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Very recently, Moudafi (2011) introduced an algorithm with weak convergence for the split
common fixed-point problem. In this paper, we will continue to consider the split common fixed-
point problem. We discuss the strong convergence of the viscosity approximation method for
solving the split common fixed-point problem for the class of quasi-nonexpansive mappings in
Hilbert spaces. Our results improve and extend the corresponding results announced by many
others.

1. Introduction and Preliminary

Throughout this paper, we always assume that H is a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖. Let I denote the identity operator onH. Let C andQ be nonempty closed
convex subset of real Hilbert spaces H1 and H2, respectively. The split feasibility problem
(SFP) is to find a point

x ∈ C such that Ax ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was first introduced by Censor and Elfving [1] for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction [2]. The SFP attracts many
authors’ attention due to its application in signal processing. Various algorithms have been
invented to solve it (see [3–9] and references therein).
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Note that the split feasibility problem (1.1) can be formulated as a fixed-point equation
by using the fact

PC

(
I − γA∗(I − PQ

)
A
)
x∗ = x∗; (1.2)

that is, x∗ solves the SFP (1.1) if and only if x∗ solves the fixed point equation (1.2) (see [10] for
the details). This implies that we can use fixed-point algorithms (see [11–13]) to solve SFP. A
popular algorithm that solves the SFP (1.1) is due to Byrne’s CQ algorithm [2]which is found
to be a gradient-projection method (GPM) in convex minimization. Subsequently, Byrne [3]
applied KM iteration to the CQ algorithm, and Zhao and Yang [14] applied KM iteration to
the perturbed CQ algorithm to solve the SFP. It is well known that the CQ algorithm and
the KM algorithm for a split feasibility problem do not necessarily converge strongly in the
infinite-dimensional Hilbert spaces.

The split common fixed-point problem (SCFP) is a generalization of the split feasibility
problem (SFP) and the convex feasibility problem (CFP); see [15]. In this paper, we introduce
and study the convergence properties of a viscosity approximation algorithm for solving the
SCFP for the class of quasi-nonexpansive operators S such that I − S is demiclosed at the
origin.

Now let us first recall the definition of quasi-nonexpansive operators which appear
naturally when using subgradient projection operator techniques in solving some feasibility
problems, and also some definitions of classes of operators often used in fixed-point theory
and which are commonly encountered in the literature.

Let T : H → H be a mapping. A point x ∈ H is said to be a fixed point of T provided
that Tx = x. In this paper, we use F(T) to denote the fixed-point set and use → and ⇀ to
denote the strong convergence and weak convergence, respectively. We use ωw(xk) = {x :
∃xkj ⇀ x} stand for the weak ω-limit set of {xk}.

(i) Amapping T : H → H belongs to the general classΦQ of (possibly discontinuous)
quasi-nonexpansive mappings if

∥∥Tx − q
∥∥ ≤ ∥∥x − q

∥∥, ∀(x, q) ∈ H × F(T). (1.3)

(ii) A mapping T : H → H belongs to the set ΦN of nonexpansive mappings if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀(x, y) ∈ H ×H. (1.4)

(iii) Amapping T : H → H belongs to the set ΦFN of firmly nonexpansive mappings if

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 − ∥∥(x − y
) − (

Tx − Ty
)∥∥2

, ∀(x, y) ∈ H ×H. (1.5)

(iv) A mapping T : H → H belongs to the set ΦFQ of firmly quasi-nonexpansive map-
pings if

∥∥Tx − q
∥∥2 ≤ ∥∥x − q

∥∥2 − ‖x − Tx‖2, ∀(x, q) ∈ H × F(T). (1.6)
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It is easily observed that ΦFN ⊂ ΦN ⊂ ΦQ and that ΦFN ⊂ ΦFQ ⊂ ΦQ. Furthermore, ΦFN is
well known to include resolvents and projection operators, while ΦFQ contains subgradient
projection operators (see, e.g., [16] and the reference therein).

A mapping T : H → H is called demiclosed at the origin if any sequence {xn}weakly
converges to x, and if the sequence {Txn} strongly converges to 0, then Tx = 0. A mapping
f : H → H is called a contraction of modulus ρ ∈ [0, 1) if

∥
∥fx − fy

∥
∥ ≤ ρ

∥
∥x − y

∥
∥, ∀(x, y) ∈ H ×H. (1.7)

In what follows, we will focus our attention on the following general two-operator
split common fixed-point problem:

find x∗ ∈ C such that Ax∗ ∈ Q, (1.8)

where A : H1 → H2 is a bounded linear operator, U : H1 → H1 and S : H2 → H2 are two
quasi-nonexpansive operators with nonempty fixed-point sets F(U) = C and F(S) = Q, and
denote the solution set of the two-operator SCFP by

Γ =
{
y ∈ C;Ay ∈ Q

}
. (1.9)

Recall that F(U) and F(S) are nonempty closed convex subsets of H1 and H2, respectively.
If Γ/= ∅, we have Γ which is close convex subset of H1. To solve (1.8), Censor and Segal
[15] proposed and proved, in infinite-dimensional spaces, the convergence of the following
algorithm:

xk+1 = U
(
xk + γAt(S − I)Axk

)
, k ∈ N, (1.10)

where γ ∈ (0, 2/λ), with λ being the largest eigenvalue of thematrixAtA (At stands formatrix
transposition). Very recently, Moudafi [17] introduced the following relaxed algorithm:

xk+1 = (1 − αk)uk + αkU(uk), k ∈ N, (1.11)

where uk = xk + γβA∗(S − I)Axk, β ∈ (0, 1), αk ∈ (0, 1), and γ ∈ (0, 1/λβ), with λ being
the spectral radius of the operator A∗A. Moudafi proved weak convergence result of the
algorithm in Hilbert spaces.

Inspired by their work, we introduce the following viscosity approximation algorithm.

Algorithm 1. Initialization: Let x0 ∈ H be arbitrary.
Iterative step: Set T = U(I + γA∗(S − I)A). For k ∈ N, let

xk+1 = αkf(xk) + (1 − αk)((1 −ωk)xk +ωkTxk), (1.12)

where f : H → H is a contraction of modulus ρ, ωk ∈ (0, 1/2), γ ∈ (0, 1/λ) with λ being
the spectral radius of the operator A∗A, and αk ∈ (0, 1).
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This paper establishes the strong convergence of the sequence given by (1.12) to the
unique solution of the variational inequality problem VIP(I − f,Γ) :

find x∗ ∈ Γ such that
〈(
I − f

)
x∗, v − x∗〉 ≥ 0, ∀v ∈ Γ. (1.13)

Nowwe give a series of preliminary results needed for the convergence analysis of algorithm
(1.12).

Lemma 1.1. LetH be a real Hilbert space and T : H → H a quasi-nonexpansive mapping. Then, the
following properties are reached:

(i) 〈x, y〉 = −1
2
‖x − y‖2 + 1

2
‖x‖2 + 1

2
‖y‖2, ∀(x, y) ∈ H ×H;

(ii) 〈x−Tx, x−q〉 ≥ 1
2
‖x − Tx‖2 and 〈x−Tx, q−Tx〉 ≤ 1

2
‖x − Tx‖2, ∀(x, q) ∈ H×F(T).

Remark 1.2. Let F := I − f , where f is the contraction defined in (1.7). It is a simple matter to
see that the operator F is (1 − ρ) strongly monotone over H; that is,

〈
Fx − Fy, x − y

〉 ≥ (
1 − ρ

)∥∥x − y
∥∥2
, ∀(x, y) ∈ H ×H. (1.14)

The next result is of fundamental importance for the techniques of analysis used in this paper.
It was established in [18], and its proof is given for the sake of completeness.

Lemma 1.3 (see [18, Lemma 1.3]). Let {δn} be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {δnj}j≥0 of {δn} which satisfies δnj < δnj+1 for all
j ≥ 0. Also consider the sequence of integers {τ(n)}n≥n0

defined by

τ(n) = max{k ≤ n | δk < δk+1}. (1.15)

Then {τ(n)}n≥n0
is a nondecreasing sequence verifying limn→∞τ(n) = ∞, and, for all n ≥ n0, it holds

that δτ(n) ≤ δτ(n)+1 and one has

δn ≤ δτ(n)+1. (1.16)

Proof. Clearly, we can see that {τ(n)} is a well-defined sequence, and the fact that it is
nondecreasing is obvious as well as limn→∞τ(n) = ∞ and δτ(n) ≤ δτ(n)+1. Let us prove (1.16).
It is easily observed that τ(n) ≤ n. Consequently, we prove (1.16) by distinguishing the three
cases: (c1) τ(n) = n; (c2) τ(n) = n − 1; (c3) τ(n) < n − 1. In the first case (i.e., τ(n) = n), (1.16)
is immediately given by δτ(n) ≤ δτ(n)+1. In the second case (i.e., τ(n) = n − 1), (1.16) becomes
obvious. In the third case (i.e., τ(n) ≤ n − 2), by (1.15) and for any integer n ≥ n0, we easily
observe that δj ≥ δj+1 for τ(n) + 1 ≤ j ≤ n − 1; namely,

δτ(n)+1 ≥ δτ(n)+2 ≥ · · · ≥ δn−1 ≥ δn, (1.17)

which entails the desired result.
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2. Main Results

Theorem 2.1. Given a bounded linear operatorA : H1 → H2, letU : H1 → H1 and S : H2 → H2

be quasi-nonexpansive mappings with nonempty fixed-point set F(U) = C and F(S) = Q. Assume
that U − I and S − I are demiclosed at origin. Let {xk} be the sequence given by (1.12) with γ ∈
(0, 1/λ), ωk ∈ (0, 1/2) such that 0 < lim infk→∞ωk ≤ lim supk→∞ωk < 1/2 and {αk} ⊂ (0, 1)
such that limk→∞αk = 0 and

∑
k αk = ∞. If Γ/= ∅, then the sequence {xk} strongly converges to

a split common fixed-point x∗ ∈ Γ, verifying x∗ = PΓf(x∗) which equivalently solves the following
variational inequality problem:

x∗ ∈ Γ,
〈(
I − f

)
x∗, v − x∗〉 ≥ 0, ∀v ∈ Γ. (2.1)

Proof. Set Tωk = (1 −ωk)I +ωkT . Then xk+1 = αkf(xk) + (1 − αk)Tωkxk.
Firstly, we prove that {xk} is bounded. Taking y ∈ Γ, that is, y ∈ F(U), Ay ∈ F(S). We

have

∥∥xk+1 − y
∥∥ =

∥∥αk

(
f(xk) − f

(
y
))

+ αk

(
f
(
y
) − y

)
+ (1 − αk)

(
Tωkxk − y

)∥∥

≤ αk

∥∥f(xk) − f
(
y
)∥∥ + αk

∥∥f
(
y
) − y

∥∥ + (1 − αk)
∥∥Tωkxk − y

∥∥

≤ αkρ
∥∥xk − y

∥∥ + αk

∥∥f
(
y
) − y

∥∥ + (1 − αk)
∥∥Tωkxk − y

∥∥.

(2.2)

From the definition of Tωk , we get

∥∥Tωkxk − y
∥∥2 =

∥∥(1 −ωk)xk +ωkTxk − y
∥∥2

=
∥∥xk − y +ωk(Txk − xk)

∥∥2

=
∥∥xk − y

∥∥2 − 2ωk

〈
xk − y, xk − Txk

〉
+ω2

k‖Txk − xk‖2.

(2.3)

On the other hand, we have

∥∥Txk − y
∥∥2 =

∥∥U
(
I + γA∗(S − I)A

)
xk − y

∥∥2

≤ ∥∥(I + γA∗(S − I)A
)
xk − y

∥∥2

=
∥∥xk − y

∥∥2 + γ2‖A∗(S − I)Axk‖2 + 2γ
〈
xk − y,A∗(S − I)Axk

〉

=
∥∥xk − y

∥∥2 + γ2〈(S − I)Axk,AA∗(S − I)Axk〉 + 2γ
〈
xk − y,A∗(S − I)Axk

〉
.

(2.4)

From the definition of λ, it follows that

γ2〈(S − I)Axk,AA∗(S − I)Axk〉 ≤ λγ2〈(S − I)Axk, (S − I)Axk〉

= λγ2‖(S − I)Axk‖2.
(2.5)
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Now, by using property (ii) of Lemma 1.1, we obtain

2γ
〈
xk − y,A∗(S − I)Axk

〉
= 2γ

〈
A
(
xk − y

)
, (S − I)Axk

〉

= 2γ
〈
A
(
xk − y

)
+ (S − I)Axk − (S − I)Axk, (S − I)Axk

〉

= 2γ
(〈

S(Axk) −Ay, (S − I)Axk

〉 − ‖(S − I)Axk‖2
)

≤ 2γ
(
1
2
‖(S − I)Axk‖2 − ‖(S − I)Axk‖2

)

= −γ‖(S − I)Axk‖2.

(2.6)

Combining (2.4)–(2.6), we have

∥∥Txk − y
∥∥2≤ ∥∥xk − y

∥∥2 + λγ2‖(S − I)Axk‖2 − γ‖(S − I)Axk‖2

=
∥∥xk − y

∥∥2 − γ
(
1 − λγ

)‖(S − I)Axk‖2

≤ ∥∥xk − y
∥∥2

.

(2.7)

From property (i) of Lemma 1.1, we have

〈
xk − y, xk − Txk

〉
= −1

2
∥∥Txk − y

∥∥2 +
1
2
∥∥xk − y

∥∥2 +
1
2
‖xk − Txk‖2

≥ 1
2
‖xk − Txk‖2.

(2.8)

From (2.3) and (2.8), we have

∥∥Tωkxk − y
∥∥2 ≤ ∥∥xk − y

∥∥2 −ωk‖xk − Txk‖2 +ω2
k‖xk − Txk‖2

=
∥∥xk − y

∥∥2 −ωk(1 −ωk)‖xk − Txk‖2

≤ ∥∥xk − y
∥∥2

,

(2.9)

Combining (2.2), (2.3), and (2.9), it follows that

∥∥xk+1 − y
∥∥ ≤ αkρ

∥∥xk − y
∥∥ + αk

∥∥f
(
y
) − y

∥∥ + (1 − αk)
∥∥xk − y

∥∥

=
[
1 − αk

(
1 − ρ

)]∥∥xk − y
∥∥ + αk

∥∥f
(
y
) − y

∥∥

≤ max
{∥∥xk − y

∥∥,
1

1 − ρ

∥∥f
(
y
) − y

∥∥
}
.

(2.10)
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It is obviously that

∥
∥xk − y

∥
∥ ≤ max

{∥
∥x0 − y

∥
∥,

1
1 − ρ

∥
∥f

(
y
) − y

∥
∥
}
, (2.11)

and hence {xk} is bounded. Let x∗ = PΓf(x∗). We have

xk+1 − xk + αk

(
xk − f(xk)

)
= (1 − αk)(Tωkxk − xk), (2.12)

and hence

〈
xk+1 − xk + αk

(
I − f

)
xk, xk − x∗〉 = −(1 − αk)〈xk − Tωkxk, xk − x∗〉. (2.13)

By (2.9)we obtain that

〈xk − Tωkxk, xk − x∗〉 =
1
2
‖xk − Tωkxk‖2 + 1

2
‖xk − x∗‖2 − 1

2
‖Tωkxk − x∗‖2

≥ ω2
k

2
‖xk − Txk‖2 + 1

2
‖xk − x∗‖2 − 1

2
‖xk − x∗‖2 + ωk

2
(1 −ωk)‖xk − Txk‖2

=
ωk

2
‖xk − Txk‖2.

(2.14)

It follows from (2.13) that

〈
xk+1 − xk + αk

(
I − f

)
xk, xk − x∗〉 ≤ −ωk

2
(1 − αk)‖xk − Txk‖2, (2.15)

and hence

−〈xk − xk+1, xk − x∗〉 ≤ −αk

〈(
I − f

)
xk, xk − x∗〉 − ωk

2
(1 − αk)‖xk − Txk‖2. (2.16)

Setting δk =
1
2
‖xk − x∗‖2, we have

〈xk − xk+1, xk − x∗〉 = −1
2
‖xk+1 − x∗‖2 + 1

2
‖xk − x∗‖2 + 1

2
‖xk − xk+1‖2

= −δk+1 + δk +
1
2
‖xk − xk+1‖2,

(2.17)

so that (2.16) can be rewritten as

δk+1 − δk − 1
2
‖xk − xk+1‖2 ≤ −αk

〈(
I − f

)
xk, xk − x∗〉 − ωk

2
(1 − αk)‖xk − Txk‖2. (2.18)
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Now using (2.12) again, we have

‖xk+1 − xk‖2 =
∥
∥αk

(
f(xk) − xk

)
+ (1 − αk)(Tωkxk − xk

∥
∥2

≤ (
αk

∥
∥f(xk) − xk

∥
∥ + (1 − αk)‖Tωkxk − xk‖

)2

≤ 2α2
k

∥
∥f(xk) − xk

∥
∥2 + 2(1 − αk)2‖Tωkxk − xk‖2

≤ 2α2
k

∥
∥f(xk) − xk

∥
∥2 + 2(1 − αk)ω2

k‖Txk − xk‖2,

(2.19)

which yields

1
2
‖xk+1 − xk‖2 ≤ α2

k

∥
∥f(xk) − xk

∥
∥2 + (1 − αk)ω2

k‖Txk − xk‖2. (2.20)

From (2.18) and (2.20), we obtain

δk+1 − δk +ωk(1 − αk)
(
1
2
−ωk

)
‖Txk − xk‖2 ≤ αk

[
αk

∥∥f(xk) − xk

∥∥2 − 〈(
I − f

)
xk, xk − x∗〉

]
.

(2.21)

It follows from Remark 1.2 that

〈(
I − f

)
xk −

(
I − f

)
x∗, xk − x∗〉 ≥ (

1 − ρ
)‖xk − x∗‖2 = 2

(
1 − ρ

)
δk, (2.22)

and hence

2
(
1 − ρ

)
δk +

〈(
I − f

)
x∗, xk − x∗〉 ≤ 〈(

I − f
)
xk, xk − x∗〉. (2.23)

The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists k0 such that {δk}k≥k0 is nonincreasing. In this situation, {δk}
is convergent because it is nonnegative, so that limk→∞(δk+1−δk) = 0; hence, in light of (2.21)
together with αk → 0, the boundedness of {xk}, and 0 < lim infk→∞ωk ≤ lim supk→∞ωk <
1/2, we obtain

lim
k→∞

‖xk − Txk‖ = 0. (2.24)

From (2.21) again, we have

αk

[
−αk

∥∥f(xk) − xk

∥∥2 +
〈(
I − f

)
xk, xk − x∗〉

]
≤ δk − δk+1. (2.25)

By
∑

k αk = ∞, we deduce that

lim inf
k→∞

(
−αk

∥∥f(xk) − xk

∥∥2 +
〈(
I − f

)
xk, xk − x∗〉

)
≤ 0 (2.26)
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and hence (as αk‖f(xk) − xk‖2 → 0)

lim inf
k→∞

〈(
I − f

)
xk, xk − x∗〉 ≤ 0. (2.27)

By (2.23) and (2.27), we have

lim inf
k→∞

(
2
(
1 − ρ

)
δk +

〈(
I − f

)
x∗, xk − x∗〉) ≤ 0; (2.28)

recalling that limk→∞δk exists, we obtain

2
(
1 − ρ

)
lim
k→∞

δk + lim inf
k→∞

〈(
I − f

)
x∗, xk − x∗〉 ≤ 0. (2.29)

Now we prove that

lim inf
k→∞

〈(
I − f

)
x∗, xk − x∗〉 ≥ 0. (2.30)

It follows from (2.7) and (2.24) that

γ
(
1 − λγ

)‖(S − I)Axk‖2 ≤
∥∥xk − y

∥∥2 − ∥∥Txk − y
∥∥2

=
(∥∥xk − y

∥∥ − ∥∥Txk − y
∥∥)(∥∥xk − y

∥∥ +
∥∥Txk − y

∥∥)

≤ ‖xk − Txk‖
(∥∥xk − y

∥∥ +
∥∥Txk − y

∥∥)

−→ 0 (k −→ ∞),

(2.31)

and hence

lim
k→∞

‖(S − I)Axk‖ = 0. (2.32)

Taking y ∈ ωw(xk), from the demiclosedness of S − I at 0, we obtain

S
(
Ay

)
= Ay. (2.33)

Now, by setting uk = xk + γA∗(S − I)Axk, it follows that y ∈ ωw(uk). On the other hand,

‖U(uk) − uk‖ =
∥∥Txk − xk − γA∗(S − I)Axk

∥∥ ≤ ‖Txk − xk‖ + γ‖A∗‖ · ‖(S − I)Axk‖ −→ 0,
(2.34)

which, combined with the demiclosedness of U − I at 0, yields

Uy = y. (2.35)
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Hence, y ∈ C and y ∈ Γ. We can take subsequence {xkj} of {xk} such that xkj ⇀ y as j → ∞
and

lim inf
k→∞

〈(
I − f

)
x∗, xk − x∗〉 = lim

j→∞

〈(
I − f

)
x∗, xkj − x∗

〉
, (2.36)

which leads to

lim inf
k→∞

〈(
I − f

)
x∗, xk − x∗〉 =

〈(
I − f

)
x∗, y − x∗〉 ≥ 0. (2.37)

By (2.29), we have limk→∞δk = 0, and hence {xk} converges strongly to x∗.

Case 2. Suppose there exists a subsequence {δkj}j≥0 of {δk} such that δkj < δkj+1 for all j ≥ 0. In
this situation, we consider the sequence of indices {τ(k)} as defined in Lemma 1.3. It follows
that δτ(k)+1 − δτ(k) > 0, which by (2.21) amounts to

ωk

(
1 − ατ(k)

)
(
1
2
−ωk

)∥∥Txτ(k) − xτ(k)
∥∥2 ≤ ατ(k)

[
ατ(k)

∥∥f
(
xτ(k)

) − xτ(k)
∥∥2

−〈(I − f
)
xτ(k), xτ(k) − x∗〉

]
.

(2.38)

By the boundedness of {xk} and αk → 0, we immediately obtain

lim
k→∞

∥∥Txτ(k) − xτ(k)
∥∥ = 0. (2.39)

Similar to Case 1, we have

lim inf
k→∞

〈(
I − f

)
x∗, xτ(k) − x∗〉 ≥ 0. (2.40)

It follows from (2.38) that

〈(
I − f

)
xτ(k), xτ(k) − x∗〉 ≤ ατ(k)

∥∥f
(
xτ(k)

) − xτ(k)
∥∥2
, (2.41)

which in the light of (2.23) yields

2
(
1 − ρ

)
δτ(k) +

〈(
I − f

)
x∗, xτ(k) − x∗〉 ≤ ατ(k)

∥∥f
(
xτ(k)

) − xτ(k)
∥∥2; (2.42)

hence (as ατ(k)‖f(xτ(k)) − xτ(k)‖2 → 0) it follows that

2
(
1 − ρ

)
lim sup

k→∞
δτ(k) ≤ −lim inf

k→∞
〈(
I − f

)
x∗, xτ(k) − x∗〉. (2.43)
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From (2.40)we have lim supk→∞δτ(k) = 0, so that limk→∞δτ(k) = 0, and hence limk→∞‖xτ(k) −
x∗‖ = 0. On the other hand, it follows that

∥
∥xτ(k)+1 − xτ(k)

∥
∥ =

∥
∥ατ(k)

(
f
(
xτ(k)

) − xτ(k)
)
+
(
1 − ατ(k)

)(
Tωkxτ(k) − xτ(k)

)∥∥

≤ ατ(k)
∥
∥f

(
xτ(k)

) − xτ(k)
∥
∥ +

(
1 − ατ(k)

)
ωk

∥
∥Txτ(k) − xτ(k)

∥
∥,

(2.44)

which, by (2.39), implies that

lim
k→∞

∥
∥xτ(k)+1 − xτ(k)

∥
∥ = 0. (2.45)

So we have

lim
k→∞

δτ(k)+1 =
1
2
∥∥xτ(k)+1 − x∗∥∥ = 0. (2.46)

Then, recalling that δk ≤ δτ(k)+1 (by Lemma 1.3), we get limk→∞δk = 0, so that the sequence
{xk} converges strongly to x∗.

Theorem 2.2. Given a bounded linear operatorA : H1 → H2, letU : H1 → H1 and S : H2 → H2

be quasi-nonexpansive mappings with nonempty fixed-point set F(U) = C and F(S) = Q. Assume
thatU − I and S− I are demiclosed at origin. Let x0 ∈ H be arbitrary and {xk} the sequence given by

xk+1 = αkf(xk) + (1 − αk)((1 −ω)xk +ωTxk), (2.47)

where T = U(I+γA∗(S−I)A), f : H → H a contraction of modulus ρ, γ ∈ (0, 1/λ),ω ∈ (0, 1/2),
and {αk} ⊂ (0, 1) such that limk→∞αk = 0 and

∑
k αk = ∞. If Γ/= ∅, then the sequence {xk} strongly

converges to a split common fixed-point x∗ ∈ Γ, verifying x∗ = PΓf(x∗) which equivalently solves the
following variational inequality problem:

x∗ ∈ Γ,
〈(
I − f

)
x∗, v − x∗〉 ≥ 0, ∀v ∈ Γ. (2.48)
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[18] P.-E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly
convex minimization,” Set-Valued Analysis, vol. 16, no. 7-8, pp. 899–912, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


