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We introduce a new implicit iterative scheme with perturbation for finding the approximate
solutions of a hierarchical variational inequality, that is, a variational inequality over the common
fixed point set of a finite family of nonexpansive mappings. We establish some convergence
theorems for the sequence generated by the proposed implicit iterative scheme. In particular,
necessary and sufficient conditions for the strong convergence of the sequence are obtained.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖ and C a nonempty closed
convex subset of H. For a given nonlinear operator A : C → H, the classical variational
inequality problem (VIP) [1] is to find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.1)

The set of solutions of VIP is denoted by VI(C,A). If the set C is replaced by the set Fix(T)
of fixed points of a mapping T ; then the VIP is called a hierarchical variational inequality
problem (HVIP). The signal recovery [2], the power control problem [3], and the beamforming
problem [4] can be written in the form of a hierarchical variational inequality problem. In the
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recent past, several authors paid their attention toward this kind of problem and developed
different kinds of solutionmethods with applications; see [2, 5–11] and the references therein.

Let F : H → H be η-strongly monotone (i.e., if there exists a constant η > 0 such that
〈Fx − Fy, x − y〉 ≥ η‖x − y‖2, for all x, y ∈ H) and κ-Lipschitz continuous (i.e., if there exists
a constant κ > 0 such that ‖Fx − Fy‖ ≤ κ‖x − y‖, for all x, y ∈ H). Assume that C is the
intersection of the sets of fixed points of N nonexpansive mappings Ti : H → H. For an
arbitrary initial guess x0 ∈ H, Yamada [10] proposed the following hybrid steepest-descent
method:

xn+1 := Tn+1xn − λn+1μF(Tn+1xn), ∀n ≥ 0. (1.2)

Here, Tk := Tk mod N , for every integer k > N, with the mod function taking values in the set
{1, 2, . . . ,N}; that is, if k = jN + q for some integers j ≥ 0 and 0 ≤ q < N, then Tk = TN if
q = 0 and Tk = Tq if 1 < q < N. Moreover, μ ∈ (0, 2η/κ2) and the sequence {λn} ⊂ (0, 1) of
parameters satisfies the following conditions:

(i) limn→∞λn = 0;

(ii)
∑∞

n=0 λn = ∞;

(iii)
∑∞

n=0 |λn − λn+N | is convergent.

Under these conditions, Yamada [10] proved the strong convergence of the sequence {xn} to
the unique element of VI(C, F).

Xu and Kim [12] replaced the condition (iii) by the following condition:

(iii)′ limn→∞(λn/λn+N) = 1, or equivalently, limn→∞((λn − λn+N)/λn+N) = 0

and proved the strong convergence of the sequence {xn} to the unique element of VI(C, F).
On the other hand, let K be a nonempty convex subset of H, and let {Ti}Ni=1 be a finite

family of nonexpansive self-maps on K. Xu and Ori [13] introduced the following implicit
iteration process: for x0 ∈ K and {αn}∞n=1 ⊂ (0, 1), the sequence {xn}∞n=1 is generated by the
following process:

xn = αnxn−1 + (1 − αn)Tnxn, ∀n ≥ 1, (1.3)

where we use the convention Tn := Tn mod N . They also studied the weak convergence of
the sequence generated by the above scheme to a common fixed point of the mappings
{Ti}Ni=1 under certain conditions. Subsequently, Zeng and Yao [14] introduced another implicit
iterative scheme with perturbation for finding the approximate common fixed points of a
finite family of nonexpansive self-maps on H.

Motivated and inspired by the above works, in this paper, we propose a new implicit
iterative scheme with perturbation for finding the approximate solutions of the hierarchical
variational inequalities, that is, variational inequality problem over the common fixed point
set of a finite family of nonexpansive self-maps on H. We establish some convergence
theorems for the sequence generated by the proposed implicit iterative scheme with
perturbation. In particular, necessary and sufficient conditions for strong convergence of the
sequence generated by the proposed implicit iterative schemewith perturbation are obtained.
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2. Preliminaries

Throughout the paper, we write xn ⇀ x to indicate that the sequence {xn} converges weakly
to x in a Banach space E. Meanwhile, xn → x implies that {xn} converges strongly to x. For
a given sequence {xn} ⊂ E, ωw(xn) denotes the weak ω-limit set of {xn}, that is,

ωw(xn) :=
{
x ∈ E : xnj ⇀ x for some subsequence

{
nj

}
of {n}

}
. (2.1)

A Banach space E is said to satisfy Opial’s property if

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ ∀y ∈ E, y /=x, (2.2)

whenever a sequence xn ⇀ x in E. It is well known that every Hilbert space H satisfies
Opial’s property; see for example [15].

A mapping A : H → H is said to be hemicontinuous if for any x, y ∈ H, the mapping
g : [0, 1] → H, defined by g(t) := A(tx+(1−t)y) (for all t ∈ [0, 1]), is continuous in the weak
topology of the Hilbert spaceH. Themetric projection onto a nonempty, closed and convex set
C ⊆ H, denoted by PC, is defined by, for all x ∈ H, PCx ∈ C and ‖x − PCx‖ = infy∈C‖x − y‖.

Proposition 2.1. Let C ⊆ H be a nonempty closed and convex set and A : H → H monotone and
hemicontinuous. Then,

(a) [1] VI(C,A) = {x∗ ∈ C : 〈Ay, y − x∗〉 ≥ 0, for all y ∈ C},

(b) [1] VI(C,A)/= ∅ when C is bounded,

(c) [16, Lemma 2.24]VI(C,A) = Fix(PC(I−λA)) for all λ > 0, where I stands for the identity
mapping onH,

(d) [16, Theorem 2.31] VI(C,A) consists of one point if A is strongly monotone and Lipschitz
continuous.

On the other hand, it is well known that the metric projection PC onto a given non-
empty closed and convex set C ⊆ H is nonexpansive with Fix(PC) = C [17, Theorem 3.1.4
(i)]. The fixed point set of a nonexpansive mapping has the following properties.

Proposition 2.2. LetC ⊆ H be a nonempty closed and convex subset and T : C → C a nonexpansive
map.

(a) [18, Proposition 5.3] Fix(T) is closed and convex.

(b) [18, Theorem 5.1] Fix(T)/= ∅ when C is bounded.

The following proposition provides an example of a nonexpansive mapping in which
the set of fixed points is equal to the solution set of a monotone variational inequality.
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Proposition 2.3 (see [6, Proposition 2.3]). Let C ⊆ H be a nonempty closed and convex set and
A : H → H an α-inverse-strongly monotone operator. Then, for any given λ ∈ (0, 2α], the mapping
Sλ : H → H, defined by

Sλx := PC(I − λA)x, ∀x ∈ H, (2.3)

is nonexpansive and Fix(Sλ) = VI(C,A).

The following lemmas will be used in the proof of the main results of this paper.

Lemma 2.4 (see [18, Demiclosedness Principle]). Assume that T is a nonexpansive self-mapping
on a closed convex subsetK of a Hilbert spaceH. If T has a fixed point, then I − T is demiclosed, that
is, whenever {xn} is a sequence inK weakly converging to some x ∈ K and the sequence {(I − T)xn}
strongly converges to some y, it follows that (I − T)x = y, where I is the identity operator of H.

Lemma 2.5 (see [19, page 80]). Let {an}∞n=1, {bn}∞n=1, and {δn}∞n=1 be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1. (2.4)

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞an exists. If in addition {an}∞n=1 has a subsequence,
which converges to zero, then limn→∞an = 0.

Let T : H → H be a nonexpansive mapping and F : H → H κ-Lipschitz continuous
and η-strongly monotone for some constants κ > 0, η > 0. For any given numbers λ ∈ [0, 1)
and μ ∈ (0, 2η/κ2), we define the mapping Tλ : H → H by

Tλx := Tx − λμF(Tx), ∀x ∈ H. (2.5)

Lemma 2.6 (see [12]). If 0 ≤ λ < 1 and 0 < μ < 2η/κ2, then

∥
∥
∥Tλx − Tλy

∥
∥
∥ ≤ (1 − λτ)

∥
∥x − y

∥
∥, ∀x, y ∈ H, (2.6)

where τ = 1 −
√
1 − μ(2η − μκ2) ∈ (0, 1).

3. An Iterative Scheme and Convergence Results

Let {Ti}Ni=1 be a finite family of nonexpansive self-maps onH. LetA : H → H be an α-inverse-
strongly monotone mapping (i.e., if there exists a constant α > 0 such that 〈Ax − Ay, x − y〉 ≥
α‖Ax −Ay‖2, for all x, y ∈ H). Let F : H → H be κ-Lipschitz continuous and η-strongly
monotone for some constants κ > 0, η > 0. Let {αn}∞n=1 ⊂ (0, 1), {βn}∞n=1 ⊂ (0, 2α], {λn}∞n=1 ⊂
[0, 1), and take a fixed number μ ∈ (0, 2η/κ2). We introduce the following implicit iterative
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scheme with perturbation F. For an arbitrary initial point x0 ∈ H, the sequence {xn}∞n=1 is
generated by the following process:

xn = αnxn−1 + (1 − αn)
[
Tn
(
xn − βnAxn

) − λnμF ◦ Tn
(
xn − βnAxn

)]
, ∀n ≥ 1. (3.1)

Here, we use the convention Tn := Tn mod N . If A ≡ 0, then the implicit iterative scheme (3.1)
reduces to the implicit iterative scheme studied in [14].

Let A : H → H be an α-inverse-strongly monotone mapping and s ∈ (0, 2α]. By
Lemma 2.6, for every u ∈ H and t ∈ (0, 1), the mapping St : H → H defined by

Stx := tu + (1 − t)Tλx̃ with x̃ = x − sAx, (3.2)

satisfies

∥
∥Stx − Sty

∥
∥ = (1 − t)

∥
∥
∥Tλx̃ − Tλỹ

∥
∥
∥

≤ (1 − t)(1 − λτ)
∥
∥x̃ − ỹ

∥
∥

≤ (1 − t)
∥
∥x̃ − ỹ

∥
∥

= (1 − t)
∥
∥(x − sAx) − (y − sAy

)∥
∥

= (1 − t)
∥
∥
(
x − y

) − s
(
Ax −Ay

)∥
∥

≤ (1 − t)
√∥
∥x − y

∥
∥2 − s(2α − s)

∥
∥Ax −Ay

∥
∥2

≤ (1 − t)
∥
∥x − y

∥
∥, ∀x, y ∈ H,

(3.3)

where 0 ≤ λ < 1, 0 < μ < 2η/κ2, and τ = 1−
√
1 − μ(2η − μκ2) ∈ (0, 1). By Banach’s contraction

principle, there exists a unique xt ∈ H such that

xt = tu + (1 − t)Tλx̃t = tu + (1 − t)
[
T(xt − sAxt) − λμF ◦ T(xt − sAxt)

]
. (3.4)

This shows that the implicit iterative scheme (3.1) with perturbation F is well defined and
can be employed for finding the approximate solutions of the variational inequality problem
over the common fixed point set of a finite family of nonexpansive self-maps on H.

We now state and prove the main results of this paper.

Theorem 3.1. Let H be a real Hilbert space, A an α-inverse-strongly monotone mapping, and F :
H → H a κ-Lipschitz continuous and η-strongly monotone mapping for some constants κ, η > 0.
Let {Ti}Ni=1 beN nonexpansive self-maps onH with a nonempty common fixed point set

⋂N
i=1 Fix(Ti).

Suppose VI(
⋂N

i=1 Fix(Ti), A)/= ∅. Denote by Tn := Tn mod N for n > N. Let μ ∈ (0, 2η/κ2), x0 ∈ H,
{λn}∞n=1 ⊂ [0, 1), {αn}∞n=1 ⊂ (0, 1), and {βn}∞n=1 ⊂ (0, 2α] be such that

∑∞
n=1 λn < ∞, βn ≤ λn and

a ≤ αn ≤ b, for all n ≥ 1, for some a, b ∈ (0, 1). Then, the sequence {xn}∞n=1, defined by

xn := αnxn−1 + (1 − αn)T
λn
n x̃n

= αnxn−1 + (1 − αn)
[
Tn
(
xn − βnAxn

) − λnμF ◦ Tn
(
xn − βnAxn

)]
, ∀n ≥ 1,

(3.5)

converges weakly to an element of
⋂N

i=1 Fix(Ti).
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If, in addition, ‖xn − Tnx̃n‖ = o(βn), then {xn} converges weakly to an element of VI
(
⋂N

i=1 Fix(Ti), A).

Proof. Notice first that the following identity:

∥
∥tx + (1 − t)y

∥
∥2 = t‖x‖2 + (1 − t)

∥
∥y
∥
∥2 − t(1 − t)

∥
∥x − y

∥
∥2 (3.6)

holds for all x, y ∈ H and all t ∈ [0, 1]. Let x̂ be an arbitrary element of
⋂N

i=1 Fix(Ti). Observe
that

‖xn − x̂‖2 =
∥
∥
∥αnxn−1 + (1 − αn)T

λn
n x̃n − x̂

∥
∥
∥
2

= αn‖xn−1 − x̂‖2 + (1 − αn)
∥
∥
∥T

λn
n x̃n − x̂

∥
∥
∥
2 − αn(1 − αn)

∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥
2
.

(3.7)

Since A is α-inverse strongly monotone and {βn}∞n=1 ⊂ (0, 2α], we have

∥
∥xn − x̂ − βn(Axn −Ax̂)

∥
∥2 = ‖xn − x̂‖2 − 2βn〈Axn −Ax̂, xn − x̂〉 + β2n‖Axn −Ax̂‖2

≤ ‖xn − x̂‖2 − βn
(
2α − βn

)‖Axn −Ax̂‖2

≤ ‖xn − x̂‖2.
(3.8)

By Lemma 2.6, we have

∥
∥
∥T

λn
n x̃n − x̂

∥
∥
∥ =
∥
∥
∥T

λn
n x̃n − Tλn

n x̂ + Tλn
n x̂ − x̂

∥
∥
∥

≤
∥
∥
∥T

λn
n x̃n − Tλn

n x̂
∥
∥
∥ +
∥
∥
∥T

λn
n x̂ − x̂

∥
∥
∥

≤ (1 − λnτ)‖x̃n − x̂‖ + λnμ‖F(x̂)‖
≤ (1 − λnτ)

[∥
∥xn − x̂ − βn(Axn −Ax̂)

∥
∥ + βn‖Ax̂‖] + λnμ‖F(x̂)‖

≤ (1 − λnτ)
[‖xn − x̂‖ + βn‖Ax̂‖] + λnμ‖F(x̂)‖

≤ (1 − λnτ)‖xn − x̂‖ + βn‖Ax̂‖ + λnμ‖F(x̂)‖
≤ (1 − λnτ)‖xn − x̂‖ + λn

(‖Ax̂‖ + μ‖F(x̂)‖)

= (1 − λnτ)‖xn − x̂‖ + λnτ ·
[‖Ax̂‖ + μ‖F(x̂)‖

τ

]

.

(3.9)

It follows

∥
∥
∥T

λn
n x̃n − x̂

∥
∥
∥
2 ≤ (1 − λnτ)‖xn − x̂‖2 + λn ·

(‖Ax̂‖ + μ‖F(x̂)‖)2
τ

. (3.10)
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This together with (3.7) yields

‖xn − x̂‖2 ≤ αn‖xn−1 − x̂‖2 + (1 − αn)

[

(1 − λnτ)‖xn − x̂‖2 + λn ·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τ

]

− αn(1 − αn)
∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥
2

≤ αn‖xn−1 − x̂‖2 + (1 − αn)‖xn − x̂‖2 + (1 − αn)λn ·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τ

− αn(1 − αn)
∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥
2
,

(3.11)

and so,

‖xn − x̂‖2 ≤ ‖xn−1 − x̂‖2 + (1 − αn)
λn
αn

·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τ
− (1 − αn)

∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥
2

≤ ‖xn−1 − x̂‖2 + λn ·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τa
− ‖xn − xn−1‖2.

(3.12)

Since
∑∞

n=1 λn · [(‖Ax̂‖ + μ‖F(x̂)‖)2/τa] converges, by Lemma 2.5, limn→∞‖xn − x̂‖ exists. As
a consequence, the sequence {xn} is bounded. Moreover, we have

‖xn − xn−1‖2 ≤ ‖xn−1 − x̂‖2 − ‖xn − x̂‖2 + λn ·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τa
−→ 0 as n −→ ∞. (3.13)

Therefore,

lim
n→∞

‖xn − xn−1‖ = 0. (3.14)

Obviously, it is easy to see that limn→∞‖xn − xn+i‖ = 0 for each i = 1, 2, . . . ,N. Now observe
that

(1 − b)
∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥ ≤ (1 − αn)

∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥ = ‖xn − xn−1‖ −→ 0 as n −→ ∞. (3.15)

Also note that the boundedness of {xn} implies that {Tnx̃n} and {F(Tnx̃n)} are both bounded.
Thus, we have

‖xn−1 − Tnx̃n‖ ≤
∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥ +
∥
∥
∥T

λn
n x̃n − Tnx̃n

∥
∥
∥

≤
∥
∥
∥xn−1 − Tλn

n x̃n

∥
∥
∥ + λnμ‖F(Tnx̃n)‖ −→ 0 as n −→ ∞.

(3.16)

This implies

‖xn − Tnx̃n‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − Tnx̃n‖ −→ 0 as n −→ ∞. (3.17)
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Consequently,

‖xn − Tnxn‖ ≤ ‖xn − Tnx̃n‖ + ‖Tnx̃n − Tnxn‖
≤ ‖xn − Tnx̃n‖ + ‖x̃n − xn‖
= ‖xn − Tnx̃n‖ + βn‖Axn‖
≤ ‖xn − Tnx̃n‖ + λn‖Axn‖ −→ 0 as n −→ ∞,

(3.18)

and hence, for each i = 1, 2, . . . ,N,

‖xn − Tn+ixn‖ ≤ ‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ + ‖Tn+ixn+i − Tn+ixn‖
≤ 2‖xn − xn+i‖ + ‖xn+i − Tn+ixn+i‖ −→ 0 as n −→ ∞.

(3.19)

This shows that limn→∞‖xn − Tn+ixn‖ = 0 for each i = 1, 2, . . . ,N. Therefore,

lim
n→∞

‖xn − Tlxn‖ = 0, for each l = 1, 2, . . . ,N. (3.20)

On the other hand, since {xn} is bounded, it has a subsequence {xnj}, which converges
weakly to some x ∈ H, and so, we have limj→∞‖xnj − Tlxnj‖ = 0. From Lemma 2.4, it follows
that I − Tl is demiclosed at zero. Thus, x ∈ Fix(Tl). Since l is an arbitrary element in the finite
set {1, 2, . . . ,N}, we get x ∈ ⋂N

i=1 Fix(Ti).
Now, let x∗ be an arbitrary element of ωw(xn). Then, there exists another subsequence

{xnk} of {xn}, which converges weakly to x∗ ∈ H. Clearly, by repeating the same argument,
we get x∗ ∈ ⋂N

i=1 Fix(Ti). We claim that x∗ = x. Indeed, if x∗ /=x, then by the Opial’s property
ofH, we conclude that

lim
n→∞

‖xn − x∗‖ = lim inf
k→∞

‖xnk − x∗‖

< lim inf
k→∞

‖xnk − x‖ = lim
n→∞

‖xn − x‖ = lim inf
j→∞

∥
∥
∥xnj − x

∥
∥
∥

< lim inf
j→∞

∥
∥
∥xnj − x∗

∥
∥
∥ = lim

n→∞
‖xn − x∗‖.

(3.21)

This leads to a contradiction, and so, we get x∗ = x. Therefore, ωw(xn) is a singleton set.
Hence, {xn} converges weakly to a common fixed point of the mappings {Ti}Ni=1, denoted still
by x∗.

Assume that ‖xn − Tnx̃n‖ = o(βn). Let y ∈ ⋂N
i=1 Fix(Ti) be arbitrary but fixed. Then, it

follows from the nonexpansiveness of each Ti and the monotonicity of A that

∥
∥Tnx̃n − y

∥
∥2 =

∥
∥Tn
(
xn − βnAxn

) − Tn
(
y
)∥
∥2

≤ ∥∥(xn − y
) − βnAxn

∥
∥2

=
∥
∥xn − y

∥
∥2 + 2βn

〈
Axn, y − xn

〉
+ β2n‖Axn‖2

=
∥
∥xn − y

∥
∥2 + 2βn

(〈
Ay, y − xn

〉
+
〈
Axn −Ay, y − xn

〉)
+ β2n‖Axn‖2

≤ ∥∥xn − y
∥
∥2 + 2βn

〈
Ay, y − xn

〉
+ β2n‖Axn‖2,

(3.22)
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which implies that

0 ≤ 1
βn

(∥
∥xn − y

∥
∥2 − ∥∥Tnx̃n − y

∥
∥2
)
+ 2
〈
Ay, y − xn

〉
+ βn‖Axn‖2

=
(∥
∥xn − y

∥
∥ +
∥
∥Tnx̃n − y

∥
∥
)
∥
∥xn − y

∥
∥ − ∥∥Tnx̃n − y

∥
∥

βn
+ 2
〈
Ay, y − xn

〉
+ βn‖Axn‖2

≤ M
‖xn − Tnx̃n‖

βn
+ 2
〈
Ay, y − xn

〉
+M2βn,

(3.23)

where M := sup{‖xn − y‖ + ‖Tnx̃n − y‖ + ‖Axn‖ : n ≥ 1} < ∞. Note that λn → 0, βn ≤
λn, for all n ≥ 1, and ‖xn − Tnx̃n‖ = o(βn). Thus, for any ε > 0, there exists an integer m0 ≥ 1
such that M‖xn − Tnx̃n‖/βn + M2βn ≤ ε for all n ≥ m0. Consequently, 0 ≤ ε + 2〈Ay, y − xn〉
for all n ≥ m0. Since xn ⇀ x∗, we have ε + 2〈Ay, y − x∗〉 ≥ 0 as n → ∞. Therefore, from the
arbitrariness of ε > 0, we deduce that 〈Ay, y − x∗〉 ≥ 0 for all y ∈ ⋂N

i=1 Fix(Ti). Proposition 2.1
(a) ensures that

〈
Ax∗, y − x∗〉 ≥ 0, ∀y ∈

N⋂

i=1

Fix(Ti); (3.24)

that is, x∗ ∈ VI(
⋂N

i=1 Fix(Ti), A).

Corollary 3.2 (see [14], Theorem 2.1). Let H be a real Hilbert space and F : H → Hκ-Lipschitz
continuous and η-strongly monotone for some constants κ > 0, η > 0. Let {Ti}Ni=1 beN nonexpansive
self-maps on H such that C =

⋂N
i=1 Fix(Ti)/= ∅. Let μ ∈ (0, 2η/κ2), x0 ∈ H, {λn}∞n=1 ⊂ [0, 1), and

{αn}∞n=1 ⊂ (0, 1) be such that
∑∞

n=1 λn < ∞ and a ≤ αn ≤ b, for all n ≥ 1, for some a, b ∈ (0, 1).
Then, the sequence {xn}∞n=1, defined by

xn := αnxn−1 + (1 − αn)T
λn
n xn = αnxn−1 + (1 − αn)

[
Tnxn − λnμF(Tnxn)

]
, ∀n ≥ 1, (3.25)

converges weakly to a common fixed point of the mappings {Ti}Ni=1.

Proof. In Theorem 3.1, putting A ≡ 0, we can see readily that for any given positive number
α ∈ (0,∞), A : H → H is an α-inverse-strongly monotone mapping. In this case, we have

VI

(
N⋂

i=1

Fix(Ti), A

)

=
N⋂

i=1

Fix(Ti). (3.26)

Hence, for any given sequence {βn}∞n=1 ⊂ (0, 2α] with βn ≤ λn(∀n ≥ 1), the implicit iterative
scheme (3.5) reduces to (3.25). Therefore, by Theorem 3.1, we obtain the desired result.

Lemma 3.3. In the setting of Theorem 3.1, we have

(a) limn→∞‖xn − x̂‖ exists for each x̂ ∈ C,

(b) limn→∞d(xn, C) exists, where d(xn, C) = infp∈C‖xn − p‖,
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(c) lim infn→∞‖xn − Tnxn‖ = 0,

where C := VI(
⋂N

i=1 Fix(Ti), A).

Proof. Conclusion (a) follows from (3.12), and conclusion (c) follows from (3.18). We prove
conclusion (b). Indeed, for each x̂ ∈ C,

(‖Ax̂‖ + μ‖F(x̂)‖)2 ≤ (‖Ax̂ −Axn−1‖ + ‖Axn−1‖ + μ‖F(x̂) − F(xn−1)‖ + μ‖F(xn−1)‖
)2

≤
(
1
α
‖xn−1 − x̂‖ + ‖Axn−1‖ + μκ‖xn−1 − x̂‖ + μ‖F(xn−1)‖

)2

=
[(

1
α
+ μκ

)

‖xn−1 − x̂‖ + (‖Axn−1‖ + μ‖F(xn−1)‖
)
]2

≤ 2
(
1
α
+ μκ

)2

‖xn−1 − x̂‖2 + 2
(‖Axn−1‖ + μ‖F(xn−1)‖

)2
.

(3.27)

This together with (3.12) implies that

‖xn − x̂‖2 ≤ ‖xn−1 − x̂‖2 + λn ·
(‖Ax̂‖ + μ‖F(x̂)‖)2

τa

≤ ‖xn−1 − x̂‖2 + λn · 1
τa

[

2
(
1
α
+ μκ

)2

‖xn−1 − x̂‖2 + 2
(‖Axn−1‖ + μ‖F(xn−1)‖

)2
]

≤
(

1 + λn ·
2
(
(1/α) + μκ

)2

τa

)

‖xn−1 − x̂‖2 + λn · 2
τa

(‖Axn−1‖ + μ‖F(xn−1)‖
)2

≤ (1 + γn
)‖xn−1 − x̂‖2 + γn,

(3.28)

and hence,

[d(xn, C)]
2 ≤ (1 + γn

)
[d(xn−1, C)]

2 + γn, (3.29)

where

γn = λn ·max

{
2
(
(1/α) + μκ

)2

τa
,
2
τa

(‖Axn−1‖ + μ‖F(xn−1)‖
)2
}

, ∀n ≥ 1. (3.30)

Since
∑∞

n=1 λn < ∞ and both {Axn−1} and {F(xn−1)} are bounded, it is known that
∑∞

n=1 γn <
∞. On account of Lemma 2.5, we deduce that limn→∞d(xn, C) exists, that is, conclusion (b)
holds.

Finally, we give necessary and sufficient conditions for the strong convergence of the
sequence generated by the implicit iterative scheme (3.5) with perturbation F.
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Theorem 3.4. In the setting of Theorem 3.1, the sequence {xn} converges strongly to an element of
VI(
⋂N

i=1 Fix(Ti), A) if and only if lim infn→∞d(xn, C) = 0 where C := VI(
⋂N

i=1 Fix(Ti), A).

Proof. From (3.28), we derive for each n ≥ 1

‖xn − x̂‖2 ≤ (1 + γn
)‖xn−1 − x̂‖2 + γn, ∀x̂ ∈ C, (3.31)

where
∑∞

n=1 γn < ∞. Put M̃ =
∏∞

n=1(1 + γn). Then 1 ≤ M̃ < ∞.
Suppose that the sequence {xn} converges strongly to a common fixed point p of the

family {Ti}Ni=1. Then, limn→∞‖xn − p‖ = 0. Since

0 ≤ d(xn, C) ≤
∥
∥xn − p

∥
∥, (3.32)

we have lim infn→∞ d(xn, C) = 0.
Conversely, suppose that lim infn→∞d(xn, C) = 0. Then, by Lemma 3.3 (b), we deduce

that limn→∞d(xn, C) = 0. Thus, for arbitrary ε > 0, there exists a positive integerN0 such that

d(xn, C) <
ε
√
8M̃

, ∀n ≥ N0. (3.33)

Furthermore, the condition
∑∞

n=1 γn < ∞ implies that there exists a positive integer N1 such
that

∞∑

j=n

γj <
ε2
(
8M̃
) , ∀n ≥ N1. (3.34)

Choose N∗ = max{N0,N1}. Observe that (3.31) yields

‖xn − x̂‖2 ≤ (1 + γn
)(
1 + γn−1

)‖xn−2 − x̂‖2 + (1 + γn
)
γn−1 + γn

≤
n∏

j=N∗+1

(
1 + γj

)‖xN∗ − x̂‖2 +
n−1∑

j=N∗+1

γj
n∏

i=j+1

(
1 + γj

)
+ γn

≤ M̃

⎡

⎣‖xN∗ − x̂‖2 +
n∑

j=N∗+1

γj

⎤

⎦.

(3.35)
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Note that d(xN∗ , C) < ε/
√
8M̃ and

∑∞
j=N∗ γj < ε2/(8M̃). Thus, for all n,m ≥ N∗ and all x̂ ∈ C,

we have from (3.35) that

‖xn − xm‖2 ≤ (‖xn − x̂‖ + ‖xm − x̂‖)2

≤ 2‖xn − x̂‖2 + 2‖xm − x̂‖2

≤ 2M̃

⎡

⎣‖xN∗ − x̂‖2 +
n∑

j=N∗+1

γj

⎤

⎦ + 2M̃

⎡

⎣‖xN∗ − x̂‖2 +
m∑

j=N∗+1

γj

⎤

⎦

≤ 4M̃

⎡

⎣‖xN∗ − x̂‖2 +
∞∑

j=N∗

γj

⎤

⎦

< 4M̃

(

‖xN∗ − x̂‖2 + ε2

8M̃

)

.

(3.36)

Taking the infimum over all x̂ ∈ C, we obtain

‖xn − xm‖2 ≤ 4M̃

(

[d(xN∗ , C)]
2 +

ε2

8M̃

)

≤ 4M̃

(
ε2

8M̃
+

ε2

8M̃

)

= ε2, (3.37)

and hence, ‖xn−xm‖ ≤ ε. This shows that {xn}∞n=1 is a Cauchy sequence inH. Let xn → p ∈ H
as n → ∞. Then, we derive from (3.20) that for each l = 1, 2, . . . ,N,

∥
∥p − Tlp

∥
∥ ≤ ∥∥p − xn

∥
∥ + ‖xn − Tlxn‖ +

∥
∥Tlxn − Tlp

∥
∥

≤ 2
∥
∥xn − p

∥
∥ + ‖xn − Tlxn‖ −→ 0 as n −→ ∞.

(3.38)

Therefore, p ∈ Fix(Tl) for each l = 1, 2, . . . ,N, and hence, p ∈ ⋂N
i=1 Fix(Ti).

On the other hand, choose a positive sequence {εn}∞n=1 ⊂ (0,∞) such that εn → 0 as
n → ∞. For each n ≥ 1, from the definition of d(xn, C), it follows that there exists a point
pn ∈ C such that

∥
∥xn − pn

∥
∥ ≤ d(xn, C) + εn. (3.39)

Since d(xn, C) → 0 and εn → 0 as n → ∞, it is clear that ‖xn −pn‖ → 0 as n → ∞. Note that

∥
∥pn − p

∥
∥ ≤ ∥∥pn − xn

∥
∥ +
∥
∥xn − p

∥
∥ −→ 0 as n −→ ∞. (3.40)

Hence, we get

lim
n→∞
∥
∥pn − p

∥
∥ = 0. (3.41)

Furthermore, for each βn ∈ (0, 2α], the mapping Sβn : H → H is defined as follows:

Sβnx := P⋂N
i=1 Fix(Ti)

(
I − βnA

)
x, ∀x ∈ H. (3.42)
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From Proposition 2.3, we deduce that Sβn is nonexpansive and

Fix
(
Sβn

)
= VI

(
N⋂

i=1

Fix(Ti), A

)

(= C). (3.43)

From Proposition 2.2 (a), we conclude that Fix(Sβn) is closed and convex. Thus, from the
condition VI(

⋂N
i=1 Fix(Ti), A)/= ∅, it is known that C is a nonempty closed and convex set.

Since {pn} lies in C and converges strongly to p, we must have p ∈ C.

Remark 3.5. Setting A = 0 in Lemma 3.3 and Theorem 3.4 above, we shall derive Lemma 2.1
and Theorem 2.2 in [14] as direct consequences, respectively.
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