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This paper is devoted to the stability and convergence analysis of the additive Runge-Kutta
methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of a delay
differential equation with many delays. GDN stability and D-Convergence are introduced and
proved. It is shown that strongly algebraically stability gives D-Convergence DA, DAS, and ASI
stability give GDN stability. Some examples are given in the end of this paper which confirms our
results.

1. Introduction

Delay differential equations arise in a variety of fields as biology, economy, control theory,
electrodynamics (see, e.g., [1-5]). When considering the applicability of numerical methods
for the solution of DDEs, it is necessary to analyze the stability of the numerical methods. In
the last three decades, many works had dealt with these problems (see, e.g., [6]). For the case
of nonlinear delay differential equations, this kind of methodology had been first introduced
by Torelli [7, 8] and then developed by Bellen and Zennaro [9], Bellen [10], and Zennaro
[11,12].

In this paper, we consider the following nonlinear DDEs with m delays:

v (1) = fU L y), yt - 1) + R Ly, y(t - 1)+ + F (G y(t), y(t - 7)) tE [, T],

yt) =) te[to-T1t],
(1.1)
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Z(t) = FU(t, z(), z(t — ) + fI(t, z(t), z(t = 2)) + -+ FUN(E, 2(8), z(t = 7))t € [to, T]

z(t) = ¢(t) te[to—Tto],
(1.2)

where 71 < 1) < - < T =7, fIO1 1 [t, T] xCN xCN — CN,v =1,2,...,m,and ¢, ¢ :
[to — T,to] — CN are continuous functions such that (1.1) and (1.2) have a unique solution,
respectively. Moreover, we assume that there exist some inner product (-, -) and the induced
norm || - || such that

Re<f[”](t,y1,u) — ¥t yo, 1), 11 —yz> <ollyi-wl’ v=12...,m,

(1.3)
|7 ) = Iy | < s~ =12, m,
for all t € [ty, T], for all y,y1, yo, u, 11, Us € CN, where oy, 1, are constants with
0<r,<-0,, v=12,...,m. (1.4)

Space discretization of some time dependent delay partial differential equations give rise to
such delay differential equations containing additive terms with different stiffness properties.
In these situations, additive Runge-Kutta (ARK) methods are used. Some recent works about
ARK can refer to [13, 14]. For the additive DDEs (1.1), (1.2), similar to the proof of Theorem
2.1in [7], it is straightforward to prove that under the conditions (1.3) and (1.4), the analytic
solutions satisfy

ly®) —z®)| < max [[ot) -g®)]. (1.5)

to—T<t<ty

To demand the discrete numerical solutions to preserve the stability properties (1.5) of
the analytic solutions, Torelli [7] introduced a concept of RN, GRN stability for numerical
methods applied to dissipative nonlinear systems of DDEs such as (1.1), which is the
straightforward generalization of the well-known concept of BN stability of numerical
methods with respect to dissipative systems of ODEs (see also [9]). A disappointing
conclusion is, as it is described in [10], that the order of RK methods for DDEs preserving
RN-stable properties may not be more than 4.

To bypass this order barrier, Zhang and Zhou [15] relaxed the RN stability restriction,
considered the GDN stability and D-Convergence of (1.1) in the case m = 1. In 2001, Zhang et
al. [16] gave the results of D-Convergence and GDN stability of (1.1) with the vector form. So,
the aim of this paper is the study of stability and convergence properties for ARK methods
when they are applied to nonlinear delay differential equations with m delays.

2. The GDN Stability of the Additive Runge-Kutta Method

In this preparatory section we recall the additive Runge-Kutta method and give out its sta-
bility analysis.
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Definition 2.1. An additive Runge-Kutta method with the Lagrangian interpolation (ARKLM)
of s stages and m levels for (1.1) is a one-step numerical method which the numerical solution
of (1.1) from y, (numerical approximation at t,) to y,.+1 (numerical approximation at t,,,; =
t, + h), that is,

n <~ [v 1) ~[o](n (2.1a)
v =y + 0 Y Y al O (b ki, 7 )

Here the coefficients al[;’], b][.U], and ¢; satisfy

S
Zai;’] =c][”], 0<¢ <1, jjo=12...,m, (2.1b)
j=1

t, = to + nh, y,, y]"), y][ “Im are approximations to the analytic solution y(t,), y(t, + cjh),

y(ty + cjh — 1) of (1.1), respectively, and the argument g}"“’” is determined by

@(th +cih— 1y t,+cih—1, <0,
j j

~[v](n)
A = 2.1
Yi E Lp, (6v)y(" ) g eih =T, > 0. 21c)

Py=—

With 7, = (my, — 6,), h, € [0,1), integer m, >r+1,1,d >0, and

Lp,(6,) = H(‘;’J:’;) P,=-d,—-d+1,...,r. (2.2)
k=—d N7V
k#P,

We assume m,, > r +1 is to guarantee that no (unknown) values y](.i) with i > n are used in the

interpolation procedure. In addition, we always put y](.i) = ¢(t, + cjh) whenever n < 0, and
Yn = @(t,) whenever n < 0.

The coefficients of the method may be organized in the Butcher tableau

C‘A[ll ‘A[2J ‘...‘A[m]

G [pET | piT (2.3)
where C = [cl,cz,...,cs]T andforv=1,2,...,m
_ [l 3ol [v] [l _ (1o1)°
o617, 6], Al = (af >i,j=1' (2.4)
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In order to write (2.1a), (2.1b), and (2.1c) in a more compact way we introduce some
notations. The N x N identity matrix will be denoted by I, e = (1,1,..., 1)T € RS, G= Goln
is the Kronecker product of matrix G and In. For u = (u,uy,..., us)T, v = (v1,0y,... ,vS)T €
CNS, we define the inner product and the induced norm in CN® as follows:

(wo) =Y (u,o),  ull = | > ™ (2.5)
i=1 i=1

Moreover, we also adopt that

- () - [0] () - (m) ~[01m)
Y Gl flol (tn, y, gl n)
(n) ~[0](n) (n) ~[ol(n)
w_ |7 ~lol(n) 2 oy oo ol _ | v <t"'y2 o >
vl =T ) -
_yg">_ _ggvun)_ flel <tn, ¥, g£v1<n)>
(2.6)

With the above notation, method (2.1a), (2.1b), and (2.1¢) can be written as

Yot = yu + B3 B £ (0, 7710,
v=1

m
y" =&y, + hY Al f1o) (tn, y(m,g[vun)),

o=l (2.7)
ep(ty + cjh—1,), ty+cih =Ty < to,
glelo = L+
Z LP,, (6v)y(”—mv+P{,), t, + C]'h — Ty > 1.
Py=—

In 1997, Zhang and Zhou [15] introduced the extension of RN stability to GDN stability as
follows.

Definition 2.2. An ARKLM (2.1a), (2.1b), and (2.1c) for DDEs is called GDN stable if, under
the conditions (1.3) and (1.4), numerical approximations y, and z, to the solution of (1.1)
and (1.2), respectively, satisfy

[yn = zal| < €, max flo) ~¢®], n=0, 2.8)
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where constant C > 0 depends only on the method, the parameter 0, v =1,2,...,m, and the
interval length T — t,.

Here, we can see the constant C need not to be less than 1, otherwise the Definition 2.2
is just RN stable in [7].

Definition 2.3. An ARKLM (2.1a), (2.1b), and (2.1c) is called strongly algebraically stable if
matrices M, are nonnegative definite, where

M,, = BW AW 4 ADIT gl _ plriplu”) dmg( Lp, .bew, (2.9)

forpu,y=12,...,m

Let {yn,y]("),y] ),91[2 ™ . ,y][m(")] }] _, and {z,, ;"), ][]"),21[2]("),...,2][."’] ")}] _, be

two sequences of approximations to problems (1.1) and (1.2), respectively. From method
(2.1a), (2.1b), and (2.1c) with the samestep size h, and write

Ti(n) —t,+cih, uz@ _ yi( l(n), u[v (n) _ ]/[ vl(n) _ Zl[v](n), uén) =Yn—Zn,

1

Q 1(n) h[f <T(n) y(n) g[v (n> f[v <T(n) 2" [v](n)>] i=12 s v=12 m
Y , ,2,...,8, 2,0, m.
(2.10)

Then (2.1a) reads

(2.11)

Our main results about GDN stability are contained in the following theorem.

Theorem 2.4. Assume ARK method (2.1a) is strongly algebraically stable, and then the correspond-
ing ARKLM (2.1a), (2.1b), and (2.1c) is GDN stable, and satisfies

n>0, (2.12)

<t<
) —-1<t<ty

|/ = zu| Sexp[—(T—to)mZovLo] max ||o(t) — ¢ (t) 2

where Lo = sups ¢(0.1)(Zp,——a Ly, (65)])*.
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Proof. From (2.11) we get

u(n+1)

us

2 m s m s
_ <u(()n) + Z Z bl[U] Qi[v](n), u(()n) + Z Z bl[U] Qi[vl(n)>
v=1 i=1 i

) 2+2iiblgv1Re<Ql{v]<n> u )+ Z Zb Tl (Qlutm, gl
v=1 i=1

u,v=11,j=1

(2.13)

If the matrices M, are nonnegative definite, then

Furthermore, by conditions (1.3) and (1.4) and Schwartz inequality we have
Re( Q1 U™ ) = (11 (T, ), A1) - flo) (7,20 2ol o0
- hRe<f[” <T(" y](n),y[v](n)> £l 1(:r].‘”),zj."%g[v](m),u;")>
+ hRe( (172", 71 = £ (1), 27, 27), U}
2 +h f[v] <T.(n),z](.n),y][v](n)> _ f[v] <T]§n),Z;n)"z~][v](n)>
i
2 . '

u(”*l) u(")

<

+ZZZb TRe (@™, u™). (2.14)

u

.|]

< hoy

()
U].

< hoy

(n)
u]

+hrz,
2 1
+ Ehn,(

From (1.4), we know 0 < 7, < =0,

(el
j

ut”

< hoy j

()
U].

l:'[][v] (n)

)

(2.15)
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)

Then, we have

Re(QM®, U < ho,

2
(n)
j +|uj

()
u;

2
- 1hrv<

[ 1(n)

|ﬁ}[_v] (m)

< ——hGU

Substituting (2.16) into (2.14), yields

(n+1)||? (n)
|| < [l

2 mo S ~ 2
-h> ovb][v] u][.”“'” . (2.17)
v=1 j=1

In addition, with (2.1c), we have

B . i 2
&) < [Pv:z_dmpv(svn Jue mv+Pv>||] ”
< Ly max ”LI](."_m”P”) ”2
Combining (2.17) with (2.18) and using (2.1b) we arrive at
Jug| <1 Dy Z bl L> max{ || max [uv |}
(2.19)

(n-my+Py) 2
U; | }

2
<(1-hm Z oL max{ ”Uén) ” , max
“~ (j,P)€E

where E = {(j,P,) 1<j<s, -d<P,<r}.
Similar to (2.19), the inequalities

< (1 - hm;ZovL()) max{ ”LI(()") ”2, (;;13);5

Ju

2
u]‘."‘”‘v”’v)”} i=1,2,...,s, (220)

follow.
In the following, with the help of inequalities (2.19), (2.20) and induction we will prove
the inequalities:

2
Jur | <

m n+l
<l - hmz o,,L()) rrt1<e(1)x||go(t) - ‘F(t)HZ, n>0,i=12,...,s. (2.21)
v=1 =

In fact, it is clear from (2.19), (2.20), and m, > r + 1 that

< (1 —~hm O'UL0>ntl<%x||(p(t) - (IJ’(i’)”Z i=0,1,2,...,s. (2.22)
v=1 =
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Suppose for n < k (k > 0) that

2
e

i=0,1,2,...,s. (2.23)

m n+l
<1 —hm )’ GUL0> rrt\<%x||(p(t) -
v=1 =

Then from (2.19), (2.20), m, >r+1,and (1-h X)., 0,Lg) > 1, we conclude that

(k+1)
u

i=0,1,2,...,s. (2.24)

) m k+2
| < <1 - hmz O'UL0> max. llo(t) -
v=1

This completes the proof of inequalities (2.21). In view of (2.21), we get for n > 0 that

n+1
n 2 -
“Ué "N < (1 - hmgovL()) m?t><< lo(t) - (p(t)”
<exp [—(n +1)mh ; ong] max o) - ¢®] (2.25)

T<t<ty

< exp[ —ty)m Z O'UL(J] max ||o(t) — ¢ (t) ||
As a result, we know that method (2.1a), (2.1b), and (2.1c) is GDN stable. O

3. D-Convergence

In order to study the convergence of numerical methods for DDEs, we have to mention the
concept of the convergence for stiff ODEs.

In 1981, Frank et al. [17] introduced the important concept of B-convergence for
numerical methods applied to nonlinear stiff initial value problems of ordinary differential
equations. Later, there have been rapid developments in the study of B-convergence and a
significant number of important results have already been found for Runge-Kutta methods.
In fact, B-convergence result is nothing but a realistic global error estimate based on one-
sided Lipschitz constant [18]. In this section, we start discussing the convergence of ARKLM
(2.1a), (2.1b), and (2.1c) for DDEs (1.1) with conditions (1.3) and (1.4). The approach to the
derivation of these estimates is similar to that used in [15]. We assume the analytic solution
y(t) of (1.1) is smooth enough and its derivatives used later are bounded by

||D(f>y(t)n <M; telty-7,T], (3.1)

where

. yi(t), te (to+ (j-1)hto+jh),
DWy(t) = (32)

yD(to+jh-0), t=to+jh.
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If we introduce some notations

y(t, +c1h) y(ty +c1h — 1)
Y _ y(tn +coh) Flolm) _ y(tn +coh—1y)
Y(tn + csh) Y(ty + csh — 1)

with the above notations, the local errors in (2.7) can be defined as

Y(ta) = y(ta) +h > plel” 4o <tnly(n)/17[v](n)> +Qn,
v=1

YO =Gyt +h Y Alel £le] <tmy<n>j[v1<n>> rr

v=1

Floln = (FLI0) ol G i,

¢(tn +cjh — 1) tn +cjh — T, < to,
lol(n) _
Y]. - i L n 1my+Dy) [v](n)
p, (6 +p] tn+th—Tv > 1.

If we take 7, = y(t,) and

y(ty + c1h) Y(tn + c1th — 1)
(1) y(tn + CZh) . [0](n) y(tn + coh — Tv)
y= . v = : .

y(tn + csh) Y(ty + csh — 1)

Then we can get the perturbed scheme of (2.7)

yn+1 yn + hz b['” f[” < ~(n) ’L[U (")) + 0,

v=1

y(n) _ e]/ 4 hZA f[v]< "'(n) ?[‘U](n)> +r,

v=1

ep(ty +cjh—1p), ty +cjh — 1, <0,
<[ol(m) _
> Lp, (8,) " met ) 4 plelm), ty +cjh — Ty > 0.
Po—d

(3.3)

(3.4a)

(3.4b)

(3.40)

(3.5)

(3.6a)

(3.6b)

(3.6¢)
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With perturbations

T
T T T T T
Q,ecy, rn—<r1(") T ) , P[v](n):<P[U T T el )eCNS.
(3.7)

According to Taylor formula and the formula in [19, pages 205-212], Q,, 7, and p[®/™ can
be determined, respectively, as following:

r hl 1 m s
Q=3 oyl -2 2b" e )Pyt + R,

(3.8)

P 1 m s
() _ h 1, ol 1.1 \ ) Q)
i ‘§<z_1>!<ch PIPICHC >D y(t) + R;

v|(n hq 1 n
Pi[ 1) _ (q+1)' H (6, - P )D(q+1) <§( ))

éi(n) € (tn—mv—d + Cih/ tn—mv+r + Cih)/

whereg=d+r, RE"), and §l.(n) satisfy ||Rf")|| < Mh*,i=0,1,2,...,5 h € (0,ho], ho depends
only on the method, and Mi (i=0,1,2,...,s) depends only on the method and some Ml- in
(3.2).

Combining (2.7) with (3.6a), (3.6b), and (3.6c) yields the following recursion scheme

for the 5(" R = Ynel — Yna:

n+1) (")+h2b { (tn,yn,ﬁlv](n)>—f (ty y[v](n)> + gl }+Qn,

(3.9)
m
=[v](n)
&0 = 8y + 1 3 AP £ (1, 577 ) = 191 (1,0, §710) + g1, | 47,
v=1
T T
where 5(()"+1) = Yusl — Ynsl, €n = (5(") ,52 e = 7™ — y™ and g[v](") =

fol falta + cih, yl.( + G(y(n) yi(")),?[ )d@, i =1,2,..., f(t,u,v) is the Jacobian matrix
(Of (t,u,v)/0u)(t € R,u,v € CN).
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Assume that (I, - h 3™, Al*lglv]™) js regular, from (3.9), we can get

m m -1
g = le +hy plel’ <Is > A[v]g[v](n)> gg[v](n)] g
v=1

(3.10)

Now, we introduce the concept of D-Convergence from [15].

Definition 3.1. An ARKLM (2.1a), (2.1b), and (2.1c) with v, = y(t,) (n < 0), " = y(t, + cih)
(n<0)and gi[v](n) =y(ty +cih— 1) (n <0) is called D-Convergence of order p if this method,
when applied to any given DDEs (1.1) subject to (1.3) and (1.4), produces an approximation

sequence Y, and the global error satisfies a bound of the form
ly(t) = yull < C(t)R", 1€ (0,ho], (311)

where the maximum stepsize hy depends on characteristic parameter o, and the method, the

function C(t) depends only on some M,; in (3.2), delay 7,, characteristic parameters oy, 1,
and the method, v =1,2,...,m.

Definition 3.2. The ARKLM (2.1a), (2.1b), and (2.1¢c) is said to be DA stable if the matrix
(I, - 3, APIg) is regular for ¢ € C™ := {¢ € C | Re¢ < 0} and |Ri(¢)| < 1, forall ¢ € C,
i=0,1,...,s, where

v=1 v=1

-1
m m
Ri(er) =1+ > AlYlg (15 -y A[v1§> e,

(3.12)

T
AT =b, Al = (af el ) =0,

1S

Definition 3.3. The ARKLM (2.1a), (2.1b), and (2.1c) is said to be ASI stable if the matrix
(I, - 3™, A1g) is regular for ¢ € C-, and (I, - 3™, A¢)™! is uniformly bounded for ¢ € C~.
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Definition 3.4. The ARKLM (2.1a), (2.1b), and (2.1c) is said to be DAS stable if the matrix
(I, - 3™, AP1¢) is regular for ¢ € C, and 3™, AV g1, - 3™, AP (1= 0,1,...,5) is
uniformly bounded for ¢ € C™.

Lemma 3.5. Suppose the ARKLM is DA, DAS, and ASI stable, then there exist positive constants
ho, y1, Y2, v3, which depend only on the method and the parameter oy, r,, such that

(3.13)

<pllol, vec™,

he0h, i=0,1,2,...,5

Proof. This lemma can be proved in similar way as that of the one in [20, Lemmas 3.5-3.7]. [

Theorem 3.6. Suppose the ARKLM (2.1a), (2.1b), and (2.1c) is DA, DAS, and ASI stable, then
there exist positive constants hy, ys, Ya, ys, which depend only on the method and the parameters oy,
1y, such that for h € (0, ho]

(n=1-my+po)

1+ hy max{ n n+l) ” max'

SLE
” o +hys max|lp p )“ +1Quall + y3llynall,  i=0,
E; (3.14)
1+ hys max{“ 1)” ma>)<| (n Mo +po) }
(ip
+h}/51.lrsli)s(||p1(n)|| +||Qn“+Y3”Yn 7 i:]~/2/"'/sl
where
T S
(3.15)

E={(i,po) |, 1<i<s, -d<p, <y}, En={(,v)]|0<j<s, 1<v<m}.
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Proof. Using (3.10) and Lemma 3.5, for h € (0, hy], we obtain that

(n+1)
€y

< (1+1h) “5(()") ” + hys

i Alol [f[vl (tn,y<">,§[”]("’> — flol (tmym),g[vun))] “
Zb[v] [ﬂv( ) ~[v <"> f[v1< (m) y[v](n)>]

+ 137l + 11Qull

+ ¥3l17all + [1Qxll

2

Za [f f ,cjh, y](n)/?][vl(n)> f ]<t"'cfh’y] y] (")>]

j=1

+hyiJ
1\ i=1

[f (t +cjh, y]("),y][ ](n)> f”(t +chy y (")>]

2
n SR o, |2l ~foln
M+ vallyll + 1Qull +h¥32JZ [Z T ]
v=1 \ i=1 | j=1
+ hZ Z b(v ](n) y~[v](n)
= &g || + wllvall + 1Qull
2
S 2 > v S v =[v](n) ~|v](n
+ hZYv Y3 Z Z al[]] + ][ max y] _y][ 1(n) )
v=1 i=1 \ j=1 =1 (j0)€Em
(3.16)
Moreover, it follows from (2.7) and (3.6¢) that
x[v](n)  ~ Mot Po) [0](n)
Y; y, || < 6s;§I)PZdILp (@)I_;ggﬁ - | pj (3.17)
Substituting (3.17) in (3.16), we get
(n+1) (0) (n) (n My+Dy)
| < (o) ma o7 x|}
(3.18)
+hy§0)(m)ax 1|+ 1Qull + yallirall - B € (0, ho],
where v = 1 + ysup; o1 Sh o4 lLr, (o)l 12 = i Yv(YS\/Zfﬂ(Z?:l jaf')? +

S ).
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By Lemma 3.5, similar to (3.18), the inequalities

(n) (i) (n) (n My+Dy)
£ <(1+h max n ” max ||€; }
i AT < T >(erv)EE{ (j.Ps)<E 619
+ g max (o1 +1Qull + pllrall i=1,2,.5, he (O],

follow, where

2
(l) =) +Ys SUP Z |Lp, (60)], Y5(1) Z Yol 13 < al[;';] > + Z|al[]v]
1 \J =

[0 1) Py=— v=1 i=

(3.20)

Setting ys = max{yf) |0<i<s), ys5= max{yéi) | 0 <i< s}, and combining (3.18) with (3.19),
we immediately obtain the conclusion of this theorem. O

Now, we turn to study the convergence of ARKLM (2.1a), (2.1b), and (2.1c) for (1.1).
It is always assumed that the analytic solution y(t) of (1.1) is smooth enough on each internal
of the form (to + (j — 1)h, to + jh) (j is a positive integer) as (3.2) defined.

Theorem 3.7. Assume ARKLM (2.1a), (2.1b), and (2.1c) with stage order p is DA, DAS, and ASI
stable, then the ARKLM (2.1a), (2.1b), and (2.1c) is D-Convergent of order min{p, q + 1}, where
g=d+r.

Proof. By Theorem 3.6, we have for h € (0, ho]

(1+ hys) max{ ”5(() N, max 51.("_1_m”+P”) } +TyhP* + Toh9*2, i=0,
| E_(") (i,P,)€EE
<
(1 + hys) max{| s(()") , (n;%xE gf"_m”J'P”) } + Ty hP*! 4+ Toha+2, i=1,2,...,5
i,Py)e
(3.21)
where

S
Ti=Mo+ys4| D, M;, Tp= ( +1>‘ Z H |60 = Po| M1 (3.22)
i=1 q v=1 Py=—d

It follows from an induction to (3.21) for n that

n .
> (1+hyy) (TihP*! + Toh72), i =0,
j=0
- n+1 .
> (1 +hyp) (kP + T,h*2?), i=1,2,...,s, h€ (0, hol.
j=0

(n)

(3.23)
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Hence, for h € (0, hy], we arrive at

ly () = wall = [[&6” | < > (14 hyay (Tuh ! + Toh*?)
0

1+h n+1 -1
- A+hp)™ -1 <T1 WPy T2h4+2>

hys (3.24)
< Pl Dy -1 (Tih? + Th)
Y4
< C(t)hmin{p,qﬁ},
where
exp [( — to)ys]exp (hoys) — 1 (Ti+ ™), p<q
0 7 —_— 4
Y4
c(t) = [ | ( ) (3.25)
exp|(t —to)ya|exp(hoys) — 1 p-q-1
” <T1h0 + Tz), pP>4q.

Therefore, the ARKLM (2.1a), (2.1b), and (2.1c) is D-Convergent of order min{p,q + 1}, (g =
r+d). O

4. Some Examples

In this final section we give some ARK methods to illustrate our theory in this paper.

Example 4.1. The two-stage additive RK method

(4.1)
11 00 00 00
11 4 4 12 21 22
ME=f1 1|, M7=y}, M =|,1}, MT=],3 (4.2)
11 2 2 1

are nonnegative definite.
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Moreover, the method (4.1) is also DA, ASI, and DAS stable, since

1. 1
2 1-5¢ 5¢
Iz_ZA[V]§= 1§ 3 is regular for ¢ € C” 1= {{ € C | Re¢ <0}, (4.3a)
V=1 _E _E
, [—(3/2); 1/2)¢ ]
SN AlVIg ) o LR 2]
<IZ vZ:lA é) S @-(/2)8) 7 (4.3b)
2 2 -1 5 )
v e vl L1/2)8%-(1/2)8 + (1/2)¢]
VZ:lAl §<Iz szlA §> - T , (@30
2 5 -1 ) ,
v e Al L TG/ (3/2)¢ - (1/2)F]
VZﬂAz §<12 éA §> = Ty ) (4.3d)

and (4.1), (4.3a)—(4.3d) are uniformly bounded for ¢ € C”,

2 -1 2
_ V1’ _ v] _ /2 _ _&-¢
Ri(2) 1+‘§1A1 §<12 %A g) e=1+ F (/2 - BB/ (4.3e)
Ry(§) =1+ 22] A[V]T§<Iz - }2] A[V1§>_1e B Sl G (4.3)
=l = £-6/2¢ ‘

and (4.3e)-(4.3f) satisfy that [R;(¢)| < 1forgeC,i=1,2.
By Theorem 3.7, we know that the ARKLM (2.1a), (2.1b), and (2.1c) corresponding to
the method (4.1) is D-Convergent of order one.

Example 4.2. The two-stage additive RK method

(4.4)
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is strongly algebraically stable, since

3 1 1
M= |4 0 M2= |2 0 M= |2 0 Mz |00
0 1 7 O 1 ’ O 1 ’ 01
4 2 2

are nonnegative definite.

Moreover, the method (4.4) is also DA, ASI, and DAS stable. Since

2 1-2¢ 0
IZ—ZA[V]§= 1 3 is regular for ¢ € C” := {{ € C | Re¢ <0},
V=l —56 1-5¢

2 [1—@6/2)@ qgg@]
\% _
<12 x4 ‘§> S - (/2E+38)

2 2 -1 2 #2
vy’ _ v] o [28-3¢%,¢%
M §<12 ZAV§> T (- (7/2)¢+38)

2 2 -1 ) 5
v e i) L LA/2)8 - (3/4), (3/2)¢ - (11/4)¢]
Z A §<12 Z AlVY §> = A= /D + 38 ,

and (4.6b)-(4.6d) are uniformly bounded for ¢ € C~,

) -1 2
) v v _(1-(3/2)2+2)
R1<§)—1+VZ:1A1 é<12 VZ_1AV§> T U= (7/2)¢+38)

2 -1 2
_ v B ] ~(1-(8/2)¢-(1/2)&)
Ry(&) =1+ 2 A, §<Iz ‘% AlV §> e= A=/ :38)

and (4.6e) and (4.6f) satisfy that |[R;(¢)| <1, for¢ge C-,i=1,2.
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(4.5)

(4.6a)

(4.6b)

(4.60)

(4.6d)

(4.6e)

(4.6f)

By Theorems 2.4 and 3.7 we know that the ARKLM (2.1a), (2.1b), and (2.1c)

corresponding to the method (4.4) is GDN stable and D-Convergent of order two.
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