are the skin-friction coefficient Cf , and the local
Nusselt number Nux which are defined as

Cf =
−2
β
f ′′(0)Re−1/2x , (2.17)

Nux = (1 + R)
Re1/2x

βθ(0)
, (2.18)

where Re = ρUx/μ is the local Reynolds number. We note that reduced local Nusselt
number employed in (2.18) contains two terms: one comes from the usual Fourier’s law of
conduction term and the other is thermal radiation flux term. A simple and frequently used
representation for above two quantities is the reduced skin-friction coefficient and reduced
Nusselt number, which have been defined as

CfβRe
1/2
x

2
= −f ′′(0),

Nux

1 + R
Re−1/2x β =

1
θ(0)

.

(2.19)
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3. Solution Procedure Using HPM

In this section, we implement HPM to obtain the approximate solution for the thin film flow
and heat transfer over an unsteady stretching surface with internal heating in the presence
of variable heat flux and thermal radiation. Now according to HPM, we can construct the
following simple homotopy for functions f and θ as

f ′′′ + qγ

[
ff ′′ − f ′2 − Sf ′ − S

2
ηf ′′

]
= 0,

θ′′ + q

(
γPr
1 + R

)[
fθ′ − 2f ′θ − 3

2
Sθ − S

2
ηθ′ +

B∗

Pr
θ

]
= 0,

(3.1)

where q ∈ [0, 1] is an embedding parameter. We use it to expand the solutions in the form:

f
(
η
)
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(
η
)
= θ0 + qθ1 + q2θ2 + · · · . (3.2)

Substituting from (3.2) into (3.1) and equating the terms to the identical powers of q, we can
obtain a system of n + 1 linear ODEs. Assuming n = 2 the system becomes
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for some constants α = f ′′(0), ε = θ(0) and γ . The solutions of the systems (3.3) are
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(3.4)

By the same procedure, we can obtain the other components of the solutions f(η) and θ(η).
Having found fi and θi, i = 0, 1, 2, . . . , 8, the approximate solutions f(η) and θ(η) are as
follows:

f
(
η
) ∼=

8∑
i=0

fi, θ
(
η
) ∼=

8∑
i=0

θi. (3.5)

The constants α, ε, and γ are given using the outer boundary conditions f ′′(1) = 0, θ′(1) = 0,
and f(1) = S/2 simultaneously. We note that all the obtained numerical results are performed
using symbolic software MATHEMATICA version 6.

4. Results and Discussion

As shown in (2.12)-(2.13) and boundary condition (2.14)–(2.16), the governing parameters
for the problem under study are the unsteadiness parameter S, heat generation parameter
B∗, Prandtl number Pr, and radiation parameter R. Wang [8] conducted the analysis of the
flow problem and drew his conclusion that the solution can be obtained only if S ∈ [0, 2]
and no solution was found if S lies outside of [0, 2]. When S = 0, Crane’s [1] situation of
infinite fluid layer is recovered β → ∞, and the infinitesimal liquid film case β → 0 is
encountered if S = 2. Therefore, the dimensionless film thickness β is a decreasing function of
the unsteadiness parameter S, which can be found inWang’s [8] paper and there is no need to
duplicate. We note that the film thickness depend on magnetic field and rotation, as depicted
in the work by Bandapat and Layek [24] for film coating problem. Moreover, the wall shear
stress −f ′′(0) is 1 at S = 0, and subsequently increases to its maximum 1.231 near S = 1.11,
and then decreases to zero as S reaches the value of 2. That is, not only the variation of −f ′′(0)
is a nonmonotonic function of S but also the velocity profile.

The temperature profiles for varying values of S are depicted in Figure 2 with the
parameter B∗ = 0.5, R = 0.5, and Pr = 1. The temperature profiles are observed to raise as the
unsteadiness parameter S increases. In addition, both the wall temperature θ(0) and the free
surface temperature θ(β) show the same dependence of S on temperature profile.

Figure 3 shows that when the heat generation parameter B∗ increases, the temperature
increases, which causes the heat transfer rate or local Nusselt number 1/θ(0) to decrease
accordingly, implying the slowdown of the rate of cooling for the thin film flow. On physical
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Figure 2: The behavior of the temperature distribution for various values of S with B∗ = 0.5, R = 0.5, and
Pr = 1.
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Figure 3: The behavior of the temperature distribution for various values of B∗ with S = 0.8, R = 0.5, and
Pr = 1.

ground the increase of internal heat parameter reflects to the enhancement of heat generation
within the fluid system, thus the temperature profiles rise correspondingly. This reduces the
cooling rate between the stretching sheet and the liquid film. Figure 4 illustrates the influence
of Prandtl number on the temperature profiles with fixed parameter S = 0.8, R = 0.5 and
B∗ = 0.5. From this figure, one can observe that increasing the Prandtl number Pr causes
a rise in the rate of heat transfer 1/θ(0) from the flow to the surface. This will speed up
the rate of cooling of the thin film flow as depicted in Figure 4, which is the typical effect of
Prandtl number. As the Prandtl number raises, both the wall temperature and the free surface
temperature are found to decrease.

Figure 5 shows the fluid temperature distribution plotted against the similarity
parameter η for different values of R = 0, 0.5 and 2 with S = 0.8, Pr = 3, and B∗ = 0.5.
It can be seen that the temperature increases with an increase in the radiation parameter
R, which leads to a fall in the rate of cooling for the thin film flow. Apparently when the
amount of heat radiated within the fluid system due to thermal radiation effect enhances,
the temperature profile, wall temperature as well as the free surface temperature should be
higher than those when no radiation effect is considered (R = 0).
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The physical implication of Figures 3–5 can be qualitatively recognized by integrating
(2.13) from zero to unity and using the boundary conditions (2.14)–(2.16) to yield

1 + R

Pr
= γ

[
3
∫1

0
f ′θ dη +

(
S − B∗

Pr

)∫1

0
θ dη

]
. (4.1)

The boundary layer approximation suggests that velocity function satisfy the condition 0 ≤
f ′ ≤ 1, and the physically admissible solution for temperature function requires the condition
θ ≥ 0. This makes the two integrals inside the square bracket in (4.1) positive definite. It is
clear form (2.12) that the velocity f ′ and film thickness γ (or β) remain unchanged for fixed
value of unsteadiness parameter S [8]. Thus, when B∗ = 0 and fixed R, the temperature profile
should be reduced to meet the requirement of (4.1) for increasing value of Pr. Consequently,
the lessening result of thermal boundary layer thickness due to increasing Pr (or reducing
thermal diffusivity effect) is assured. Similarly, with fixed S and Pr the temperature profiles
rise when the value of R enhances.
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Table 1: Comparison of values of skin friction coefficient −f ′′(0) and β = γ1/2 using HPM.

S
−f ′′(0) β = γ1/2

Wang [13] Present work Wang [13] Present study
0.4 6.69912 6.699108 5.12249 5.12246
0.6 3.74233 3.742316 3.13125 3.131252
0.8 2.68094 2.680943 2.15199 2.151989
1 1.97238 1.972317 1.54362 1.543622
1.2 1.442631 1.442621 1.12778 1.127779
1.4 1.012784 1.012735 0.821032 0.821033
1.6 0.642397 0.642368 0.576173 0.576171
1.8 0.309137 0.309134 0.356389 0.35639

Table 2: Values for −f ′′(0), 1/θ(0) and γ for different values of S, B∗, Pr, and R using HPM.

S B∗ Pr R −f ′′
(0) 1/θ(0) γ

0.8 0.5 1 0.5 2.68096 2.49649 4.63106
1.2 0.5 1 0.5 1.44260 1.38111 1.27185
1.5 0.5 1 0.5 0.821843 0.799913 0.48045
0.8 0 1 0.5 2.68096 2.85021 4.63106
0.8 0.5 1 0.5 2.68096 2.49649 4.63106
0.8 1 1 0.5 2.68096 2.03864 4.63106
0.8 0.5 1 0.5 2.68096 2.49649 4.63106
0.8 0.5 3 0.5 2.68096 5.0963 4.63106
0.8 0.5 7 0.5 2.68096 8.1543 4.63106
0.8 0.5 3 0 2.68096 6.34069 4.63106
0.8 0.5 3 0.5 2.68096 5.0963 4.63106
0.8 0.5 3 2 2.68096 3.47046 4.63106

Table 1 provides the comparison of present results with those of Wang [13]. Without
any doubt, we can claim that the comparison is in excellent agreement under some limiting
cases R = 0 and B∗ = 0. Table 2 presents the values of reduced skin friction coefficient −f ′′(0)
and reduced Nusselt number 1/θ(0) for several parameters governing the flow and heat
transfer aspects. From this Table, we observe that as the unsteadiness parameter S increases,
the values of reduced skin friction coefficient and reduced Nusselt number are found to be
degraded, which will cause a loss in the rate of cooling for the liquid film flow. Likewise,
increasing the Prandtl number Pr leads to an increase in the value of Nusselt number,
implying a raise in the rate of cooling for the thin film flow. But, the reverse is true for the
radiation parameter R. It is noted that the liquid film thickness shortens with the increase of
unsteadiness parameter S, as observed byWang [8] for constant surface temperature case and
Wang [13] for prescribed variable surface temperature case. Since the momentum equation
(2.12) does not contain Pr, S, and R, the reduced skin friction coefficient is supposed to be
independent on the three values, as is evident in Table 2.

5. Conclusions

In this paper, the influence of internal heat generation on the thin film flow and heat transfer
on an unsteady stretching sheet in the presence of variable heat flux and thermal radiation
has been analyzed successfully by means of homotopy perturbation method (HPM). A
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qualitative argument for the effects of Prandtl number and thermal radiation on temperature
variations is provided through the consequence of a simple integration procedure. The
present study reveals that the temperature dependent heat generation parameter has no
substantial effect on the velocity, but it has a great effect on the temperature and hence on
the rate of heat transfer. The presence of internal heating and thermal radiation produces a
fall in the cooling rate for the thin film flow. But, the reverse effect is true for the Prandtl
number. Also, the high values of unsteadiness parameter lead to a decrease in the rate of
cooling for the thin film flow.
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