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We introduce a new class of meromorphic functions associated with spirallike functions. Such
results as subordination property, integral representation, convolution property, and coefficient
inequalities are proved.

1. Introduction

Let Σ denote the class of functions f of the form

f(z) =
1
z
+

∞∑

k=0

akz
k, (1.1)

which are analytic in the punctured open unit disk

U
∗ := {z : z ∈ C, 0 < |z| < 1} =: U \ {0}. (1.2)

Let P denote the class of functions p given by

p(z) = 1 +
∞∑

k=1

pkz
k (z ∈ U), (1.3)

which are analytic in U and satisfy the condition

Re
(
p(z)

)
> 0 (z ∈ U). (1.4)
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Let f, g ∈ Σ, where f is given by (1.1) and g is defined by

g(z) =
1
z
+

∞∑

k=0

bkz
k, (1.5)

then the Hadamard product (or convolution) f ∗ g is defined by

(
f ∗ g)(z) := 1

z
+

∞∑

k=0

akbkz
k =:

(
g ∗ f)(z). (1.6)

For two functions f and g, analytic in U, we say that the function f is subordinate to g
in U and write

f(z) ≺ g(z) (z ∈ U), (1.7)

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0, |ω(z)| < 1 (z ∈ U), (1.8)

such that

f(z) = g(ω(z)) (z ∈ U). (1.9)

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0), f(U) ⊂ g(U). (1.10)

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0), f(U) ⊂ g(U). (1.11)

A function f ∈ Σ is said to be in the class MS∗(β) of meromorphic starlike functions of
order β if it satisfies the inequality

Re
(
zf ′(z)
f(z)

)
< −β (

z ∈ U; 0 � β < 1
)
. (1.12)

For the real number β (0 < β < 1), we know that

∣∣∣∣
f(z)
zf ′(z)

+
1
2β

∣∣∣∣ <
1
2β

⇐⇒ Re
(
zf ′(z)
f(z)

)
< −β. (1.13)



Journal of Applied Mathematics 3

If the complex number α satisfies the condition

∣∣∣∣α − 1
2

∣∣∣∣ <
1
2
, (1.14)

it can be easily verified that

∣∣∣∣
f(z)
zf ′(z)

+
1
2α

∣∣∣∣ <
1

2|α| ⇐⇒ Re
(
− 1
α

zf ′(z)
f(z)

)
> 1. (1.15)

We now introduce and investigate the following class of meromorphic functions.

Definition 1.1. A function f ∈ Σ is said to be in the class MSα if it satisfies the inequality

Re
(
− 1
α

zf ′(z)
f(z)

)
> 1

(
z ∈ U;

∣∣∣∣α − 1
2

∣∣∣∣ <
1
2

)
. (1.16)

Remark 1.2. For 0 < α < 1, the class MSα is the familiar class of meromorphic starlike
functions of order α.

Remark 1.3. If α = |α|eiψ (−π/2 < ψ < π/2), then the condition (1.16) is equivalent to

Re
(
e−iψ

zf ′(z)
f(z)

)
< −|α| (z ∈ U), (1.17)

which implies that f belongs to the class of meromorphic spirallike functions. Thus, the class
of meromorphic spirallike functions is a special case of the class MSα.

For some recent investigations on spirallike functions and related functions, see,
for example, the earlier works [1–9] and the references cited in each of these earlier
investigations.

Remark 1.4. The function

f(z) = z−1(1 − z)2α[Re(1/α)−1]
(
z ∈ U

∗;
∣∣∣∣α − 1

2

∣∣∣∣ <
1
2

)
(1.18)

belongs to the class MSα.
It is clear that

Re
(
1
α

)
> 1

(∣∣∣∣α − 1
2

∣∣∣∣ <
1
2

)
. (1.19)
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Then, for the function f given by (1.18), we know that

Re
(
− 1
α

zf ′(z)
f(z)

)
= Re

(
1
α
+ 2

[
Re

(
1
α

)
− 1

]
z

1 − z
)

> Re
(
1
α

)
− Re

(
1
α

)
+ 1 = 1,

(1.20)

which implies that f ∈ MSα.
In this paper, we aim at deriving the subordination property, integral representation,

convolution property, and coefficient inequalities of the function class MSα.

2. Preliminary Results

In order to derive our main results, we need the following lemmas.

Lemma 2.1. Let λ be a complex number. Suppose also that the sequence {Ak}∞k=0 is defined by

A0 = 2λ, Ak+1 =
2λ
k + 2

(
1 +

k∑

l=0

Al

)
(k ∈ N0 := N ∪ {0}). (2.1)

Then

Ak =
1

(k + 1)!

k∏

j=0

(
2λ + j

)
(k ∈ N0). (2.2)

Proof. From (2.1), we know that

(k + 2)Ak+1 = 2λ

(
1 +

k∑

l=0

Al

)
,

(k + 1)Ak = 2λ

(
1 +

k−1∑

l=0

Al

)
.

(2.3)

By virtue of (2.3), we find that

Ak+1

Ak
=
k + 1 + 2λ
k + 2

(k ∈ N0). (2.4)

Thus, for k � 1, we deduce from (2.4) that

Ak =
Ak

Ak−1
· · · A3

A2
· A2

A1
· A1

A0
·A0 =

1
(k + 1)!

k∏

j=0

(
2λ + j

)
. (2.5)

By virtue of (2.1) and (2.5), we get the desired assertion (2.2) of Lemma 2.1.
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Lemma 2.2 (Jack’s Lemma [10]). Let φ be a nonconstant regular function in U. If |φ| attains its
maximum value on the circle |z| = r < 1 at z0, then

z0φ
′(z0) = tφ(z0), (2.6)

for some real number t (t � 1).

3. Main Results

We begin by deriving the following subordination property of functions belonging to the
class MSα.

Theorem 3.1. A function f ∈ MSα if and only if

−zf
′(z)

f(z)
≺ 1 + 2α

[
Re

(
1
α

)
− 1

]
z

1 − z
(
z ∈ U

∗;
∣∣∣∣α − 1

2

∣∣∣∣ <
1
2

)
. (3.1)

Proof. Suppose that

h(z) :=
−(1/α)(zf ′(z)/f(z)

) − 1 − i Im(1/α)
Re(1/α) − 1

(
z ∈ U; f ∈ MSα

)
. (3.2)

We easily know that h ∈ P, which implies that

−(1/α)(zf ′(z)/f(z)
) − 1 − i Im(1/α)

Re(1/α) − 1
=

1 +ω(z)
1 −ω(z)

(
z ∈ U; f ∈ MSα

)
, (3.3)

where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U).
It follows from (3.3) that

−zf
′(z)

f(z)
= 1 + 2α

[
Re

(
1
α

)
− 1

]
ω(z)

1 −ω(z) (z ∈ U), (3.4)

which is equivalent to the subordination relationship (3.1).
On the other hand, the above deductive process can be converse. The proof of

Theorem 3.1 is thus completed.

Theorem 3.2. Let f ∈ MSα. Then

f(z) =
1
z
· exp

(
−2α

[
Re

(
1
α

)
− 1

] ∫z

0

ω(t)
t(1 −ω(t))dt

)
(z ∈ U

∗), (3.5)

where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U).
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Proof. For f ∈ MSα, by Theorem 3.1, we know that (3.1) holds true. It follows that

−zf
′(z)

f(z)
= 1 + 2α

[
Re

(
1
α

)
− 1

]
ω(z)

1 −ω(z) (z ∈ U), (3.6)

where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U).
We now find from (3.6) that

f ′(z)
f(z)

+
1
z
= −2α

[
Re

(
1
α

)
− 1

]
ω(z)

z(1 −ω(z)) (z ∈ U
∗), (3.7)

which, upon integration, yields

log
(
zf(z)

)
= −2α

[
Re

(
1
α

)
− 1

] ∫z

0

ω(t)
t(1 −ω(t))dt (z ∈ U). (3.8)

The assertion (3.5) of Theorem 3.2 can be easily derived from (3.8).

Theorem 3.3. Let f ∈ MSα. Then

f(z) ∗
(
1 − eiθ)z + 2α[Re(1/α) − 1]eiθ(1 − z)

z(1 − z)2 /= 0 (z ∈ U
∗; 0 < θ < 2π). (3.9)

Proof. Assume that f ∈ MSα. By Theorem 3.1, we know that (3.1) holds, which implies that

−zf
′(z)

f(z) /= 1 + 2α
[
Re

(
1
α

)
− 1

]
eiθ

1 − eiθ (z ∈ U
∗; 0 < θ < 2π). (3.10)

It is easy to see that the condition (3.10) can be written as follows:

(
1 − eiθ

)
zf ′(z) +

(
1 − eiθ + 2α

[
Re

(
1
α

)
− 1

]
eiθ

)
f(z)/= 0. (3.11)

We note that

f(z) = f(z) ∗
(
1
z
+ 1 +

z

1 − z
)

= f(z) ∗ 1
z(1 − z) ,

−zf ′(z) = f(z) ∗
(

1
z
− z

(1 − z)2
)

= f(z) ∗ 1 − 2z

z(1 − z)2
.

(3.12)

Thus, by substituting (3.12) into (3.11), we get the desired assertion (3.9) of Theorem 3.3.
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Theorem 3.4. Let λ = [Re(1/α) − 1]|α|. If f ∈ MSα, then

|ak| � 1
(k + 1)!

k∏

j=0

(
2λ + j

)
(k ∈ N0). (3.13)

The inequality (3.13) is sharp for the function given by

f(z) =
1

z(1 − z)2−2α
(0 < α < 1). (3.14)

Proof. Suppose that

h(z) :=
−(1/α)(zf ′(z)/f(z)

) − 1 − i Im(1/α)
Re(1/α) − 1

. (3.15)

We easily know that h ∈ P.
If we put

h(z) = 1 + h1z + h2z2 + · · · , (3.16)

it is known that

|hk| � 2 (k ∈ N). (3.17)

From (3.15), we have

− 1
α

zf ′(z)
f(z)

− 1 − i Im
(
1
α

)
=
[
Re

(
1
α

)
− 1

]
h(z). (3.18)

We now set

A := 1 + i Im
(
1
α

)
,

B := Re
(
1
α

)
− 1.

(3.19)

It follows from (3.18) that

−zf ′(z) = [αA + αBh(z)]f(z). (3.20)
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Combining (1.1), (3.16), and (3.20), we obtain

− z
(
− 1
z2

+ a1 + 2a2z + · · · + kakzk−1 + · · ·
)

=
(
1 + αBh1z + · · · + αBhkzk + · · ·

)(1
z
+ a0 + a1z + · · · + akzk + · · ·

)
.

(3.21)

In view of (3.21), we get

a0 + αBh1 = 0, (3.22)

−kak = ak + αB(ak−1h1 + ak−2h2 + · · · + a0hk + hk+1) (k ∈ N). (3.23)

From (3.17) and (3.22), we obtain

|a0| � 2|α|B = 2λ. (3.24)

Moreover, we deduce from (3.17) and (3.23) that

|ak| � 2|α|B
k + 1

(
1 +

k−1∑

l=0

|al|
)

=
2λ
k + 1

(
1 +

k−1∑

l=0

|al|
)

(k ∈ N). (3.25)

Next, we define the sequence {Ak}∞k=0 as follows:

A0 = 2λ, Ak+1 =
2λ
k + 2

(
1 +

k∑

l=0

Al

)
(k ∈ N0). (3.26)

In order to prove that

|ak| � Ak, (3.27)

we make use of the principle of mathematical induction. By noting that

|a0| � 2λ = A0. (3.28)

Therefore, assuming that

|al| � Al (l = 0, 1, 2, . . . , k; k ∈ N0). (3.29)

Combining (3.25) and (3.26), we get

|ak+1| � 2λ
k + 2

(
1 +

k∑

l=0

|al|
)

� 2λ
k + 2

(
1 +

k∑

l=0

Al

)
= Ak+1. (3.30)
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Hence, by the principle of mathematical induction, we have

|ak|� Ak (k ∈ N0) (3.31)

as desired.
By means of Lemma 2.1 and (3.26), we know that

Ak =
1

(k + 1)!

k∏

j=0

(
2λ + j

)
(k ∈ N0). (3.32)

Combining (3.31) and (3.32), we readily get the coefficient estimates asserted by Theorem 3.4.
For the sharpness, we consider the function f given by (3.14). A simple calculation

shows that

Re
(
−zf

′(z)
f(z)

)
= Re

(
1 + (2α − 3)z

1 − z
)

� 2 − α > α. (3.33)

Thus, the function f belongs to the class MSα. Since 0 < α < 1, we have

λ = 1 − α. (3.34)

Then f becomes

f(z) = z−1(1 − z)−2λ = z−1
( ∞∑

n=0

(−2λ
n

)
(−z)n

)
=

1
z
+

∞∑

n=0

2λ(2λ + 1) · · · (2λ + n)
(n + 1)!

zn. (3.35)

This completes the proof of Theorem 3.4.

Theorem 3.5. If f ∈ Σ satisfies the inequality

∞∑

k=0

(k + |k + 2α|)|ak| � 1 − |2α − 1|
(∣∣∣∣α − 1

2

∣∣∣∣ <
1
2

)
, (3.36)

then f ∈ MSα.

Proof. To prove f ∈ MSα, it suffices to show that

∣∣∣∣
f(z)
zf ′(z)

+
1
2α

∣∣∣∣ <
1

2|α| (z ∈ U), (3.37)

which is equivalent to

∣∣∣∣
zf ′(z) + 2αf(z)

zf ′(z)

∣∣∣∣ < 1 (z ∈ U
∗). (3.38)



10 Journal of Applied Mathematics

From (3.36), we know that

1 −
∞∑

k=0

k|ak| � |2α − 1| +
∞∑

k=0

|k + 2α||ak| > 0. (3.39)

Now, by the maximum modulus principle, we deduce from (1.1) and (3.39) that

∣∣∣∣
zf ′(z) + 2αf(z)

zf ′(z)

∣∣∣∣ =

∣∣∣∣∣
(2α − 1) +

∑∞
k=0(k + 2α)akzk+1

−1 +∑∞
k=0 kakz

k+1

∣∣∣∣∣

� |2α − 1| +∑∞
k=0|k + 2α||ak||z|k+1

1 −∑∞
k=0 k|ak||z|k+1

<
|2α − 1| +∑∞

k=0|k + 2α||ak|
1 −∑∞

k=0 k|ak|
� 1,

(3.40)

which implies that the assertion of Theorem 3.5 holds.

Theorem 3.6. If f ∈ Σ satisfies the condition

∣∣∣∣1 +
zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

∣∣∣∣ <
1 − α
2α

(
1
2
< α < 1

)
, (3.41)

then f ∈ MSα.

Proof. Define the function ϕ by

ϕ(z) :=

(
zf ′(z)/f(z)

)
+ 1

(
zf ′(z)/f(z)

)
+ 2α − 1

(z ∈ U). (3.42)

Then we see that ϕ is analytic in U with ϕ(0) = 0.
It follows from (3.42) that

−zf
′(z)

f(z)
=

1 + (1 − 2α)ϕ(z)
1 − ϕ(z) . (3.43)

By differentiating both sides of (3.43) logarithmically, we obtain

1 +
zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

=
2(1 − α)zϕ′(z)

[
1 + (1 − 2α)ϕ(z)

](
1 − ϕ(z)) . (3.44)
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From (3.41) and (3.44), we find that

∣∣∣∣1 +
zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

∣∣∣∣ =

∣∣∣∣∣
2(1 − α)zϕ′(z)

[
1 + (1 − 2α)ϕ(z)

](
1 − ϕ(z))

∣∣∣∣∣ <
1 − α
2α

. (3.45)

Next, we claim that |ϕ(z)| < 1. Indeed, if not, there exists a point z0 ∈ U such that

max
|z|�|z0|

∣∣ϕ(z)
∣∣ =

∣∣ϕ(z0)
∣∣ = 1. (3.46)

By Lemma 2.2, we have

ϕ(z0) = eiθ, z0ϕ
′(z0) = teiθ (t � 1). (3.47)

Moreover, for z = z0, we find from (3.44) and (3.47) that

∣∣∣∣1 +
z0f

′′(z0)
f ′(z0)

− z0f
′(z0)

f(z0)

∣∣∣∣

=

∣∣∣∣∣
2(1 − α)teiθ

(
1 + (1 − 2α)eiθ

)(
1 − eiθ)

∣∣∣∣∣

=
2(1 − α)t

√
1 + 2(1 − 2α) cos θ + (1 − 2α)2 ·

√
2 − 2 cos θ

� 1 − α
2α

(
1
2
< α < 1

)
.

(3.48)

But (3.48) contradicts to (3.45). Therefore, we conclude that |ϕ(z)| < 1, that is

∣∣∣∣∣

(
zf ′(z)/f(z)

)
+ 1

(
zf ′(z)/f(z)

)
+ 2α − 1

∣∣∣∣∣ < 1, (3.49)

which shows that f ∈ MSα.
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