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Numerical manifold method was applied to directly solve Navier-Stokes (N-S) equations for
incompressible viscous flow in this paper, and numerical manifold schemes for N-S equations
coupled velocity and pressure were derived based on Galerkin weighted residuals method as
well. Mixed cover with linear polynomial function for velocity and constant function for pressure
was employed in finite element cover system. As an application, mixed cover 4-node rectangular
manifold element has been used to simulate the incompressible viscous flow around a square
cylinder in a channel. Numerical tests illustrate that NMM is an effective and high-order accurate
numerical method for incompressible viscous flow N-S equations.

1. Introduction

In computational fluid dynamics (CFD), Navier-Stokes (N-S) equations for incompressible
viscous flow can be solved by several numerical methods generally, such as finite difference
method (FDM), finite element method (FEM), and finite volume method (FVM) [1]. The
applications of FDM are affected for unsuitability to complicated structure flow field
and inconservation of field variables [2]. The FEM schemes for N-S equations are very
complicated, and the computational efficiency of nonstandard FEMs is low [3]. FVM is an
effective numerical method for solutions of fluid flow, but exact treatments of the moving
boundary are difficult and complicated [4]. Furthermore, fractional step algorithms are used
to solve velocity and pressure variables unintegratedly in all these numerical methods, and
the continuity equation and momentums equations are satisfied, respectively [5]. All the
defects of these numerical methods will affect the computational efficiency and accuracy.
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Numerical manifold method (NMM) also known as manifold method or finite cover
method (FCM) is a generalized numerical method proposed by Shi in the early 1990s [6, 7].
The method performs numerical computation with finite element cover system, which is
composed of two independent cover grids: mathematical cover grid and physical cover
grid. Mathematical covers define the accuracy of approximate solution, and physical covers
determine the solution domain. High accurate numerical manifold schemes for mathematical
physics equations can be constructed by adopting different cover functions and cover-
weighted functions for physical variables in finite element cover system [8]. The method
has been successfully applied in some complicated engineering problems, such as numerical
simulation of crack initiation and propagation, damage evolvement of fractured rock masses,
coupling vibration, and potential flow problem, and the advantages have been demonstrated
in these fields [9–12]. As to fluid flow problems, direct-numerical-solution coupled velocity
and pressure variables can be implemented by adopting manifold schemes with mixed cover
for N-S equations. The authors have applied numerical manifold method into analyses of
unsteady incompressible viscous flow, and the results have illustrated the validity of NMM
[13].

Flow around a square cylinder is a typical model to validate the performance of
numerical methods for solution of incompressible viscous N-S equations. The flow structure
has been investigated experimentally and numerically. Experimental investigations have
shown that the flow characteristic is different at different Reynolds numbers [14]. FVM,
FDM, and others numerical methods have been applied to simulate the flow around a square
cylinder, the detail results have been obtained and met the experimental results [15–17]. The
experimental and numerical results have been employed to validate the numerical methods
in CFD as benchmarks.

In this paper, numerical manifold schemes of direct solutions coupled velocity and
pressure for N-S equations were constructed and applied to analyze incompressible viscous
flow around a square cylinder in a parallel channel. The validations of numerical schemes to
steady and unsteady flow were completed.

2. Numerical Manifold Schemes for N-S Equations of
Incompressible Viscous Flow

2.1. Galerkin Integration Expressions of N-S Equations

For numerical solution of incompressible viscous flow, the integration expressions for the
continuity equation and N-S equations can be obtained by Galerkin weighted residual
method, and the weak solution form can be stated as

∫
Ω
vj

∂

∂xj

(
δp
)
dΩ =

∫
Γ1
vnδpdΓ, (2.1a)

∫
Ω

[
ρ

(
∂vi

∂t
+ vj

∂vi
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)
δvi +

[
−pδij + μ
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]
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Γ2
piδvidΓ +

∫
Ω
ρfiδvidΩ,

(2.1b)
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where t denotes the time variable; ρ is the fluid density; μ is the dynamic viscosity; vj is the
velocity in xj direction; p is the pressure; fi is the body force per unit volume in xi direction;
δp is referred to the weight function for continuity equation and δvi for momentum equation;
Ω is the domain of solution; vn is the known normal velocity on boundary Γ1; pi is the known
pressure components in xi direction on boundary Γ2.

2.2. Numerical Manifold Schemes for N-S Equations

2.2.1. Element Velocity and Pressure Cover Functions

When NMM is applied into solution of N-S equations, suggested that there are M manifold
elements in finite element cover system and each element (e) has n physical covers, and the
cover weight functions are Nj(x, y) (j = 1, 2, . . . , n), which meet the requirement of partition
of unity

∑n
j=1 Nj(x, y) = 1 (x, y ∈ e), then the element global velocity and pressure cover

functions vj(x, y) and p(x, y) can be given by weighted summation of the cover functions of
every physical cover as the follows:

vi

(
x, y

)
= Nj

(
x, y

)
vij

(
x, y

)
,

p
(
x, y

)
= Nj

(
x, y

)
pj
(
x, y

)
,

(2.2)

where i = 1, 2 for two-dimensional (2D) flow problem; vij(x, y) are the velocity component
cover functions for physical cover Uj of element (e) and pj(x, y) is the pressure cover
function. If polynomial functions are taken as the cover functions of every physical cover,
the cover functions can be stated in the form as

vij

(
x, y

)
= fv

k ·Dv
ijk,

pj
(
x, y

)
= f

p

l
·Dp

jl
,

(2.3)

where fv
k
, fp

l
denote the basic series for velocity and pressure cover functions of physical

coverUj ;Dv
ijk
,Dp

jl
are the cover DOF variables, and the DOF numbers aremv (k = 1, 2, . . . , mv)

and mp (l = 1, 2, . . . , mp).
By substituting (2.3) into (2.2), the global cover functions for velocity and pressure in

element (e) can be written as

vi
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)
= Nj

(
x, y

)
vij
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x, y

)
= Nj

(
x, y

)
fv
kD

v
ijk = Tv

jkD
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ijk, (2.4a)

p
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(
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(
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)
f
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l
D

p

jl
= T

p

jl
D

p

jl
, (2.4b)

where Tv
jk

is the element velocity cover basic function; Tp

jl
is the element pressure cover basic

function. The element cover basic functions consist of the basic series of cover functions and
cover weight functions, and the element DOF variables are composed of all the cover DOF
variables.
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In Galerkin integration equations (2.1a) and (2.1b), the weight functions for continuity
equation and N-S equations can adopt the element basic functions of velocity components
and pressure accordingly, that is,

δvi = Tv
jk; δp = T

p

jl
. (2.5)

The partial derivatives of element cover functions can be obtained from (2.4a) and
(2.4b) as the follows:

vi,α = Tv
jk,αD

v
ijk; p,α = T

p

jl,α
D

p

jl
; vi,t = Tv

jkD
v
ijk,t = Tv

jkḊ
v
ijk, (2.6)

where α = 1, 2 for 2D problem; Tv
jk,α

, Tp

jl,α
are the partial derivatives of element velocity and

pressure cover basic functions with respect to xα, respectively; Ḋv
ijk

are the partial derivatives
of element velocity DOF variables with respect to t.

2.2.2. Element Manifold Schemes

For each element (e) in finite element cover system, element manifold equations can be
derived by introducing (2.4a), (2.4b), (2.5), and (2.6) into (2.2), and the equations can be
stated as

∫
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(2.7)

that is,

Ge
jlαβID

v
αβI = He

jl, (2.8a)

Ae
jkγJḊ

v
iγJ + Be

jkαβγIJD
v
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v
iγJ + Ce
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v
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ijk, (2.8b)

where β, γ = 1, 2, . . . , n; I, J = 1, 2, . . . , mv, K = 1, 2, . . . , mp; and the coefficients for element
manifold equations are
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Equations (2.8a) and (2.8b) are the nonlinear algebra equationswith respect to coupled
velocity and pressure DOF variables and first-order linear ordinary differential equations
with respect to time.

3. Some Key Techniques

3.1. Mixed Cover Functions for Velocity and Pressure

In FEM, when velocity and pressure field are discretized in the same way, the discrete
element can not be ensured to satisfy the Ladyzanskya Babuska Brezzi stability condition
(LBB condition), and these kinds of element cannot be applied to directly solve N-S equations
coupled velocity and pressure for the spatial oscillation of pressure field. Mixed elements can
be built to meet the LBB condition by increasing velocity interpolation node [18], but the
elements are inconvenient to apply in practice for the complicated calculation process and
difficult element discretization.

In finite element cover system of NMM, the element cover functions are composed
of the weight functions and the cover functions of physical covers. Generally, the weight
functions will adopt the element shape functions as in FEM, which are usually defined by the
element shape and nodes. The cover functions of every physical cover for different physical
variables can employ different order functions according to the solving physical equations.
When NMM is applied to solve N-S equations for incompressible viscous flow, the velocity
and pressure field can be discretized in the same way and the weight functions will employ
the same interpolation functions for element velocity and pressure variables. But, the cover
functions of every element physical cover can apply different order functions for velocity and
pressure variables, so it will form a manifold element with mixed cover functions for velocity
and pressure variables, which can meet the requirements of different order approximate
functions for velocity and pressure in Galerkin integration expressions (2.1a) and (2.1b) and
satisfy the LBB condition for increasing the DOF numbers of velocity variables. The mixed
cover manifold elements can be applied in direct solution of incompressible viscous N-S-
equations-coupled velocity and pressure variables.

In theory, velocity components and pressure covers can employ very high-order
functions, but it will cause a very complicated calculation process, so low-order polynomial
functions are favorable. If pressure cover function of every physical cover is defined as
constant function, velocity cover functions can adopt linear polynomial functions, and then
the basic series in (2.3) can be given by the following localized series for 2D problem:

[
fv
k

]
=
[
1 η1(x − xc) η2

(
y − yc

)]
;

[
f
p

l

]
= [1], (3.1)

where (x, y) is the coordinate variables; (xc, yc) is the center coordinates of physical cover;
η1, η2 are the coefficients of cover functions.

3.2. Solution of Manifold Equations for Steady N-S Equations

As to 2D steady N-S equations, element manifold equations (2.8a) and (2.8b) can be refor-
matted as

Be
jkαβγIJD

v
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v
1γJ + Ce
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p
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v
αγJ = Fe

1jk,
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Be
jkαβγIJD

v
αβID

v
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2jkβKD
p

βK + Ee
jk2αγJD

v
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2jk,

Ge
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v
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jl,

(3.2)

where j, k, l, α, β, γ, I, J are similar to (2.8a) and (2.8b); D1γJ , D2γJ , and DβK are the unknown
variables. The equations can be written in the matrix form as

⎡
⎢⎣
Be
jk1βγIJD

v
1βI + Ee

jk11γJ Be
jk2βγIJD

v
1βI + Ee

jk12γJ Ce
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⎤
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D
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⎫⎪⎬
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⎫⎪⎬
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that is,

[Ke]{De} = {Fe}, (3.3b)

where [Ke] is the element flowmatrix with respect to unknown velocity DOF variables; {De}
is the element DOF variables; {Fe} is the element generalized loads.

The manifold equations (3.3a) and (3.3b) are nonlinear algebra equations and can
be solved by two methods of directly linearizing alternate iteration and Newton-Raphson
iterative in general.

3.3. Solution of Manifold Equations for Steady N-S Equations

As to 2D unsteady N-S equations, the first-order linear ordinary differential equation (2.8b)
with respect to time need be translated into linear algebra equations by time difference
replacing the derivative. At any discrete time step ti, the nonlinear manifold equations can
be solved by implicit iterative methods or explicit methods. If implicit iterative methods are
used, the derivative of velocity DOF variables for every physical cover with respect to time
in (2.8b) will be discretized by time difference as

Ḋv
ijk =

(
D

v(i+1)
ijk

−D
v(i)
ijk

)
Δt

, (3.4)

where Δt is time step; Dv(i)
ijk and D

v(i+1)
ijk are the velocity DOF variables at time step ti and ti+1,

respectively. Then as to every manifold element (e), the element manifold equations (2.8b)
can be reformulated as the follows:
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+ ΔtEe
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.
(3.5)



Journal of Applied Mathematics 7

Equations (3.5) uniting (2.8a) can be stated in matrix form as
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(3.6)

that is,

[ke]
{
De(i+1)

}
= {Fe}, (3.7)

where {Dp(i+1)
βK } is the pressure cover DOF variables at time step ti+1; {De(i+1)} is the element

unknown cover DOF variables at time step ti+1; [ke] is the element flow matrix with respect
to the unknown velocity DOF variables at time step ti+1; {Fe} is the element generalized loads
with respect to the boundary conditions and the known velocity DOF variables at time step
ti.

The manifold equations (3.7) for unsteady flow can be solved by iterative methods. In
this paper, Newton-Raphson iterative method is also used here for solution of unsteady flow
manifold equations.

4. Numerical Example of Flow around a Square Cylinder in a Channel

To illustrate the validity of the present numerical manifold method, low-Re incompressible
viscous flow around a square cylinder in a channel and flow past a step are investigated
in details through direct solution of N-S equations in dimensionless form in this paper as
two numerical examples. In numerical manifold analysis, standard rectangular finite element
cover system with 4-node manifold element as show in Figure 1 is used, the mixed cover
functions of physical covers with the basic series equations (3.1) are adopted, and the shape
functions of rectangular element are employed as the cover weight functions in (2.2), that is,
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=

1
4

(
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)(
1 − y − y0

b
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=

1
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a

)(
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b

)
,
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)
=

1
4

(
1 +
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a

)(
1 +

y − y0

b

)
, N4

(
x, y

)
=

1
4

(
1 − x − x0

a

)(
1 +

y − y0

b

)
,

(4.1)

where (x0, y0) are the coordinates of element (e) center point; 2a × 2b are the side lengths.
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Figure 1: 4-node rectangular manifold element.

4.1. Analysis for Steady Flow past a Step

In numerical analysis of flow past a step, finite element cover system and boundary
conditions are shown in Figure 2(a), the characteristic velocity of the flow field inlet is u = 1
and v = 0, the fluid density is ρ = 1, and three dynamic viscosities of fluid are μ =0.01, 0.005,
0.0025, and so Re numbers are known as Re =100, 200, 400, respectively. All the flow field is
meshed into 196 elements and 229 nodes by 0.1 × 0.1 rectangular grids.

The streamline and pressure distribution in flow field past a step at Re = 200 are
shown in Figure 2(b). The streamline patterns obtained from direct numerical solutions have
revealed the vortex structure at the step of flow field, and high accurate pressure distributions
have been obtained as well. The numerical solutions from FVM are shown in Figures 2(c)
and 2(d) comparatively, which obtained from 0.1 × 0.1 and 0.05 × 0.05 rectangular grids,
respectively. The NMM results from 0.1 × 0.1 grids are nearly coincident with the FVM
results from 0.05 × 0.05 grids. The comparative analyses illustrate that numerical manifold
schemes with mixed cover are stable numerical schemes for incompressible viscous flow,
can implement direct numerical solution of N-S equations coupled velocity and pressure
variables and can improve the solution accuracy at the same grids compared with FVM.

4.2. Analysis for Steady Flow around a Square Cylinder in a Channel

The flow field configuration and boundary conditions of flow around a square cylinder in
a channel are shown in Figure 3. The length of the channel is L = 4, the width is W = 1.
The size of square cylinder is d × d = 0.25 × 0.25, its horizontal axis coincides with the
channel’s centerline, and its vertical axis is perpendicular to the channel’s centreline. The
velocity condition of the inlet AD is u/uav = 1.5 [1− (1−y/ym)

2] (uav = 1 is the average flow
velocity in the channel, ym = 0.5 is the channel centerline) and v = 0, the pressure condition
of outlet BC is p = 0, and the nonslip boundary conditions are set on other fixed walls, that is,
u = v = 0.

The flow field is meshed by three mixed grids, one is that 32×16 uniform element grid
is used for the domain from x = 0 to x = 2 and 20× 16 element grid for the domain from x = 2
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Figure 2: The streamline patterns and pressure distributions for flow field past a step.

to x = 4, the entire flow field is meshed by 52×16 = 832 elements and 53×17 = 901 nodes; the
second one is that 64 × 32 uniform element grid is used for x = 0 ∼ 2 and 40 × 32 element grid
for x = 2 ∼ 4, the flow field is meshed by 104 × 32 = 3328 elements and 105 × 33 = 3465 nodes;
the third one is that 96 × 48 uniform element grid is used for x = 0 ∼ 2 and 64 × 48 element
grid for x = 2 ∼ 4, the flow field is meshed by 160 × 48 = 7680 elements and 161 × 49 = 7889
nodes.

The numerical analyses of steady flow at different Re numbers (Re = 25, 50, 75, 100,
150) are performed by the NMM solutions of steady N-S equations. The streamline patterns
and variables distributions of flow field at Re = 100 from three different element grids are
compared. The results from the first element grid are different to these from two other grids,
but the results from the second grid are closely similar to these from the third one, and the
average difference of velocity and pressure on the channel centreline is less than 5%, so the
second element grid is enough for flow at Re < 100, and the third element grid or finer
element grid is more reasonable for flow at Re = 100 and 150.
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Figure 3: Flow field configuration and boundary conditions of flow around a square cylinder.
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Figure 4: Streamline pattern and pressure distribution for flow field at different Re numbers.

The streamline patterns and pressure distributions at different Re numbers are shown
in Figure 4. At Re = 25 and 50, there are two stable symmetrical vortexes behind the square
cylinder, and the flow patterns are similar to the numerical solutions of Mukhopadhyay
et al. [15]. As Re number increases to Re ≈ [50, 200], Cherry’s results show that two
vortexes become unsymmetrical and Karman vortex street is formed behind the square
cylinder gradually [14], but the stable convergent results are obtained from NMM solutions
of steady N-S equations at Re = 75, 100, and 150, and there are also two stable symmetrical
vortexes behind the square cylinder. The distances from back flow point of the vortexes to
square cylinder at Re = 25, 50, 75, 100, 150 are 1.0, 1.2, 1.4, 1.6, 1.8, respectively, which
are approximately linear with Re numbers. These results illustrate that numerical manifold
schemes for steady N-S equations have the strong-stability-preserving property.

In NMM analysis unlike FVM and FEM analysis, the pressure distributions of flow
field are obtained from direct numerical solutions of N-S equations and continuity equation,
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so it can improve the solution accuracy of pressure field. The pressure distributions of
flow field show that high-pressure area is formed in frontage of the square cylinder for
flow blockage, low pressure areas are formed near behind two front corner points for flow
separating, and large pressure gradient is produced near the corner points. The pressure
distributions are symmetrical, and the pressure of flow field will decrease as Re number
increasing.

The velocity u distributions along horizontal lines through geometric center of flow
field are shown in Figure 5. The velocity u drops rapidly from inlet to the square cylinder for
flow blockage. Negative velocity appears behind the cylinder for back flow, and the velocity
will rise gradually with away from the cylinder, and the velocity restoring becomes slow
as Re number increases. The pressure distributions along horizontal lines through geometric
center of flow field are shown in Figure 6. The pressure rises gradually from inlet to the square
cylinder. Positive pressure appears behind the cylinder at low Re number, negative pressure
appears at comparatively high Re number, and the pressure will drops or rises to zero at
outlet of flow field.
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Figure 7: The streamline patterns for flow field from 48×160 element grid andΔt = 0.01 s time step at Re =
150.

4.3. Analysis for Unsteady Flow around a Square Cylinder in a Channel

The flow field configuration and boundary conditions of unsteady flow around a square
cylinder in a channel are the same as these of steady flow, and the flow field is meshed by the
third mixed grids. The unsteady flows at different Re numbers (Re = 50, 75, 100, 150) are also
analyzed through NMM solutions of N-S equations in this paper, where numerical solutions
for steady flow at Re = 50 are adopted as the initial conditions, the total computational time
is 10 s, and the time step is 0.01 s.

When Re ≤ 50, numerical solutions from unsteady flow analyses are closely similar
to the results from steady flow analyses, and there are two steady symmetrical vortexes
behind the square cylinder. As Re number increasing, two vortexes become unsymmetrical,
and Karman Vortex Street is formed behind the square cylinder gradually. The streamline
patterns for flow field at Re = 150 are shown in Figure 7, and the periodical change process
of appearing, developing, moving, separating of the vortexes are clearly displayed in the
streamline patterns. The Strouhal number is 0.2438, the difference is 2.2% and 6.5% to [15, 16].
The flow patterns are similar to Mukhopadhyay’s and Yutaka’s results, which is obtained
from very fine element grid [15, 17].

The pressure contours for flow field at Re = 150 are show in Figure 8. The pressure
distributions beside and in frontage of the square cylinder are almost identical to the results
from steady flow analyses and are different behind the cylinder, which will change with the
moving of vortexes.
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Figure 8: The pressure contours for flow field from 48 × 160 element grid and Δt = 0.01 s time step at
Re = 150.

5. Summary

Numerical manifold method for direct coupled solution of incompressible viscous flow
N-S equations has been developed in this paper. Numerical manifold schemes integrated
velocity and pressure were derived based on Galerkin-weighted residuals method as well.
Mixed cover with linear polynomial function for velocity and constant function for pressure
was adopted in finite element cover system. Compared with FVM and FEM, in NMM
for incompressible viscous flow, the accuracy of velocity variables approximation can be
improved by adopting high-order cover function, direct numerical solution of N-S equations,
and continuity equation coupled velocity and pressure variables can be implemented by
adopting finite cover system with mixed cover manifold element, so it can improve the
solution accuracy of velocity and pressure variables.

As an application, mixed cover 4-node rectangular manifold element has been used to
simulate flow around a square cylinder in a channel and past a step at low Re numbers.
As to flow around a square cylinder in a channel, accurate numerical results have been
presented for steady flow at Re = 25, 50, 75, 100, 150 and for unsteady flow at Re = 100,
150. The rules on streamline patterns and pressure distributions were analyzed in details.
Numerical solutions were in very good agreement with the published data from very fine
elementmeshes. Numerical tests indicate that manifoldmethod is an effective and high-order
accurate numerical method for incompressible viscous flow Navier-Stokes equations.
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