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Let wλ(x) := (1 − x2)λ−1/2 and Pλ,n(x) be the ultraspherical polynomials with respect to
wλ(x). Then, we denote the Stieltjes polynomials with respect to wλ(x) by Eλ,n+1(x) satisfying
∫1
−1wλ(x)Pλ,n(x)Eλ,n+1(x)xmdx = 0, 0 ≤ m < n + 1,

∫1
−1wλ(x)Pλ,n(x)Eλ,n+1(x)xmdx /= 0, m = n + 1.

In this paper, we investigate asymptotic properties of derivatives of the Stieltjes polynomials
Eλ,n+1(x) and the product Eλ,n+1(x)Pλ,n(x). Especially, we estimate the even-order derivative
values of Eλ,n+1(x) and Eλ,n+1(x)Pλ,n(x) at the zeros of Eλ,n+1(x) and the product Eλ,n+1(x)Pλ,n(x),
respectively. Moreover, we estimate asymptotic representations for the odd derivatives values of
Eλ,n+1(x) and Eλ,n+1(x)Pλ,n(x) at the zeros of Eλ,n+1(x) and Eλ,n+1(x)Pλ,n(x) on a closed subset of
(−1, 1), respectively. These estimates will play important roles in investigating convergence and
divergence of the higher-order Hermite-Fejér interpolation polynomials.

1. Introduction

Consider the generalized Stieltjes polynomials Eλ,n+1(x) defined (up to a multiplicative
constant) by

∫1

−1
wλ(x)Pλ,n(x)Eλ,n+1(x)xkdx = 0, k = 0, 1, 2, . . . , n, n � 1, (1.1)

where wλ(x) = (1 − x2)λ−1/2, λ > −1/2, and Pλ,n(x) is the nth ultraspherical polynomial for
the weight function wλ(x).

The polynomials Eλ,n+1(x), introduced by Stieltjes and studied by Szegö, have been
used in numerical integration, whereas the polynomials Pλ,n(x)Eλ,n+1(x) have been used in
extended Lagrange interpolation. In this paper, we will prove pointwise and asymptotic
estimates for the higher-order derivatives of Eλ,n+1(x) and Pλ,n(x)Eλ,n+1(x). It is well known
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that these kind of estimates are useful for studying interpolation processes with multiple
nodes.

In 1934, G. Szegö [1] showed that the zeros of the generalized Stieltjes polynomials
Eλ,n+1(x) are real and inside [−1, 1] and interlace with the zeros of Pλ,n(x) whenever 0 �
λ � 2. Recently, several authors [2–8] studied further interesting properties for these Stieltjes
polynomials. Ehrich and Mastroianni [3, 4] gave accurate pointwise bounds of Eλ,n+1(x) (0 �
λ � 1) and the product Fλ,2n+1 := Eλ,n+1(x)Pλ,n(x) (0 � λ � 1) on [−1, 1], and they estimated
asymptotic representations for E′

λ,n+1(x) and F
′
λ,2n+1(x) at the zeros of Eλ,n+1(x) and Fλ,2n+1(x),

respectively. In [6], pointwise upper bounds of E′
λ,n+1(x), E

′′
λ,n+1(x), F

′
λ,2n+1(x), and F

′′
λ,2n+1(x)

are obtained using the asymptotic differential relations of the first and the second order for
the Stieltjes polynomials Eλ,n+1(x) (0 � λ � 1) and Fλ,2n+1(x) (0 � λ � 1). Also the values of
E

′′
λ,n+1(x) and F

′′
λ,2n+1(x) at the zeros of Eλ,n+1(x) and Fλ,2n+1(x) are estimated in [6]. Moreover,

using the results of [6], the Lebesgue constants of Hermite-Fejér interpolatory process are
estimated in [7].

In this paper, we find pointwise upper bounds of E(r)
λ,n+1(x) and F

(r)
λ,2n+1(x) for two cases

of an odd order and of even order. Using these relations, we investigate asymptotic properties
of derivatives of the Stieltjes polynomials Eλ,n+1(x) and Fλ,2n+1(x) and we also estimate the
values of E(2�)

λ,n+1(x) and F
(2�)
λ,2n+1(x) at the zeros of Eλ,n+1(x) and Fλ,2n+1(x), respectively. Especi-

ally, for the value of F(2�)
λ,2n+1(x) at the zeros of Fλ,2n+1(x), we will estimate P (r)

λ,n(x) and E
(r)
λ,n+1(x)

for an odd r at the zeros of Eλ,n+1(x) and Pλ,n(x), respectively. Finally, we investigate asym-
ptotic representations for the values of E(2�+1)

λ,n+1 and F
(2�+1)
λ,2n+1(x) at the zeros of Eλ,n+1(x) and

Fλ,2n+1(x) on a closed subset of (−1, 1), respectively. These estimates will play important roles
in investigating convergence and divergence of the higher-order Hermite-Fejér interpolation
polynomials.

This paper is organized as follows. In Section 2, we will introduce the main results. In
Section 3, we will introduce the known results in order to prove the main results. Finally, we
will prove the results in Section 4.

2. Main Results

We first introduce some notations, which we use in the following. For the ultraspherical
polynomials Pλ,n, λ/= 0, we use the normalization Pλ,n(1) =

(
n+2λ−1

n

)
and then we know that

Pλ,n(1) ∼ n2λ−1. We denote the zeros of Pλ,n by x
(λ)
ν,n, ν = 1, . . . , n, and the zeros of Stieltjes

polynomials Eλ,n+1 by ξ(λ)μ,n+1, μ = 1, . . . , n + 1. We denote the zeros of Fλ,2n+1 := Pλ,nEλ,n+1 by

y
(λ)
ν,2n+1, ν = 1, . . . , 2n + 1. All nodes are ordered by increasing magnitude. We set ϕ(x) :=√
1 − x2, and, for any two sequences {bn}n and {cn}n of nonzero real numbers (or functions),

wewrite bn � cn, if there exists a constantC > 0, independent of n (and x) such that bn � Ccn
for n large enough and write bn ∼ cn if bn � cn and cn � bn. We denote by Pn the space of
polynomials of degree at most n.

For the Chebyshev polynomial Tn(x), note that for λ = 0 and λ = 1

E0,n+1(x) =
2n
π

(Tn+1(x) − Tn−1(x))

E1,n+1(x) =
2
π
Tn+1(x).

(2.1)

Therefore, we will consider Eλ,n+1(x) for 0 < λ < 1.
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Theorem 2.1. Let 0 < λ < 1 and r � 1 be a positive integer. Then, for all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣
∣
∣E(r)

λ,n+1(x)
∣
∣
∣ � nr+1−λϕ1−r−λ(x). (2.2)

Moreover, one has

max
x∈[−1,1]

∣
∣
∣E(r)

λ,n+1(x)
∣
∣
∣ ∼ n2r , (2.3)

and especially one has, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣
∣
∣E(r)

λ,n+1(x)
∣
∣
∣ ∼ n2r . (2.4)

Theorem 2.2. Let 0 < λ < 1 and r � 1 be a positive integer. Then, for all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣F(r)
λ,2n+1(x)

∣∣∣ � nrϕ1−2λ−r(x). (2.5)

Moreover, one has

max
x∈[−1,1]

∣∣∣F(r)
λ,2n+1(x)

∣∣∣ � n2λ+2r−1, (2.6)

and especially, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣∣∣F(r)
λ,2n+1(x)

∣∣∣ ∼ n2λ+2r−1. (2.7)

In the following, we also estimate the values of E(2�)
λ,n+1(x) and F

(2�)
λ,2n+1(x), � � 1 at the

zeros {ξ(λ)μ,n+1} of Eλ,n+1(x) and the zeros {y(λ)
ν,2n+1} of Fλ,2n+1(x), respectively.

Theorem 2.3. Let 0 < λ < 1 and r � 2 be an even integer. For 1 � μ � n + 1, one has

∣∣∣E(r)
λ,n+1

(
ξ
(λ)
μ,n+1

)∣∣∣ � nrϕ−r
(
ξ
(λ)
μ,n+1

)
. (2.8)

Theorem 2.4. Let 0 < λ < 1 and r � 2 be an even integer. For 1 � ν � 2n + 1, one has

∣∣∣F(r)
λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣∣ � nr−1+λϕ−r−λ
(
y
(λ)
ν,2n+1

)
. (2.9)

Finally, we obtain the asymptotic representations for the values of E(2�+1)
λ,n+1 (x) and

F
(2�+1)
λ,2n+1(x) at the zeros of Eλ,n+1(x) and Fλ,2n+1(x) on a closed subset of (−1, 1), respectively.
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Theorem 2.5. Let 0 < λ < 1 and 0 < ε < 1. Suppose |ξ(λ)μ,n+1| � 1 − ε. Then,

(a)

E
(2�+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= (−1)�(n + 1)2�ϕ−2�

(
ξ
(λ)
μ,n+1

)
E′
λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
n2�+1

)
, (2.10)

(b)

P
(2�)
λ,n

(
ξ
(λ)
μ,n+1

)
= (−1)�n�(n + 2λ)�ϕ−2�

(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)
+O

(
n2λ+2�−3

)
. (2.11)

In addition,

P
(2�)
λ,n

(
ξ
(λ)
μ,n+1

)
= (−1)�(n + 1)2�ϕ−2�

(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)
+O

(
n2�+λ−2

)
. (2.12)

Theorem 2.6. Let 0 < λ < 1 and 0 < ε < 1. Suppose |x(λ)
ν,n| � 1 − ε. Then,

(a)

E
(2�)
λ,n+1

(
x
(λ)
ν,n

)
= (−1)�(n + 1)2�ϕ−2�

(
x
(λ)
ν,n

)
Eλ,n+1

(
x
(λ)
ν,n

)
+O

(
n2�

)
, (2.13)

(b)

P
(2�+1)
λ,n

(
x
(λ)
ν,n

)
= (−1)�n�(n + 2λ)�ϕ−2�

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ+2�−2

)
. (2.14)

In addition,

P
(2�+1)
λ,n

(
x
(λ)
ν,n

)
= (−1)�(n + 1)2�ϕ−2�

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ+2�−1

)
. (2.15)

Theorem 2.7. Let 0 < λ < 1 and 0 < ε < 1. Suppose |y(λ)
ν,2n+1| � 1 − ε. Then, one has, for a positive

integer � � 1,

F
(2�+1)
λ,2n+1

(
y
(λ)
ν,2n+1

)
= c�(−1)�(n + 1)2�ϕ−2�

(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�

)
, (2.16)

where c� = 4� − 2�−1.

3. The Known Results

In this section, we will introduce the known results in [4, 6, 9] to prove main results.
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Proposition 3.1. (a) Let λ > −1/2. Then, Pλ,n(x) satisfies the second-order differential equa-
tion as follows:

(
1 − x2

)
P

′′
λ,n(x) − (2λ + 1)xP ′

λ,n(x) + n(n + 2λ)Pλ,n(x) = 0. (3.1)

(b) Let λ > −1/2. Then,

P ′
λ,n(x) = 2λPλ+1,n−1(x). (3.2)

(c) Let λ > −1/2. Then, for 1 � μ � n + 1,

∣∣∣P ′
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2λ−1ϕ−2
(
ξ
(λ)
μ,n+1

)
. (3.3)

(d) Let λ > −1/2. Then, for 1 � ν � n,

∣∣∣P ′
λ,n

(
x
(λ)
ν,n

)∣∣∣ ∼ nλϕ−λ−1
(
x
(λ)
ν,n

)
. (3.4)

(e) Let λ > −1/2. Then, for x ∈ (−1, 1) and r � 0,

∣∣∣P (r)
λ,n(x)

∣∣∣ � nλ+r−1ϕ−λ−r(x). (3.5)

(f) Let 0 � λ � 1. Then, for 1 � ν � n,

∣∣∣E′
λ,n+1

(
x
(λ)
ν,n

)∣∣∣ � nϕ−1
(
x
(λ)
ν,n

)
. (3.6)

(g) Let λ > −1/2 and r � 0. Then, Pλ,n(x) satisfies the higher-order differential equa-
tion as follows:

(
1 − x2

)
P
(r+2)
λ,n (x) − (2λ + 2r + 1)xP (r+1)

λ,n (x) +
(
n2 + 2λn − r(2λ − r + 2)

)
P
(r)
λ,n(x) = 0. (3.7)

Proof. (a) It is from [9, (4.2.1)]. (b) It is from [9, (4.7.14)]. (c) It is from [6, Lemma 3.4]. (d) It
is from [9, (8.9.7)]. (e) For r = 0, it follows from [9, (7.33.5)], and, for r � 1, it comes from
(b) and the case of r = 0. (f) It is from [6, Lemma 3.3 (3.23)]. (g) Equation (3.7) comes from
(a).
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Proposition 3.2 (see [4]). Let 0 < λ < 1. Let ξ(λ)μ,n+1 := cos θ(λ)μ,n+1, μ = 1, . . . , n + 1 and y(λ)
ν,2n+1 :=

cosψ(λ)
ν,2n+1, ν = 1, . . . , 2n + 1. Then, for μ = 0, 1, . . . , n + 2 and ν = 0, 1, . . . , 2n + 2,

∣
∣
∣θ(λ)μ,n+1 − θ

(λ)
μ+1,n+1

∣
∣
∣ ∼

∣
∣
∣ψ(λ)

ν,2n+1 − ψ
(λ)
ν+1,2n+1

∣
∣
∣ ∼ n−1, (3.8)

where ψ(λ)
0,2n+1 := θ

(λ)
0,n+1 := π and ψ(λ)

2n+2,2n+1 := θ
(λ)
n+2,n+1 := 0.

Proposition 3.3 ([6, Proposition 2.3]). Let 0 < λ < 1. Then, for all x ∈ [−1, 1],
(
1 − x2

)
E

′′
λ,n+1(x) − xE′

λ,n+1(x) + (n + 1)2Eλ,n+1(x) = Iλ,n(x), (3.9)

where

Iλ,n(x) =
8

γ
(λ)
n

[(n+1)/2]∑

ν=1

(n + 1 − ν)να(λ)ν,nTn+1−2ν(x). (3.10)

Then Iλ,n(x) is a polynomial of degree n − 1 satisfying

max
x∈[−1,1]

|Iλ,n(x)| � n2. (3.11)

Proposition 3.4 ([4, Theorem 2.1]). Let 0 < λ < 1. Then, for n � 0,

|Eλ,n+1(x)| � n1−λϕ1−λ(x) + 1 − 1 � x � 1. (3.12)

Furthermore, Eλ,n+1(1) � 1.

Proposition 3.5 ([6, Theorem 2.5]). Let 0 < λ < 1.

(a) For all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣E′
λ,n+1(x)

∣∣∣ � n2−λϕ−λ(x). (3.13)

Moreover, one has, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣∣∣E′
λ,n+1(x)

∣∣∣ ∼ n2. (3.14)

(b) For all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣E
′′
λ,n+1(x)

∣∣∣ � n3−λϕ−1−λ(x). (3.15)
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Moreover, one has, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣
∣
∣E

′′
λ,n+1(x)

∣
∣
∣ ∼ n4. (3.16)

Proposition 3.6 ([6, Corollary 2.6]). Let 0 < λ < 1. Then, for all x ∈ [−1, 1],
(
1 − x2

)
F

′′
λ,2n+1(x) − xF ′

λ,2n+1(x) +
(
2n2 + 2(1 + λ)n + 1

)
Fλ,2n+1(x) = Jλ,n(x). (3.17)

Here, Jλ,n(x) is a polynomial of degree of 2n + 1 defined in (4.37) such that, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

|Jλ,n(x)| � n2ϕ1−2λ(x) (3.18)

and, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

|Jλ,n(x)| � n1+2λ. (3.19)

Proposition 3.7 ([6, Corollary 2.7]). Let 0 < λ < 1.

(a) For all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣F ′
λ,2n+1(x)

∣∣∣ � nϕ−2λ(x). (3.20)

Moreover, one has, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣∣∣F ′
λ,2n+1(x)

∣∣∣ ∼ n1+2λ. (3.21)

(b) For all x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣F
′′
λ,2n+1(x)

∣∣∣ � n2ϕ−1−2λ(x). (3.22)

Moreover, one has, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣∣∣F
′′
λ,2n+1(x)

∣∣∣ ∼ n3+2λ. (3.23)

Proposition 3.8 ([4, Lemma 5.5]). Let 0 < λ < 1. Then, for μ = 1, 2, . . . , n + 1,

∣∣∣E′
λ,n+1

(
ξ
(λ)
μ,n+1

)∣∣∣ ∼ n2−λϕ−λ
(
ξ
(λ)
μ,n+1

)
(3.24)
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and, for ν = 1, 2, . . . , 2n + 1,

∣
∣
∣F ′

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ ∼ nϕ−2λ

(
y
(λ)
ν,2n+1

)
. (3.25)

We now estimate the second derivatives at the zeros of Eλ,n+1 and Fλ,2n+1.

Proposition 3.9 ([6, Theorem 2.9]). Let 0 < λ < 1. Then, for μ = 1, 2, . . . , n + 1,

∣
∣
∣E

′′
λ,n+1

(
ξ
(λ)
μ,n+1

)∣∣
∣ � n2ϕ−2

(
ξ
(λ)
μ,n+1

)
(3.26)

and, for ν = 1, 2, . . . , 2n + 1,

∣
∣
∣F

′′
λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ � n1+λϕ−2−λ

(
y
(λ)
ν,2n+1

)
. (3.27)

4. The Proofs of Main Results

In this section, we let 0 < λ < 1 andm = �(n + 1/2)	. A representation of Stieltjes polynomials
Eλ,n+1(x) is (cf. [1, 10])

γ
(λ)
n

2
Eλ,n+1(cos θ) = α

(λ)
0,n cos(n + 1)θ + α(λ)1,n cos(n − 1)θ + · · · +

⎧
⎨

⎩

α
(λ)
n/2,n cos θ, n even
1
2
α
(λ)
n+1/2,n, n odd,

(4.1)

where

α
(λ)
0,n = f (λ)

0,n = 1,
ν∑

μ=0

α
(λ)
μ,nf

(λ)
ν−μ,n = 0, ν = 1, 2, . . . ,

f
(λ)
ν,n :=

(
1 − λ

ν

)(
1 − λ

n + ν + λ

)
, ν = 1, 2, . . . ,

γ
(λ)
n =

√
π

Γ(n + 2λ)
Γ(n + λ + 1)

∼ √
πnλ−1.

(4.2)

In the following, we state the asymptotic differential relation of the higher order of
Eλ,n+1.

Lemma 4.1. Let 0 < λ < 1. Then, for all x ∈ [−1, 1] and r � 2,

(
1 − x2

)
E
(r)
λ,n+1(x) = (2r − 3)xE(r−1)

λ,n+1(x) +
(
(r − 2)2 − (n + 1)2

)
E
(r−2)
λ,n+1(x) + I

(r−2)
λ,n (x) (4.3)

and, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣I(r−2)λ,n (x)
∣∣∣ � nrϕ2−r(x). (4.4)
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Here, Iλ,n(x) is a polynomial of degree n − 1 defined in (3.10);

Iλ,n(x) =
8

γ
(λ)
n

m∑

ν=1

(n + 1 − ν)να(λ)ν,nTn+1−2ν(x), (4.5)

such that

max
x∈[−1,1]

∣
∣
∣I(r−2)λ,n (x)

∣
∣
∣ � n2r−2. (4.6)

Proof. For r � 2, (4.3) is obtained by r − 2 times differentiation of (3.9). Equation (4.6) follows
by (3.11) and the use of Markov-Bernstein inequality. Now, we prove (4.4). We know that the
Chebyshev polynomial Tn(x) satisfies the second-order differential equation

(
1 − x2

)
T

′′
n(x) − xT ′

n(x) + n
2Tn(x) = 0, (4.7)

so we have, by r − 2 times differentiation of (4.7),

(
1 − x2

)
T
(r)
n (x) − (2r − 3)xT (r−1)

n (x) −
(
(r − 2)2 − n2

)
T
(r−2)
n (x) = 0. (4.8)

Let for a nonnegative integer j � 0,

Iλ,n,j(x) := − 8

γ
(λ)
n

m∑

ν=1

(n + 1 − ν)να(λ)ν,n

∣∣∣T
(j)
n+1−2ν(x)

∣∣∣. (4.9)

Observe that in the view of Szegö’s result (cf. [1])

α
(λ)
1,n < α

(λ)
2,n < α

(λ)
3,n < · · · < 0, 0 �

∞∑

ν=0

α
(λ)
ν,n < 1. (4.10)

Then, since |I(j)
λ,n

(x)| � Iλ,n,j(x) (note (4.10)), we will prove that, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1] and

j � 0,

Iλ,n,j(x) � nj+2ϕ−j(x) (4.11)

instead of (4.4). Since, from the proof of [6, Proposition 2.3],

0 < − 8

γ
(λ)
n

m∑

ν=1

(n + 1 − ν)να(λ)ν,n � n2 (4.12)

and, for x = cos θ,

∣∣T ′
n+1−2ν(x)

∣∣ =
∣∣∣∣(n + 1 − 2ν)

sin(n + 1 − 2ν)θ
sin θ

∣∣∣∣ � nϕ−1(x), (4.13)
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we obtain that Iλ,n,0(x) � n2 and Iλ,n,1(x) � n3ϕ−1(x). Using (4.8), we have, for 2 � j � n,

Iλ,n,j(x) = − 8

γ
(λ)
n

m∑

ν=1

(n + 1 − ν)να(λ)ν,n

∣
∣
∣T

(j)
n+1−2ν(x)

∣
∣
∣

≤ − 8

γ
(λ)
n

m∑

ν=1

(n + 1 − ν)να(λ)ν,n

×
⎛

⎝
(
2j − 3

)|x|
1 − x2

∣
∣∣T

(j−1)
n+1−2ν(x)

∣
∣∣ +

∣
∣
∣
(
j − 2

)2 − (n + 1 − 2ν)2
∣
∣
∣

1 − x2

∣
∣∣T

(j−2)
n+1−2ν(x)

∣
∣∣

⎞

⎠

�
(
2j − 3

)|x|
1 − x2

Iλ,n,j−1(x) +
(n + 1)2

1 − x2
Iλ,n,j−2(x).

(4.14)

Therefore, (4.11) is proved by the mathematical induction on j. Consequently, we have (4.4).

We obtain pointwise upper bounds of E(r)
λ,n+1(x) for two cases of an odd order and an

even order in the following.

Lemma 4.2. Let 0 < λ < 1 and r � 2. Let x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1]. If r is even, then one has

∣∣∣E(r)
λ,n+1(x)

∣∣∣ � nr−2ϕ−r(x)
∣∣∣E′

λ,n+1(x)
∣∣∣ + nrϕ−r(x)|Eλ,n+1(x)| + nrϕ−r(x), (4.15)

and, if r is odd, then one has

∣∣∣E(r)
λ,n+1(x)

∣∣∣ � nr−1ϕ1−r(x)
∣∣∣E′

λ,n+1(x)
∣∣∣ + nr−1ϕ−1−r(x)|Eλ,n+1(x)| + nrϕ−r(x). (4.16)

Proof. Let r � 2. From (4.3) and (4.4), we have, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣E(r)
λ,n+1(x)

∣∣∣ � ϕ−2(x)
∣∣∣E(r−1)

λ,n+1(x)
∣∣∣ + n2ϕ−2(x)

∣∣∣E(r−2)
λ,n+1(x)

∣∣∣ + nrϕ−r(x) (4.17)

and especially

∣∣∣E
′′
λ,n+1(x)

∣∣∣ � ϕ−2(x)
∣∣∣E′

λ,n+1(x)
∣∣∣ + n2ϕ−2(x)|Eλ,n+1(x)| + n2ϕ−2(x), (4.18)

that is, we have (4.15) for r = 2. From Proposition 3.2, we see 1 + ξ(λ)1,n+1, 1 − ξ
(λ)
n+1,n+1 � 1/n, so

we have, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

ϕ−1(x) � n. (4.19)



Journal of Applied Mathematics 11

Then, from (4.17) with r = 3 and (4.18), we know that

∣
∣
∣E(3)

λ,n+1(x)
∣
∣
∣ � n2ϕ−2(x)

∣
∣
∣E′

λ,n+1(x)
∣
∣
∣ + n2ϕ−4(x)|Eλ,n+1(x)| + n3ϕ−3(x), (4.20)

that is, we have (4.16) for r = 3. Assume that (4.15) and (4.16) hold for 3, 4, . . . , r − 1 times
differentiation. Let r be an even number. Then, we have, from (4.17), (4.19), and the assump-
tions for r − 1 and r − 2,

∣∣
∣E(r)

λ,n+1(x)
∣∣
∣ � nr−2ϕ−r(x)

∣∣
∣E′

λ,n+1(x)
∣∣
∣ + nrϕ−r(x)|Eλ,n+1(x)| + nrϕ−r(x), (4.21)

that is, we have (4.15). Similarly, we also have (4.16) for an odd r.

Lemma 4.3. Let −1 < x1 < x2 < · · · < xn < 1 and

P(x) := (x − x1)(x − x2) · · · (x − xn). (4.22)

Then, P ′(x) is a polynomial of degree of n − 1 and has distinct real n − 1 zeros in (−1, 1). Moreover, if
one lets −1 < y1 < y2 < · · · < yn−1 < 1 be the zeros of P ′(x), then {yi}ni=1 is interlaced with the zeros
of P(x) that is, xi < yi < xi+1, i = 1, 2, . . . , n − 1.

Proof. Since the sign of P ′(xi) is (−1)n−i, it is proved.

Lemma 4.4. Let r be a nonnegative integer. Then, E(r)
λ,n+1(x) has distinct n+1−r real zeros on (−1, 1).

If one lets {xn+1(r, i)}n+1−ri=1 be the zeros of the polynomial E(r)
λ,n+1(x) with

−1 < xn+1(r, 1) < xn+1(r, 2) < · · · < xn+1(r, n + 1 − r) < 1, (4.23)

then one has, for 1 � r � n and k = 1, . . . , n + 1 − r,

xn+1(0, k) < xn+1(r, k). (4.24)

Proof. From Lemma 4.3, we know that E(r)
λ,n+1 has distinct real n+ 1− r zeros on (−1, 1). By the

interlaced zeros property of Lemma 4.3, we see that, for k = 1, . . . , n + 1 − r,

xn+1(r − 1, k) < xn+1(r, k) < xn+1(r − 1, k + 1). (4.25)

Thus, (4.24) is proved.

Proof of Theorem 2.1. Let r � 1. Equation (2.2) comes from (4.15), (4.16), (3.12), and (3.13).
From Propositions 3.4, 3.5, and (4.19), we have

max
x∈[−1,1]

∣∣∣E(r)
λ,n+1(x)

∣∣∣ ∼ n2r , r = 1, 2. (4.26)
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Hence, using the Markov-Bernstein inequality, we have (2.3). To prove (2.4), we will use the
mathematical induction. We use (3.14). The formula (2.3) holds for r = 1 from (3.14). We
suppose that, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1] and r � 2,

∣
∣
∣E(r−1)

λ,n+1(x)
∣
∣
∣ ∼ n2(r−1). (4.27)

Then, by Lemma 4.4 and (3.8), we have, for x ∈ [ξ(λ)n+1,n+1, 1] and r � 2,

E
(r)
λ,n+1(x)

E
(r−1)
λ,n+1(x)

=
n+2−r∑

k=1

1
x − xn+1(r − 1, k)

� 1

ξ
(λ)
n+1,n+1 − xn+1(r − 1, n + 2 − r)

� 1

ξ
(λ)
n+1,n+1 − xn+1(0, n + 2 − r)

=
1

ξ
(λ)
n+1,n+1 − ξ

(λ)
n+2−r,n+1

� 1

ξ
(λ)
n+1,n+1 − ξ

(λ)
n,n+1

� n2.

(4.28)

Here, the last inequality is obtained by Proposition 3.2, that is,

ξ
(λ)
n+1,n+1 − ξ

(λ)
n,n+1 = cos θ(λ)n+1,n+1 − cos θ(λ)n,n+1 ∼ n−2. (4.29)

Therefore, we have, for x ∈ [ξ(λ)n+1,n+1, 1] and r � 2,

E
(r)
λ,n+1(x) � E

(r−1)
λ,n+1(x)n

2 ∼ n2r . (4.30)

Hence, from (2.3), we have (2.4). For x ∈ [−1, ξ(λ)1,n+1], the proof is similar.

Lemma 4.5. Let � be a nonnegative integer and x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1]. Then,

∣∣∣∣
(
xEλ,n+1(x)P ′

λ,n(x)
)(�)

∣∣∣∣ � n�+1ϕ−�−2λ(x), (4.31a)

∣∣∣(Iλ,n(x)Pλ,n(x))(�)
∣∣∣ � n�+1+λϕ−�−λ(x), (4.31b)

∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(�)
∣∣∣∣ � n�+2ϕ−2λ−�−1(x). (4.31c)
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Proof. (a) When � = 0, it is obvious from (3.5) and (3.12). Now, suppose � � 1. From (3.12),
(2.2), and (3.5), we have

∣
∣
∣
∣
(
xEλ,n+1(x)P ′

λ,n(x)
)(�)

∣
∣
∣
∣ �

∑

�−1�q+r��

∣
∣
∣E

(q)
λ,n+1(x)P

(r+1)
λ,n (x)

∣
∣
∣

�
∑

�−1�q+r��

nq+r+1ϕ−(q+r)−2λ(x) � n�+1ϕ−�−2λ(x).
(4.32)

(b) From (4.4) and (3.5), we have

∣
∣
∣(Iλ,n(x)Pλ,n(x))(�)

∣
∣
∣ �

∑

q+r=�

∣
∣
∣I

(q)
λ,n(x)P

(r)
λ,n(x)

∣
∣
∣

� n�+1+λϕ−�−λ(x).

(4.33)

(c) Similarly to the proof of (a), we have, from (2.2) and (3.5),

∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(�)
∣∣∣∣ �

∑

q+r=�

∣∣∣E
(q+1)
λ,n+1(x)P

(r+1)
λ,n (x)

∣∣∣

� n�+2ϕ−2λ−�−1(x).

(4.34)

Lemma 4.6. Let 0 < λ < 1. Then, for all x ∈ [−1, 1] and r � 2,

(
1 − x2

)
F
(r)
λ,2n+1(x) = (2r − 5)xF(r−1)

λ,2n+1(x)

+
(
(r − 2)2 − (n + 1)2 − n(n + 2λ)

)
F
(r−2)
λ,2n+1(x) + J

(r−2)
λ,n (x)

(4.35)

and, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣∣∣J(r−2)λ,n (x)
∣∣∣ � nrϕ−2λ−r+3(x). (4.36)

Here, Jλ,n(x) is a polynomial of degree of 2n + 1 defined as follows:

Jλ,n(x) = 2λxEλ,n+1(x)P ′
λ,n(x)

+ 2
(
1 − x2

)
E′
λ,n+1(x)P

′
λ,n(x) + Iλ,n(x)Pλ,n(x).

(4.37)

Furthermore, one has

∣∣∣J(r−2)λ,n (1)
∣∣∣ � n2λ+2r−3. (4.38)
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Proof. Similarly to the proof of Lemma 4.1, (4.35) is obtained by r − 2 times differentiation of
the second-order differential relation with respect to Fλ,2n+1(x), that is, (3.17). So it is sufficient
to prove (4.36) and (4.38). From (4.37), we know that

J
(r−2)
λ,n (x) =

(
2λxEλ,n+1(x)P ′

λ,n(x)
)(r−2)

+
(
2
(
1 − x2

)
E′
λ,n+1(x)P

′
λ,n(x)

)(r−2)
+ (Iλ,n(x)Pλ,n(x))(r−2).

(4.39)

By Lemma 4.5 (a) and (b), we have, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣
∣
∣∣
(
2λxEλ,n+1(x)P ′

λ,n(x)
)(r−2)∣∣

∣∣ � nr−1ϕ−r+2−2λ(x),

∣∣∣(Iλ,n(x)Pλ,n(x))(r−2)
∣∣∣ � nr−1+λϕ−r+2−λ(x).

(4.40)

From (4.19) and Lemma 4.5 (c), we have, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1] and r � 4,

∣∣∣∣
(
2
(
1 − x2

)
E′
λ,n+1(x)P

′
λ,n(x)

)(r−2)∣∣∣∣

�
∣∣∣∣
(
1 − x2

)(
E′
λ,n+1(x)P

′
λ,n(x)

)(r−2)∣∣∣∣ +
∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(r−3)∣∣∣∣

+
∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(r−4)∣∣∣∣

� nrϕ−2λ−r+3(x) + nr−1ϕ−2λ−r+2(x) + nr−2ϕ−2λ−r+3(x)

� nrϕ−2λ−r+3(x).

(4.41)

When r = 2, 3, we can similarly obtain that

∣∣∣∣
(
2
(
1 − x2

)
E′
λ,n+1(x)P

′
λ,n(x)

)(r−2)∣∣∣∣ � nrϕ−2λ−r+3(x). (4.42)

Therefore, we have (4.36). On the other hand, from (2.4), (4.6), and (3.2), we know that, for a
nonnegative integer �,

E
(�)
λ,n+1(1) ∼ n2�,

∣∣∣I(�)λ,n(1)
∣∣∣ � n2�+2,

P
(�)
λ,n(1) ∼ Pλ+�,n−�(1) ∼ n2(λ+�)−1.

(4.43)
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Then, similarly to the proof of Lemma 4.5, we obtain that

∣
∣
∣
∣
(
xEλ,n+1(x)P ′

λ,n(x)
)(�)

∣
∣
∣
∣
x=1

� n2�+2λ+1,
∣
∣
∣(Iλ,n(x)Pλ,n(x))(�)

∣
∣
∣
x=1

� n2�+2λ+1,

∣
∣
∣
∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(�)
∣
∣
∣
∣
x=1

� n2�+2λ+3.

(4.44)

Therefore, we have (4.38).

Lemma 4.7. Let 0 < λ < 1. Then, for r � 2, if r is even, one has, for x ∈ [ξ(λ)1,n+1, ξ
(λ)
n+1,n+1],

∣
∣
∣F(r)

λ,2n+1(x)
∣
∣
∣ � nr−2ϕ−r(x)

∣
∣
∣F ′

λ,2n+1(x)
∣
∣
∣ + nrϕ−r(x)|Fλ,2n+1(x)| + nrϕ1−2λ−r(x) (4.45)

and, if r is odd, one has

∣∣∣F(r)
λ,2n+1(x)

∣∣∣ � nr−1ϕ1−r(x)
∣∣∣F ′

λ,2n+1(x)
∣∣∣ + nr−1ϕ−1−r(x)|Fλ,2n+1(x)| + nrϕ1−2λ−r(x). (4.46)

Proof. Using (4.35) and (4.36), we obtain the result similarly to the proof of Lemma 4.2.

Proof of Theorem 2.2. Equation (2.5) comes from Lemma 4.7 and Proposition 3.7. Wewill show
(2.6) and (2.7). From Proposition 3.7, we see

max
x∈[−1,1]

∣∣∣F ′
λ,2n+1(x)

∣∣∣ ∼ n1+2λ. (4.47)

Hence, using Markov-Bernstein inequality for F ′
λ,2n+1 ∈ P2n, we have (2.6). Now, we show

(2.7). By Proposition 3.7 (a), it is true for r = 1. We suppose that, for r � 2,

∣∣∣F(r−1)
λ,2n+1(x)

∣∣∣ ∼ n2r+2λ−3, x ∈
[
−1, ξ(λ)1,n+1

]
∪
[
ξ
(λ)
n+1,n+1, 1

]
. (4.48)

As the proof of Theorem 2.1, we have, for r � 2 and for x ∈ [ξ(λ)n+1,n+1, 1],

F
(r)
λ,2n+1(x)

F
(r−1)
λ,2n+1(x)

� n2. (4.49)

Therefore, we see that by induction with Proposition 3.7, (2.7) holds for every r = 1, 2, 3, . . ..

Corollary 4.8. Let 0 < λ < 1 and r � 2. Then, for x ∈ [−1, ξ(λ)1,n+1] ∪ [ξ(λ)n+1,n+1, 1],

∣∣∣J(r−2)λ,n (x)
∣∣∣ � n2r+2λ−3. (4.50)



16 Journal of Applied Mathematics

Proof. Corollary 4.8 comes from (4.35), (2.7), and (3.8).

Proof of Theorem 2.3. Equation (2.8) comes from (4.15) and (3.24).

Lemma 4.9. For 1 � μ � n + 1 and 1 � ν � 2n + 1,

∣
∣
∣Pλ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣ ∼ nλ−1ϕ−λ

(
ξ
(λ)
μ,n+1

)
, (4.51)

∣
∣
∣Eλ,n+1

(
x
(λ)
ν,n

)∣∣
∣ ∼ n1−λϕ1−λ

(
x
(λ)
ν,n

)
. (4.52)

Proof. Since we know from (3.24) and (3.25) that

nϕ−2λ
(
ξ
(λ)
μ,n+1

)
∼
∣
∣
∣F ′

λ,2n+1

(
ξ
(λ)
μ,n+1

)∣∣
∣ =

∣
∣
∣E′

λ,n+1

(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣

∼ n2−λϕ−λ
(
ξ
(λ)
μ,n+1

)∣∣∣Pλ,n
(
ξ
(λ)
μ,n+1

)∣∣∣,
(4.53)

(4.51) is obviously proved. Similarly, since we have, from (3.4) and (3.25),

nϕ−2λ
(
x
(λ)
ν,n

)
∼
∣∣∣F ′

λ,2n+1

(
x
(λ)
ν,n

)∣∣∣ =
∣∣∣Eλ,n+1

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)∣∣∣

∼ nλϕ−λ−1
(
x
(λ)
ν,n

)∣∣∣Eλ,n+1
(
x
(λ)
ν,n

)∣∣∣,
(4.54)

(4.52) is obtained.

Lemma 4.10. Let 0 < λ < 1 and r � 1. Let r be an odd integer.

(a) For 1 � μ � n + 1,

∣∣∣P (r)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2λ+r−2ϕ−r−1
(
ξ
(λ)
μ,n+1

)
. (4.55)

(b) For 1 � ν � n,

∣∣∣E(r)
λ,n+1

(
x
(λ)
ν,n

)∣∣∣ � nrϕ−r
(
x
(λ)
ν,n

)
. (4.56)

Proof. (a) We know, from (3.3),

∣∣∣P ′
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2λ−1ϕ−2
(
ξ
(λ)
μ,n+1

)
. (4.57)

So (4.55) holds for k = 1. Assume that, for k = 1, 2, . . . , �,

∣∣∣P (2k−1)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2λ+2k−3ϕ−2k
(
ξ
(λ)
μ,n+1

)
. (4.58)
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Then, we have from (3.5), (3.7), and (4.58) that

∣
∣
∣P (2�+1)

λ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣

� ϕ−2
(
ξ
(λ)
μ,n+1

)∣∣
∣P (2�)

λ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣ + n2ϕ−2

(
ξ
(λ)
μ,n+1

)∣∣
∣P (2�−1)

λ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣

� n2λ+2�−1ϕ−2�−2
(
ξ
(λ)
μ,n+1

)
.

(4.59)

Therefore, we have the result using the mathematical induction.
(b) For an odd integer r � 1, we have from (3.6), (4.16), and (4.52)

∣
∣
∣E(r)

λ,n+1

(
x
(λ)
ν,n

)∣∣
∣

� nr−1ϕ1−r(x)
(∣∣∣E′

λ,n+1

(
x
(λ)
ν,n

)∣∣∣ +
∣∣∣Eλ,n+1

(
x
(λ)
ν,n

)∣∣∣
)
+ nrϕ−r

(
x
(λ)
ν,n

)

� nrϕ−r
(
x
(λ)
ν,n

)
.

(4.60)

Lemma 4.11. Let r � 2. If r is even, then

∣∣∣P (r)
λ,n

(
x
(λ)
ν,n

)∣∣∣ � nλ+r−2ϕ−λ−r−1
(
x
(λ)
ν,n

)
. (4.61)

Proof. It is easily proved from (3.4) and (3.7).

Lemma 4.12. Let k be a positive integer. Then, one has, for 1 � ν � 2n + 1,

∣∣∣J(2k)λ,n

(
y
(λ)
ν,2n+1

)∣∣∣ � n2k+1+λϕ−2k−λ
(
y
(λ)
ν,2n+1

)
. (4.62)

Proof. From (4.37), we know that

Jλ,n(x) = 2λxEλ,n+1(x)P ′
λ,n(x)

+ 2
(
1 − x2

)
E′
λ,n+1(x)P

′
λ,n(x) + Iλ,n(x)Pλ,n(x).

(4.63)

From Lemma 4.5 (a) and (b), we know that for x ∈ [y(λ)
1,2n+1, y

(λ)
2n+1,2n+1] (=[ξ

(λ)
1,n+1, ξ

(λ)
n+1,n+1])

∣∣∣∣
(
xEλ,n+1(x)P ′

λ,n(x)
)(2k)

∣∣∣∣ � n2k+1ϕ−2k−2λ(x)

∣∣∣(Iλ,n(x)Pλ,n(x))(2k)
∣∣∣ � n2k+1+λϕ−2k−λ(x).

(4.64)
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On the other hand, we estimate |((1 − x2)E′
λ,n+1(x)P

′
λ,n

(x))(2k)| splitting into three terms as
follows:

∣
∣
∣
∣
((

1 − x2
)
E′
λ,n+1(x)P

′
λ,n(x)

)(2k)
∣
∣
∣
∣

�
∑

q+r=2k

∣
∣
∣
(
1 − x2

)
E
(q+1)
λ,n+1(x)P

(r+1)
λ,n (x)

∣
∣
∣

+O(1)
[∣∣∣
∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2k−1)∣∣∣
∣ +

∣
∣∣
∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2k−2)∣∣∣
∣

]
.

(4.65)

Here, from Lemma 4.5 (c), we have for x ∈ [y(λ)
1,2n+1, y

(λ)
2n+1,2n+1]

∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2k−1)∣∣∣∣ � n2k+1ϕ−2λ−2k(x),

∣∣∣∣
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2k−2)∣∣∣∣ � n2kϕ−2λ−2k+1(x) � n2k+1ϕ−2λ−2k(x).

(4.66)

For the first term, we also split into two terms as follows:

∑

q+r=2k

∣∣∣
(
1 − x2

)
E
(q+1)
λ,n+1(x)P

(r+1)
λ,n (x)

∣∣∣

=
∑

q+r=2k,q: even,r: even

∣∣∣
(
1 − x2

)
E
(q+1)
λ,n+1(x)P

(r+1)
λ,n (x)

∣∣∣

+
∑

q+r=2k,q: odd,r: odd

∣∣∣
(
1 − x2

)
E
(q+1)
λ,n+1(x)P

(r+1)
λ,n (x)

∣∣∣

:= A1(x) +A2(x).

(4.67)

From (2.2) and (4.55), we know that for even q and r

∣∣∣E
(q+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)∣∣∣ � nq+2−λϕ−q−λ
(
ξ
(λ)
μ,n+1

)
,

∣∣∣P (r+1)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2λ+r−1ϕ−r−2
(
ξ
(λ)
μ,n+1

)
.

(4.68)

Also, we know from (4.56) and (3.5) that for even q and r

∣∣∣E
(q+1)
λ,n+1

(
x
(λ)
ν,n

)∣∣∣ � nq+1ϕ−q−1
(
x
(λ)
ν,n

)
,

∣∣∣P (r+1)
λ,n

(
x
(λ)
ν,n

)∣∣∣ � nλ+rϕ−λ−r−1
(
x
(λ)
ν,n

)
.

(4.69)
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Then, we have

∣
∣
∣A1

(
ξ
(λ)
μ,n+1

)∣∣
∣

� ϕ2
(
ξ
(λ)
μ,n+1

) ∑

q+r=2k,q: even,r: even

∣
∣
∣E

(q+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
P
(r+1)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣
∣

� n2k+1+λϕ−2k−λ
(
ξ
(λ)
μ,n+1

)
,

∣
∣
∣A1

(
x
(λ)
ν,n

)∣∣
∣ � ϕ2

(
x
(λ)
ν,n

) ∑

q+r=2k,q: even,r: even

∣
∣
∣E

(q+1)
λ,n+1

(
x
(λ)
ν,n

)
P
(r+1)
λ,n

(
x
(λ)
ν,n

)∣∣
∣

� n2k+1+λϕ−λ−2k
(
x
(λ)
ν,n

)
.

(4.70)

Similarly, for odd q and r, we have, by (2.8) and (3.5),

∣∣∣E
(q+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
P
(r+1)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣ � n2k+1+λϕ−2k−λ−2
(
ξ
(λ)
μ,n+1

)
(4.71)

and, by (2.2) and (4.61),

∣∣∣E
(q+1)
λ,n+1

(
x
(λ)
ν,n

)
P
(r+1)
λ,n

(
x
(λ)
ν,n

)∣∣∣ � n2k+1+λϕ−λ−2k−2
(
x
(λ)
ν,n

)
. (4.72)

Thus, we have

∣∣∣A2

(
ξ
(λ)
μ,n+1

)∣∣∣

� ϕ2
(
ξ
(λ)
μ,n+1

) ∑

q+r=2k,q: odd,r: odd

∣∣∣E
(q+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
P
(r+1)
λ,n

(
ξ
(λ)
μ,n+1

)∣∣∣

� n2k+1+λϕ−2k−λ
(
ξ
(λ)
μ,n+1

)
,

∣∣∣A2

(
x
(λ)
ν,n

)∣∣∣ � ϕ2
(
x
(λ)
ν,n

) ∑

q+r=2k,q: odd,r: odd

∣∣∣E
(q+1)
λ,n+1

(
x
(λ)
ν,n

)
P
(r+1)
λ,n

(
x
(λ)
ν,n

)∣∣∣

� n2k+1+λϕ−λ−2k
(
x
(λ)
ν,n

)
.

(4.73)

Therefore, we have the result.
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Proof of Theorem 2.4. When r = 2, (2.9) holds from (3.27). Let even r > 2, and suppose that
(2.9) holds for r − 2. Since we know by (4.35), (2.5), (4.62), and (4.19)

ϕ2
(
y
(λ)
ν,2n+1

)∣∣
∣F(r)

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣

�
∣∣
∣F(r−1)

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ + n2

∣∣
∣F(r−2)

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ +

∣∣
∣J(r−2)λ,n

(
y
(λ)
ν,2n+1

)∣∣
∣

� n2
∣
∣
∣F(r−2)

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ + nr−1+λϕ−r+2−λ

(
y
(λ)
ν,2n+1

)
,

(4.74)

we obtain, using mathematical induction,

ϕ2
(
y
(λ)
ν,2n+1

)∣∣
∣F(r)

λ,2n+1

(
y
(λ)
ν,2n+1

)∣∣
∣ � nr−1+λϕ−r+2−λ

(
y
(λ)
ν,2n+1

)
. (4.75)

Therefore, (2.9) is proved.

Proof of Theorem 2.5. (a) From (4.3), we know that

ϕ2
(
ξ
(λ)
μ,n+1

)
E
(3)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= −(n + 1)2E′

λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
E′
λ,n+1

(
ξ
(λ)
μ,n+1

))

+O
(
E

′′
λ,n+1

(
ξ
(λ)
μ,n+1

))
+O

(
I ′λ,n

(
ξ
(λ)
μ,n+1

))
.

(4.76)

Therefore, we have, by (2.2), (3.24), and (3.26),

E
(3)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= −(n + 1)2ϕ−2

(
ξ
(λ)
μ,n+1

)
E′
λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
n3
)
. (4.77)

Suppose that, for an integer � � 2,

E
(2�−1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= (−1)�−1(n + 1)2(�−1)ϕ−2(�−1)

(
ξ
(λ)
μ,n+1

)
E′
λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
n2�−1

)
. (4.78)

Then, from (4.3), we obtain

ϕ2
(
ξ
(λ)
μ,n+1

)
E
(2�+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= − (n + 1)2E(2�−1)

λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
E
(2�)
λ,n+1

(
ξ
(λ)
μ,n+1

))

+O
(
E
(2�−1)
λ,n+1

(
ξ
(λ)
μ,n+1

))
+O

(
I
(2�−1)
λ,n

(
ξ
(λ)
μ,n+1

))
.

(4.79)

Therefore, by (2.2), (2.8), and (4.4), we have

E
(2�+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
= −(n + 1)2ϕ−2

(
ξ
(λ)
μ,n+1

)
E
(2�−1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
n2�+1

)

= (−1)�(n + 1)2�ϕ−2�
((
ξ
(λ)
μ,n+1

))
E′
λ,n+1

(
ξ
(λ)
μ,n+1

)
+O

(
n2�+1

)
.

(4.80)
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(b) Similarly to the proof of (a), by (4.51), (3.3), and (3.7), we can obtain

P
(2�)
λ,n

(
ξ
(λ)
μ,n+1

)
= (−1)�n�(n + 2λ)�ϕ−2�

(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)
+O

(
n2λ+2�−3

)
. (4.81)

In addition, we see that, from (4.51),

P
(2�)
λ,n

(
ξ
(λ)
μ,n+1

)
= (−1)�(n + 1)2�ϕ−2�

(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)

+O
(
n2�−1Pλ,n

(
ξ
(λ)
μ,n+1

))
+O

(
n2λ+2�−3

)

= (−1)�(n + 1)2�ϕ−2�
(
ξ
(λ)
μ,n+1

)
Pλ,n

(
ξ
(λ)
μ,n+1

)
+O

(
n2�+λ−2

)
.

(4.82)

Proof of Theorem 2.6. (a) From (3.9), we know that

ϕ2
(
x
(λ)
ν,n

)
E

′′
λ,n+1

(
x
(λ)
ν,n

)
= −(n + 1)2Eλ,n+1

(
x
(λ)
ν,n

)
+O

(
E′
λ,n+1

(
x
(λ)
ν,n

))
+O

(
Iλ,n

(
x
(λ)
ν,n

))
. (4.83)

Therefore, by (4.4) and (4.56), we have

E
′′
λ,n+1

(
x
(λ)
ν,n

)
= −(n + 1)2ϕ−2

(
x
(λ)
ν,n

)
Eλ,n+1

(
x
(λ)
ν,n

)
+O

(
n2
)
. (4.84)

Then, we obtain from (4.3), (2.2), and (4.56) that

ϕ2
(
x
(λ)
ν,n

)
E
(2�)
λ,n+1

(
x
(λ)
ν,n

)
= −(n + 1)2E(2�−2)

λ,n+1

(
x
(λ)
ν,n

)
+O

(
n2�

)
. (4.85)

Therefore, we have the result inductively.
(b) From (3.7), we know that

ϕ2
(
x
(λ)
ν,n

)
P
(3)
λ,n

(
x
(λ)
ν,n

)
= −n(n + 2λ)P ′

λ,n

(
x
(λ)
ν,n

)
+O

(
P ′′
λ,n

(
x
(λ)
ν,n

))
+O

(
P ′
λ,n

(
x
(λ)
ν,n

))
. (4.86)

Therefore, by (3.4) and (4.61), we have

P
(3)
λ,n

(
x
(λ)
ν,n

)
= −n(n + 2λ)ϕ−2

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ

)
. (4.87)

Suppose that, for an integer � � 2,

P
(2�−1)
λ,n

(
x
(λ)
ν,n

)
= (−1)�−1n�−1(n + 2λ)�−1ϕ−2(�−1)

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ+2�−4

)
. (4.88)

Then from (3.5), (3.7), and (4.61)

P
(2�+1)
λ,n

(
x
(λ)
ν,n

)
= (−1)�n�(n + 2λ)�ϕ−2�

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ+2�−2

)
. (4.89)
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Here, we see that for � � 2

{n(n + 2λ)}� = (n + 1)2� +O
(
n2�−1

)
. (4.90)

Hence, we obtain, from (3.4),

P
(2�+1)
λ,n

(
x
(λ)
ν,n

)
= (−1)�(n + 1)2�ϕ−2�

(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)

+O
(
n2�−1P ′

λ,n

(
x
(λ)
ν,n

))
+O

(
nλ+2�−2

)

= (−1)�(n + 1)2�ϕ−2�
(
x
(λ)
ν,n

)
P ′
λ,n

(
x
(λ)
ν,n

)
+O

(
nλ+2�−1

)
.

(4.91)

Lemma 4.13. Let 0 < ε < 1 and |y(λ)
ν,2n+1| � 1 − ε. Then, for a nonnegative integer � � 0,

J
(2�+1)
λ,n

(
y
(λ)
ν,2n+1

)
= 22�+1(−1)�+1(n + 1)2�+2ϕ−2�

(
y
(λ)
ν,2n+1

)
F ′
(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�+2

)
. (4.92)

Proof. Let |y(λ)
ν,2n+1| � 1 − ε. From (4.37) and Lemma 4.5, we see that

J
(2�+1)
λ,n

(
y
(λ)
ν,2n+1

)

= 2
(
1 − x2

)(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1) − 4x(2� + 1)
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�)

− 2�(2� + 1)
(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�−1)

+2λ
(
xEλ,n+1(x)P ′

λ,n(x)
)(2�+1)

+(Iλ,n(x)Pλ,n(x))(2�+1)
∣∣∣∣
x=y(λ)

ν,2n+1

= 2
(
1 − x2

)(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1)
∣∣∣∣
x=y(λ)

ν,2n+1

+O
(
n2�+2+λ

)
.

(4.93)

Here, we let 2�(2� + 1)(E′
λ,n+1(x)P

′
λ,n

(x))(2�−1) = 0 when � = 0. To estimate the first term, we
split it into two terms as follows:

(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1)

=
∑

0�i�2�+1, i: even

+
∑

0�i�2�+1, i: odd

(
2� + 1
i

)
E
(i+1)
λ,n+1(x)P

(2�+2−i)
λ,n (x).

(4.94)
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Then, using |x(λ)
ν,n| � 1 − ε, from (2.13) and (2.15), we obtain

∑

0�i�2�+1,i: odd

(
2� + 1
i

)
E
(i+1)
λ,n+1

(
x
(λ)
ν,n

)
P
(2�+2−i)
λ,n

(
x
(λ)
ν,n

)

= (−1)�+1(n + 1)2�+2ϕ−2�−2
(
x
(λ)
ν,n

)
F ′
λ,2n+1

(
x
(λ)
ν,n

) ∑

0�i�2�+1,i: odd

(
2� + 1
i

)
+O

(
nλ+2�+2

)

= 22�(−1)�+1(n + 1)2�+2ϕ−2�−2
(
x
(λ)
ν,n

)
F ′
λ,2n+1

(
x
(λ)
ν,n

)
+O

(
nλ+2�+2

)

(4.95)

and, from (4.56) and from (4.61),

∑

0�i�2�+1, i: even

(
2� + 1
i

)
E
(i+1)
λ,n+1

(
x
(λ)
ν,n

)
P
(2�+2−i)
λ,n

(
x
(λ)
ν,n

)
= O

(
nλ+2�+1

)
. (4.96)

Thus, we have, for |x(λ)
ν,n| � 1 − ε,

(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1)
∣∣∣∣
x=x(λ)ν,n

= 22�(−1)�+1(n + 1)2�+2ϕ−2�−2
(
x
(λ)
ν,n

)
F ′
λ,2n+1

(
x
(λ)
ν,n

)
+O

(
nλ+2�+2

)
.

(4.97)

Similarly, noting |ξ(λ)μ,n| � 1 − ε, from (2.10) and (2.12)

∑

0�i�2�+1,i: even

(
2� + 1
i

)
E
(i+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
P
(2�+2−i)
λ,n

(
ξ
(λ)
μ,n+1

)

= 22�(−1)�+1(n + 1)2�+2ϕ−2�−2
(
ξ
(λ)
μ,n+1

)
F ′
λ,2n+1

(
ξ
(λ)
μ,n+1

)
+O

(
nλ+2�+2

)
(4.98)

and, from (2.8) and (4.55),

∑

0�i�2�+1, i: odd

(
2� + 1
i

)
E
(i+1)
λ,n+1

(
ξ
(λ)
μ,n+1

)
P
(2�+2−i)
λ,n

(
ξ
(λ)
μ,n+1

)
= O

(
n2λ+2�+1

)
. (4.99)

Then, we have, for |ξ(λ)μ,n+1| � 1 − ε,

(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1)
∣∣∣∣
x=ξ(λ)μ,n+1

= 22�(−1)�+1(n + 1)2�+2ϕ−2�−2
(
ξ
(λ)
μ,n+1

)
F ′
λ,2n+1

(
ξ
(λ)
μ,n+1

)
+O

(
nλ+2�+2

)
.

(4.100)
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Therefore, we have, for |y(λ)
ν,2n+1| � 1 − ε,

(
E′
λ,n+1(x)P

′
λ,n(x)

)(2�+1)
∣
∣
∣
∣
x=y(λ)

ν,2n+1

= 22�(−1)�+1(n + 1)2�+2ϕ−2�−2
(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�+2

)
.

(4.101)

Thus, we have, for |y(λ)
ν,2n+1| � 1 − ε,

J
(2�+1)
λ,n

(
y
(λ)
ν,2n+1

)
= 22�+1(−1)�+1(n + 1)2�+2ϕ−2�

(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�+2

)
.

(4.102)

Proof of Theorem 2.7. From (4.35), (3.25), (3.27), and Lemma 4.13, we have

ϕ2
(
y
(λ)
ν,2n+1

)
F
(3)
λ,2n+1

(
y
(λ)
ν,2n+1

)

= −2(n + 1)2F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+ J ′λ,n

(
y
(λ)
ν,2n+1

)

+O
(
nF ′

λ,2n+1

(
y
(λ)
ν,2n+1

))
+O

(
F ′′
λ,2n+1

(
y
(λ)
ν,2n+1

))

= −3(n + 1)2F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2

)
.

(4.103)

Suppose that

F
(2�−1)
λ,2n+1

(
y
(λ)
ν,2n+1

)
= c�−1(−1)�−1(n + 1)2�−2ϕ−2�+2

(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�−2

)
.

(4.104)

Then, we obtain from (4.35)

ϕ2
(
y
(λ)
ν,2n+1

)
F
(2�+1)
λ,2n+1

(
y
(λ)
ν,2n+1

)

=
(
2c�−1 + 22�−1

)
(−1)�(n + 1)2�ϕ−2�+2

(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�

)

= c�(−1)�(n + 1)2�ϕ−2�+2
(
y
(λ)
ν,2n+1

)
F ′
λ,2n+1

(
y
(λ)
ν,2n+1

)
+O

(
nλ+2�

)
.

(4.105)

Therefore, (2.16) is proved.
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[9] G. Szegö,Orthogonal Polynomials, vol. 23 of Colloquium Publications (Amer Mathematical Soc), American
Mathematical Society, Providence, RI, USA, 1975.

[10] G. Monegato, “Stieltjes polynomials and related quadrature rules,” SIAM Review, vol. 24, no. 2, pp.
137–158, 1982.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


