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Recently there is huge interest in graph theory and intensive study on computing integer powers
of matrices. In this paper, we consider one type of directed graph. Then we obtain a general form
of the adjacency matrices of the graph. By using the well-known property which states the
(i, j) entry of Am (A is adjacency matrix) is equal to the number of walks of length m from
vertex i to vertex j, we show that elements of mth positive integer power of the adjacency matrix
correspond to well-known Jacobsthal numbers. As a consequence, we give a Cassini-like formula
for Jacobsthal numbers. We also give a matrix whose permanents are Jacobsthal numbers.

1. Introduction

The (n+k)th term of the linear homogeneous recurrence relation with constant coefficients is
an equation of the form

an+k = c0an + c1an+1 + · · · + ck−1an+k−1, (1.1)

where (c0, c1, . . . , ck−1) are constants [1]. Some well-known number sequences are in fact a
special form of this difference equation. In this paper, we consider the Jacobsthal sequence
which is defined by the following recurrence relation:

Jn+2 = Jn+1 + 2Jn, where J0 = 0, J1 = 1 (1.2)
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for n ≥ 0. The first few values of the sequence are

n 1 2 3 4 5 6 7 8 9

Jn 1 1 3 5 11 21 43 85 171
. (1.3)

Consider a graph G = (V, E), with set of vertices V (G) = {1, 2, . . . , n} and set of edges
E(G) = {e1, e2, . . . , em}. A digraph is a graph whose edges are directed. In the case of a
digraph, you can think of the connections as one-way streets alongwhich traffic can flow only
in the direction indicated by the arrow. The adjacency matrix for a digraph has a definition
similar to the definition of an adjacency matrix for a graph [2]. In other words,

aij =

{
1, if there is a directed edge connecting ai to aj ,

0, otherwise.
(1.4)

As it is known, graphs are visual objects. Analysis of large graphs often requires com-
puter assistance. So it is necessary to express graphs via matrices. The difference equations of
the form (1.1) can be expressed in a matrix form.

In the literature, there are many special types of matrices which have great importance
in many scientific work, for example, matrices of tridiagonal, pentadiagonal, and others.
These types of matrices frequently appear in interpolation, numerical analysis, solution of
boundary value problems, high-order harmonic spectral filtering theory, and so on. In [3–5],
the authors investigate arbitrary integer powers of some type of these matrices.

The permanent of a matrix is similar to the determinant but all of the signs used in the
Laplace expansion of minors are positive. The permanent of an n-square matrix is defined by

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i), (1.5)

where the summation extends over all permutations σ of the symmetric group Sn [6].
LetA = [aij] be anm×nmatrix with row vectors r1, r2, . . . , rm. We callA contractible on

column (resp., row) k, if column (resp., row) k contains exactly two nonzero elements. Suppose
that A is contractible on column k with aik /= 0, ajk /= 0, and i /= j. Then the (m − 1) × (n − 1)
matrixAij:k obtained fromA replacing row iwith ajkri +aikrj and deleting row j and column
k is called the contraction of A on column k relative to rows i and j. If A is contractible on row
k with aki /= 0, akj /= 0, and i /= j, then the matrix Ak:ij = [AT

ij:k]
T is called the contraction of A

on row k relative to columns i and j. Every contraction used in this paper will be according to
first column. We know that A can be contracted to a matrix B if either B = A or if there exist
matrices A0, A1, . . . , At (t ≥ 1) such that A0 = A, At = B and Ar is a contraction of Ar−1 for
r = 1, 2, . . . , t − 1. One can see that, ifA is a nonnegative integer matrix of order n > 1 and B is
a contraction of A [7], then

perA = perB. (1.6)

In [7], the authors consider relationships between the sums of the Fibonacci and Lucas
numbers and 1-factors of bipartite graphs.
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In [8], the authors investigate the relationships between Hessenberg matrices and the
well-known number sequences Pell and Perrin.

In [9], the authors investigate Jacobsthal numbers and obtain some properties for the
Jacobsthal numbers. They also give Cassini-like formulas for Jacobsthal numbers as

Jn+1Jn−1 − J2n = (−1)n2n−1. (1.7)

In [10], the authors investigate incomplete Jacobsthal and Jacobsthal-Lucas numbers.
In [11], the authors consider the number of independent sets in graphs with two

elementary cycles. They described the extremal values of the number of independent sets
using Fibonacci and Lucas numbers.

In [1], the authors give a generalization for known sequences and then they give the
graph representations of the sequences. They generalize Fibonacci, Lucas, Pell, and Tribonacci
numbers and they show that the sequences are equal to the total number of k-independent
sets of special graphs.

In [12], the author present a combinatorial proof that thewheelWn has L2n−2 spanning
trees, and Ln is the nth Lucas number and that the number of spanning trees of a related graph
is a Fibonacci number.

In [13], the authors consider certain generalizations of the well-known Fibonacci
and Lucas numbers, the generalized Fibonacci, and Lucas p-numbers. Then they give
relationships between the generalized Fibonacci p-numbers Fp(n), and their sums,

∑n
i=1 Fp(i),

and the 1-factors of a class of bipartite graphs. Further they determine certain matrices whose
permanents generate the Lucas p-numbers and their sums.

In this paper, we consider the adjacency matrices of one type of disconnected directed
graph family given with Figure 1.

Then we investigate relationships between the adjacency matrices and the Jacobsthal
numbers. We also give one type of tridiagonal matrix whose permanents are Jacobsthal
numbers. Then we give a Maple 13 procedure to verify the result easily.

2. The Adjacency Matrix of a Graph and the Jacobsthal Numbers

In this section, we investigate relationships between the adjacency matrix A of the graph
given by the Figure 1 and the Jacobsthal numbers. Then we give a Cassini-like formula for
Jacobsthal numbers.

The (i, j)th entry of Ar is just the number of walks of length r from vertex i to vertex
j. In other words, the number of walks of length r from vertex i to vertex j corresponds to
Jacobsthal numbers [14]. One can observe that all integer powers of A are specified to the
famous Jacobsthal numbers with positive signs.
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Theorem 2.1. Let A = [aij] be the adjacency matrix of the graph given in Figure 1 with n vertices.
That is,

A =
[
aij

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, am,m+1,

1, as+1,s,

1, a2+p,3+p,

0, otherwise,

(2.1)

where m = 1, 3, 5, . . . , n − 1, p = 0, 4, 8, . . . , n − 4, s = {1, 2, 3, . . . , n} − {4, 8, . . . , 4k}, and k =
1, 2, . . . , n/4. Then,

Ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar
1+p,1+p = ar

4+p,4+p =
1
12
(
2(−2)r + 2r+1 + 22(−1)r + 4

)
,

ar
2+p,1+p = ar

4+p,3+p =
1
12

[
−2(−2)r + 2r+1 + 2(−1)r+1 + 2

]
,

ar
3+p,1+p = ar

4+p,2+p =
1
12

[
2(−2)r + 2r+1 + 2(−1)r+1 − 2

]
,

ar
4+p,1+p =

1
12
[−(−2)r + 2r + 2(−1)r − 2

]
,

ar
1+p,2+p = ar

3+p,4+p =
1
12
[−4(−2)r + 2r+2 − 4(−1)r + 4

]
,

ar
2+p,2+p = ar

3+p,3+p =
1
12

[
4(−2)r + 2r+2 − 2(−1)r+1 + 2

]
,

ar
2+p,3+p = ar

3+p,2+p =
1
12

[
−4(−2)r + 2r+2 − 2(−1)r+1 − 2

]
,

ar
1+p,3+p = ar

2+p,4+p =
1
12
[
4(−2)r + 2r+2 − 4(−1)r − 4

]
,

ar
1+p,4+p =

1
12
[−4(−2)r + 2r+2 + 8(−1)r − 8

]
,

0, otherwise.

(2.2)

Proof. It is known that the rth (r ∈ N) power of a matrix A is computed by using the
known expression Ar = TJrT−1 [15], where J is the Jordan form of the matrix and T is the
transforming matrix. The matrices J and T are obtained using eigenvalues and eigenvectors
of the matrix A.

The eigenvalues ofA are the roots of the characteristic equation defined by |A−λI| = 0,
where I is the identity matrix of nth order.
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Let Pn(x) be the characteristic polynomial of the matrix A which is defined in (2.1).
Then we can write

P4(x) = x4 − 5x2 + 4

P8(x) = x8 − 10x6 + 33x4 − 40x2 + 16

P12(x) = x12 − 15x10 + 87x8 − 245x6 + 348x4 − 240x2 + 64

...

(2.3)

Taking (2.3) into account, we obtain

Pn(λ) =
(
λ4 − 5λ2 + 4

)k
= [(λ − 1)(λ + 1)(λ − 2)(λ + 2)]k, (2.4)

where n = 4k, k = 1, 2, . . .. Using mathematical induction method, it can be seen easily.
The eigenvalues of the matrix are multiple according to the order of the matrix. Then Jordan’s
form of the matrix A is

J = Jk = diag

⎡
⎢⎣−2, . . . ,−2,︸ ︷︷ ︸

k times

2, . . . , 2,︸ ︷︷ ︸
k times

−1, . . . ,−1,︸ ︷︷ ︸
k times

1, . . . , 1︸ ︷︷ ︸
k times

⎤
⎥⎦. (2.5)

Let us consider the relation J = T−1AT (AT = TJ); here A is nth-order matrix (2.1),
J is the Jordan form of the matrix A and T is the transforming matrix. We will find the
transforming matrix T . Let us denote the jth column of T by Tj . Then T = (T1, T2, . . . , Tn)
and

(AT1, . . . , ATn) = (T1λ1, . . . , Tkλ1, Tk+1λ2, . . . , T2kλ2, . . . , T3k+1λ4, . . . , T4kλ4). (2.6)
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In other words,

AT1 = T1λ1

AT2 = T2λ1

...

ATk = Tkλ1

ATk+1 = Tk+1λ2

ATk+2 = Tk+2λ2

...

AT2k = T2kλ2

AT2k+1 = T2k+1λ3

AT2k+2 = T2k+2λ3

...

AT3k = T3kλ3

AT3k+1 = T3k+1λ3

AT3k+2 = T3k+2λ3

...

AT4k = T4kλ4.

(2.7)

Solving the set of equations system, we obtain eigenvectors of the matrix A:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 · · · 0 0 · · · 0 2 0 · · · 0 2 2 0 · · · 0
2 0 · · · 0 0 · · · 0 2 0 · · · 0 −1 −1 0 · · · 0
−2 0 · · · 0 0 · · · 0 2 0 · · · 0 −1 1 0 · · · 0
1 0 · · · 0 0 · · · 0 1 0 · · · 0 1 1 0 · · · 0
0 −2 · · · 0 0 · · · 2 0 0 · · · 2 0 0 2 · · · 0
0 2 · · · 0 0 · · · 2 0 0 · · · −1 0 0 −1 · · · 0
0 −2 · · · 0 0 · · · 2 0 0 · · · −1 0 0 1 · · · 0
0 1 · · · 0 0 · · · 1 0 0 · · · 1 0 0 1 · · · 0
...

...
. . .

...
... . .

. ...
...

... . .
. ...

...
...

...
. . .

...
0 0 · · · −2 2 · · · 0 0 2 · · · 0 0 0 0 · · · 2
0 0 · · · 2 2 · · · 0 0 −1 · · · 0 0 0 0 · · · −1
0 0 · · · −2 2 · · · 0 0 −1 · · · 0 0 0 0 · · · 1
0 0 · · · 1 1 · · · 0 0 1 · · · 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

︸ ︷︷ ︸
k times

︸ ︷︷ ︸
k times

︸ ︷︷ ︸
k times

︸ ︷︷ ︸
k times

(2.8)
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We will find inverse matrix T−1 denoting the ith row of the inverse matrix T−1 by T−1 =
(t1, t2, . . . , tn) and implementing the necessary transformations, we obtain

T−1 =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 −2 2 0 0 0 0 · · · 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 −2 2 · · · 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 · · · −1 2 −2 2 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 −1 2 −2 2
0 0 0 0 0 0 0 0 · · · 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 · · · 1 2 2 2 0 0 0 0
...

...
...

...
...

...
...

... . .
. ...

...
...

...
...

...
...

...
0 0 0 0 1 2 2 2 · · · 0 0 0 0 0 0 0 0
1 2 2 2 0 0 0 0 · · · 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 2 −2 −2 4
0 0 0 0 0 0 0 0 · · · 2 −2 −2 4 0 0 0 0
...

...
...

...
...

...
... . .

. ...
...

...
...

...
...

...
0 0 0 0 2 −2 −2 4 · · · 0 0 0 0 0 0 0 0
2 −2 −2 4 0 0 0 0 · · · 0 0 0 0 0 0 0 0
−2 −2 2 4 0 0 0 0 · · · 0 0 0 0 0 0 0 0
0 0 0 0 −2 −2 2 4 · · · 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · · −2 −2 2 4 0 0 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 −2 −2 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.9)

Using the derived equalities and matrix multiplication,

A = TJT−1 =⇒ Ar = TJrT−1 =
[
ar
i,j

]
. (2.10)

We obtain the expression for the rth power of the matrix A as in (2.2), that is,

Ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar
i+1,i = Jr

ar
i,i+1 = 2Jr

ar
1+p,4+p = 4Jr−1

ar
2+p,3+p = ar

3+p,2+p = Jr+1

ar
4+p,1+p = Jr−1

0, otherwise

if r is odd

Ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ar
1+4(k−1),1+4(k−1) = ar

4k,4k = 2Jr−1
ar
2+p,2+p = ar

3+p,3+p = Jr+1

ar
1+p,3+p = ar

2+p,4+p = 2Jr
ar
3+p,1+p = ar

4+p,2+p = Jr

0, otherwise

if r is even,

(2.11)

where i = 1, 3, 5, . . . , n − 1, p = 0, 4, 8, . . . , 4(k − 1), and k = 1, 2, . . . , n/4.
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See Appendix B.
Let us consider the matrix A for n = 4 as below:

A =

⎡
⎢⎢⎣
0 2 0 0
1 0 1 0
0 1 0 2
0 0 1 0

⎤
⎥⎥⎦. (2.12)

One can see that

Al =

⎡
⎢⎢⎣

0 2Jl 0 4Jl−1
Jl 0 Jl+1 0
0 Jl+1 0 2Jl
Jl−1 0 Jl 0

⎤
⎥⎥⎦, At =

⎡
⎢⎢⎣
2Jt−1 0 2Jt 0
0 Jt+1 0 2Jt
Jt 0 Jt+1 0
0 Jt 0 2Jt−1

⎤
⎥⎥⎦, (2.13)

where l is positive odd integer and t is a positive even integer. Thenwewill give the following
corollary without proof.

Corollary 2.2. Let A be a matrix as in (2.12). Then,

detAr = (detA)r =
(
J2r − Jr−1Jr+1

)2
= 4r−1. (2.14)

We call this property as Cassini-like formula for Jacobsthal numbers. This formula also is equal to
square of the formula given by (1.7).

3. Determinantal Representations of the Jacobsthal Numbers

Let Hn = [hij]n×n be n-square matrix, in which the main diagonal entries are 1s, except the
second and last one which are −1 and 3, respectively. The superdiagonal entries are 2s, the
subdiagonal entries are 1s and otherwise 0. In other words,

Hn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
1 −1 2 0

1 1 2
. . .

. . .
. . .

1 1 2
0 1 1 2

1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.1)

Theorem 3.1. LetHn be an n-square matrix (n > 2) as in (3.1), then

perHn = perH(n−2)
n = Jn+1, (3.2)

where Jn is the nth Jacobsthal number.
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Proof. By definition of the matrix Hn, it can be contracted on column 1. Let H(r)
n be the rth

contraction of Hn. If r = 1, then

H
(1)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0
1 1 2

1 1 2
. . .

. . .
. . .

1 1 2
0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3)

Since H(1)
n also can be contracted according to the first column,

H
(2)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 0
1 1 2

1 1 2
. . .

. . .
. . .

1 1 2
0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)

Going with this process, we have

H
(3)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 6 0
1 1 2

1 1 2
. . .

. . .
. . .

1 1 2
0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

Continuing this method, we obtain the rth contraction

H
(r)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr+1 2Jr 0
1 1 2

1 1 2
. . .

. . .
. . .

1 1 2
0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.6)
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where 2 ≤ r ≤ n − 4. Hence

H
(n−3)
n =

⎡
⎣Jn−2 2Jn−3 0

1 1 2
0 1 3

⎤
⎦ (3.7)

which, by contraction ofH(n−3)
n on column 1, becomes H

(n−2)
n =

[
Jn−1 2Jn−2
1 3

]
.By (1.6), we have

perHn = perH(n−2)
n = Jn+1.

See Appendix A.

4. Examples

We can find the arbitrary positive integer powers of the matrixA, taking into account derived
expressions.

For k = 2, the arbitrary positive integer power of A is

Ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar
11 = ar

44 = ar
55 = ar

88 =
1
12
(
2(−2)r + 2r+1 + 22(−1)r + 4

)
,

ar
21 = ar

43 = ar
65 = ar

87 =
1
12

[
−2(−2)r + 2r+1 + 2(−1)r+1 + 2

]
,

ar
31 = ar

42 = ar
75 = ar

86 =
1
12

[
2(−2)r + 2r+1 + 2(−1)r+1 − 2

]
,

ar
41 = ar

85 =
1
12
[−(−2)r + 2r + 2(−1)r − 2

]
,

ar
12 = ar

34 = ar
56 = ar

78 =
1
12
[−4(−2)r + 2r+2 − 4(−1)r + 4

]
,

ar
22 = ar

33 = ar
66 = ar

77 =
1
12

[
4(−2)r + 2r+2 − 2(−1)r+1 + 2

]
,

ar
23 = ar

32 = ar
67 = ar

76 =
1
12

[
−4(−2)r + 2r+2 − 2(−1)r+1 − 2

]
,

ar
13 = ar

24 = ar
57 = ar

68 =
1
12
[
4(−2)r + 2r+2 − 4(−1)r − 4

]
,

ar
14 = ar

58 =
1
12
[−4(−2)r + 2r+2 + 8(−1)r − 8

]
,

0, otherwise.

(4.1)
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For r = 4,

A4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a4
11 = a4

44 = a4
55 = a4

88 =
1
12

(
2(−2)4 + 25 + 22(−1)4 + 4

)
= 6,

a4
21 = a4

43 = a4
65 = a4

87 =
1
12

[
−2(−2)4 + 25 + 2(−1)5 + 2

]
= 0,

a4
31 = a4

42 = a4
75 = a4

86 =
1
12

[
2(−2)4 + 25 + 2(−1)5 − 2

]
= 5,

a4
41 = a4

85 =
1
12

[
−(−2)4 + 24 + 2(−1)4 − 2

]
= 0,

a4
12 = a4

34 = a4
56 = a4

78 =
1
12

[
−4(−2)4 + 26 − 4(−1)4 + 4

]
= 0,

a4
22 = a4

33 = a4
66 = a4

77 =
1
12

[
4(−2)4 + 26 − 2(−1)5 + 2

]
= 11,

a4
23 = a4

32 = a4
67 = a4

76 =
1
12

[
−4(−2)4 + 26 − 2(−1)5 − 2

]
= 0,

a4
13 = a4

24 = a4
57 = a4

68 =
1
12

[
4(−2)4 + 26 − 4(−1)4 − 4

]
= 10,

a4
14 = a4

58 =
1
12

[
−4(−2)4 + 26 + 8(−1)4 − 8

]
= 0,

0, otherwise.

(4.2)

In other words,

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 10 0 0 0 0 0
0 11 0 10 0 0 0 0
5 0 11 0 0 0 0 0
0 5 0 6 0 0 0 0
0 0 0 0 6 0 10 0
0 0 0 0 0 11 0 10
0 0 0 0 5 0 11 0
0 0 0 0 0 5 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3)
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For r = 5,

A5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a5
11 = a5

44 = a5
55 = a5

88 =
1
12

(
2(−2)5 + 26 + 22(−1)5 + 4

)
= 0,

a5
21 = a5

43 = a5
65 = a5

87 =
1
12

[
−2(−2)5 + 26 + 2(−1)6 + 2

]
= 11,

a5
31 = a5

42 = a5
75 = a5

86 =
1
12

[
2(−2)5 + 26 + 2(−1)6 − 2

]
= 0,

a5
41 = a5

85 =
1
12

[
−(−2)5 + 25 + 2(−1)5 − 2

]
= 5,

a5
12 = a5

34 = a5
56 = a5

78 =
1
12

[
−4(−2)5 + 27 − 4(−1)5 + 4

]
= 22,

a5
22 = a5

33 = a5
66 = a5

77 =
1
12

[
4(−2)5 + 27 − 2(−1)6 + 2

]
= 0,

a5
23 = a5

32 = a5
67 = a5

76 =
1
12

[
−4(−2)5 + 27 − 2(−1)6 − 2

]
= 21,

a5
13 = a5

24 = a5
57 = a5

68 =
1
12

[
4(−2)5 + 27 − 4(−1)5 − 4

]
= 0,

a5
14 = a5

58 =
1
12

[
−4(−2)5 + 27 + 8(−1)5 − 8

]
= 20,

0, otherwise.

(4.4)

That is,

A5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 22 0 20 0 0 0 0
11 0 21 0 0 0 0 0
0 21 0 22 0 0 0 0
5 0 11 0 0 0 0 0
0 0 0 0 0 22 0 20
0 0 0 0 11 0 21 0
0 0 0 0 0 21 0 22
0 0 0 0 5 0 11 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.5)

5. Conclusion

The basic idea of the present paper is to draw attention to find out relationships between
graph theory, number theory, and linear algebra. In this content, we consider the adjacency
matrices of one type of graph. Then we compute arbitrary positive integer powers of the
matrix which are specified to the Jacobsthal numbers.
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Appendices

A. Procedure for Contraction Method

We give a Maple 13 source code to find permanents of one type of contractible tridiagonal
matrix:

restart:
with(LinearAlgebra):
contraction:=proc(n)
local i, j, k, c, C;
c:=(i, j)→piecewise(i = j + 1, 1, j = i+ 1, 2, j = 2 and i = 2,−1, j = n and i = n, 3, i = j, 1);
C:=Matrix(n, n, c):
for k from 0 to n − 3 do
print(k,C):
for j from 2 to n − k do
C[1, j] := C[2, 1] ∗ C[1, j] + C[1, 1] ∗ C[2, j] :
od:
C:=DeleteRow(DeleteColumn(Matrix(n − k, n − k,C), 1), 2):
od:
print(k,eval(C)):
end proc:

B. Computation of Matrix Power

We give a Maple 13 formula to compute integer powers of the matrix given by (2.1):
with(linalg) :
r := 1 :
> a1 := (2 ∗ (−2)̂ r + 2̂ (r + 1) + 4 ∗ (−1)̂ r + 4)/12,
a1 := 0
> a2 := (−2 ∗ (−2)̂ r + 2̂ (r + 1) + 2 ∗ (−1)̂ (r + 1) + 2)/12,
a2 := 1
> a3 := (2 ∗ (−2)̂ r + 2̂ (r + 1) + 2 ∗ (−1)̂ (r + 1) − 2)/12,
a3 := 0
> a4 := (−(−2)̂ r + 2̂ r + 2 ∗ (−1)̂ r − 2)/12,
a4 := 0
> a5 := (−4 ∗ (−2)̂ r + 2̂ (r + 2) − 4 ∗ (−1)̂ r + 4)/12,
a5 := 2
> a6 := (4 ∗ (−2)̂ r + 2̂ (r + 2) − 2 ∗ (−1)̂ (r + 1) + 2)/12,
a6 := 0
> a7 := (−4 ∗ (−2)̂ r + 2̂ (r + 2) − 2 ∗ (−1)̂ (r + 1) − 2)/12,
a7 := 1
> a8 := (4 ∗ (−2)̂ r + 2̂ (r + 2) − 4 ∗ (−1)̂ r − 4)/12,
a8 := 0
> a9 := (−4 ∗ (−2)̂ r + 2̂ (r + 2) + 8 ∗ (−1)̂ r − 8)/12,
a9 := 0
> A4 := matrix(4, 4, [a1, a5, a8, a9, a2, a6, a7, a8, a3, a7, a6, a5, a4, a3, a2, a1]),
A := BlockDiagonal(A4, . . . , A4).
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