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This work addresses the asymptotic stability for a class of impulsive cellular neural networks
with time-varying delays and reaction-diffusion. By using the impulsive integral inequality of
Gronwall-Bellman type and Hardy-Sobolev inequality as well as piecewise continuous Lyapunov
functions, we summarize some new and concise sufficient conditions ensuring the global
exponential asymptotic stability of the equilibrium point. The provided stability criteria are
applicable to Dirichlet boundary condition and showed to be dependent on all of the reaction-
diffusion coefficients, the dimension of the space, the delay, and the boundary of the spatial
variables. Two examples are finally illustrated to demonstrate the effectiveness of our obtained
results.

1. Introduction

Cellular neural networks (CNNs), proposed by Chua and Yang in 1988 [1, 2], have been the
focus of a number of investigations due to their potential applications in various fields such
as optimization, linear and nonlinear programming, associative memory, pattern recognition,
and computer vision [3–7]. Moreover, on the ground that time delays are unavoidably
encountered for the finite switching speed of neurons and amplifiers in implementation of
neural networks, it was followed by the introduction of the delayed cellular neural networks
(DCNNs) so as to solve some dynamic image processing and pattern recognition problems.
Such applications concerning CNNs andDCNNs depend heavily on the dynamical behaviors
such as stability, convergence, and oscillatory [8, 9]. Particularly, stability analysis has been
a major concern in the designs and applications of the CNNs and DCNNs. The stability of
CNNs and DCNNs is a subject of current interest, and considerable theoretical efforts have
been put into this topic with many good results reported (see, e.g., [10–13]).
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With reference to neural networks, however, it is noteworthy that the state of electronic
networks is actually subject to instantaneous perturbations more often than not. On this
account, the networks experience abrupt change at certain instants which may be caused by a
switching phenomenon, frequency change, or other sudden noise; that is, the networks often
exhibit impulsive effects [14, 15]. For instance, according to Arbib [16] andHaykin [17], when
a stimulus from the body or the external environment is received by receptors, the electrical
impulses will be conveyed to the neural net and impulsive effects arise naturally in the net.
As a consequence, in the past few years, scientists have become increasingly interested in the
influence that impulses may have on the CNNs and DCNNs and a large number of stability
criteria have been derived (see, e.g. [18–22]).

In reality, besides impulsive effects, diffusion effects are also nonignorable since
diffusion is unavoidable when electrons are moving in asymmetric electromagnetic fields.
As such, the model of neural networks with both impulses and reaction-diffusion should
be more accurate to describe the evolutionary process of the systems in question, and it is
necessary to consider the effects of both diffusion and impulses on the stability of CNNs and
DCNNs.

In the past years, there have been a few theoretical contributions to the stability
of CNNs and DCNNs with impulses and diffusion. For instance, Qiu [23] formulated a
mathematical model of impulsive neural networks with time-varying delays and reaction-
diffusion terms described by impulsive partial differential equations and studied, via delay
impulsive differential inequality, the problem of global exponential stability with some
stability criteria presented. Remarkably, all of the obtained stability criteria in [23] are
independent of the diffusion. In 2008, Li and song [24] investigated a class of impulsive
Cohen-Grossberg networks with time-varying delays and reaction-diffusion terms. By
establishing a delay inequality with impulsive initial conditions and M-matrix theory, some
sufficient conditions ensuring global exponential stability of the equilibrium points are given.
Analogous to [23], the proposed stability criteria in [24] are also independent of the diffusion.
More recently Pan et al. [25] investigated a class of impulsive Cohen-Grossberg neural
networks with time-varying delays and reaction-diffusion in 2010. By the aid of the delay
impulsive differential inequality quoted in [23], several sufficient conditions are exploited
ensuring global exponential stability of the equilibrium points. Especially, different from
[23, 24], the estimate of the exponential convergence rate depends on reaction-diffusion in
[25].

In this paper, unlike the methods of impulsive differential inequalities and Poincaré
inequality used in [25], we attempt to adopt the new techniques of the impulsive integral
inequality of Gronwall-Bellman type and Hardy-Sobolev inequality to investigate the
problem of global exponential asymptotic stability for impulsive cellular neural networks
with time-varying delays and reaction-diffusion terms. Different from the existing research,
we find, besides the reaction-diffusion coefficients, the dimension of the space and the
boundary of the spatial variables do influence the stability.

The rest of the paper is organized as follows. In Section 2, the model of impulsive
delayed cellular neural networks with reaction-diffusion terms and Dirichlet boundary
condition is outlined, and some facts and lemmas are introduced for later reference. By the
new agency of the impulsive integral inequality of Gronwall-Bellman type as well as Hardy-
Sobolev inequality, we discuss the global exponential asymptotic stability and develop some
new criteria in Section 3. To conclude, two illustrative examples are given to verify the
effectiveness of our results in Section 4.
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2. Preliminaries

Let Rn denote the n-dimensional Euclidean space, and Ω ⊂ Rm is a bounded open set
containing the origin. The boundary of Ω is smooth and mes Ω > 0. Let R+ = [0,∞) and
t0 ∈ R+.

We consider the following impulsive neural networks with time delays and reaction-
diffusion terms:

∂ui(t, x)
∂t

=
m∑

s=1

∂

∂xs

(
Dis

∂ui(t, x)
∂xs

)
− aiui(t, x) +

n∑

j=1

bijfj
(
uj(t, x)

)
+

n∑

j=1

cijfj
(
uj

(
t − τj(t), x

))

t ≥ t0, t /= tk, x ∈ Ω, i = 1, 2, . . . , n, k = 1, 2, . . . ,
(2.1)

ui(tk + 0, x) = ui(tk, x) + Pik(ui(tk, x)) x ∈ Ω, k = 1, 2, . . . , i = 1, 2, . . . , n, (2.2)

where n corresponds to the numbers of units in a neural network; x = (x1, . . . , xm)
T ∈ Ω,

ui(t, x), denotes the state of the ith neuron at time t and in space x; smooth functions Dis =
Dis(t, x, u) ≥ 0 represent transmission diffusion operators of the ith unit; activation functions
fj(uj(t, x)) stand for the output of the jth unit at time t and in space x; bij , cij , ai are constants:
bij indicates the strength of the jth unit on the ith unit at time t and in space x, cij denotes the
strength of the jth unit on the ith unit at time t − τj(t) and in space x, where τj(t) corresponds
to the transmission delay along the axon of the jth unit and satisfies 0 ≤ τj(t) ≤ τ (τ = const)

as well as
•
τj(t) < 1 − 1/h (h > 0), and ai > 0 represents the rate with which the ith unit

will reset its potential to the resting state in isolation when disconnected from the network
and external inputs at time t and in space x. The fixed moments tk (k = 1, 2, . . .) are called
impulsive moments satisfying 0 ≤ t0 < t1 < t2 < · · · and limk→∞tk = ∞; ui(tk + 0, x) and
ui(tk − 0, x) represent the right-hand and left-hand limit of ui(t, x) at time tk and in space x,
respectively. Pik(ui(tk, x)) stands for the abrupt change of ui(t, x) at impulsive moment tk and
in space x.

Denote by u(t, x) = u(t, x; t0, ϕ), u ∈ Rn the solution of system (2.1)-(2.2), satisfying the
initial condition

u
(
s, x; t0, ϕ

)
= ϕ(s, x), t0 − τ ≤ s ≤ t0, x ∈ Ω (2.3)

and Dirichlet boundary condition

u
(
t, x; t0, ϕ

)
= 0, t ≥ t0, x ∈ ∂Ω, (2.4)

where the vector-valued function ϕ(s, x) = (ϕ1(s, x), . . . , ϕn(s, x))
T is such that

∫
Ω

∑n
i=1

ϕ2
i (s, x)dx is bounded on [t0 − τ, t0] and ϕi(s, x) (i = 1, 2, . . . , n) is first-order continuous

differentiable as to s on [t0 − τ, t0].
The solution u(t, x) = u(t, x; t0, ϕ) = (u1(t, x; t0, ϕ), . . . , un(t, x; t0, ϕ))

T of problems
((2.5)–(2.8)) is, for the time variable t, a piecewise continuous function with the first kind
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discontinuity at the points tk (k = 1, 2, . . .), where it is continuous from the left, that is the
following relations are true:

ui(tk − 0, x) = ui(tk, x), ui(tk + 0, x) = ui(tk, x) + Pik(ui(tk, x)). (2.5)

Throughout this paper, the norm of u(t, x; t0, ϕ) is governed by

∥∥u
(
t, x; t0, ϕ

)∥∥
Ω =

⎛

⎝
∑n

i=1

∫

Ω

u2
i

(
t, x; t0, ϕ

)
dx

⎞

⎠
1/2

. (2.6)

Before moving on, we introduce two hypotheses as follows.

(H1) Activation function fj(uj(t, x)) satisfies fi(0) = 0, and there exists constant li > 0
such that |fi(y1) − fi(y2)| ≤ li|y1 − y2| holds for all y1, y2 ∈ R and i = 1, 2, . . . , n.

(H2) The functions Pik(ui(tk, x)) are continuous on R and Pik(0) = 0, i = 1, 2, . . . , n, k =
1, 2, . . . .

According to (H1) and (H2), it is easy to see that problems ((2.5)–(2.8)) admits an
equilibrium point u = 0.

Definition 2.1. The equilibrium point u = 0 of problems ((2.5)–(2.8)) is said to be globally
exponentially stable if there exist constants κ > 0 and M ≥ 1 such that

∥∥u
(
t, x; t0, ϕ

)∥∥
Ω ≤ M

∥∥ϕ
∥∥
Ωe

−κ(t−t0), t ≥ t0, (2.7)

where ‖ϕ‖2Ω = supt0−τ≤s≤t0
∑n

i=1

∫
Ω ϕ2

i (s, x)dx.

Lemma 2.2 (Gronwall-Bellman-type impulsive integral inequality [26]). Assume that
(A1) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · , with limk→∞tk = ∞,
(A2) q ∈ PC1[R+, R] and q(t) is left-continuous at tk, k = 1, 2, . . .,
(A3) p ∈ C[R+, R+] and for k = 1, 2, . . .

q(t) ≤ c +
∫ t

t0

p(s)q(s)ds +
∑

t0<tk<t

ηkq(tk), t ≥ t0, (2.8)

where ηk ≥ 0 and c = const. Then,

q(t) ≤ c
∏

t0<tk<t

(
1 + ηk

)
exp

(∫ t

t0

p(s)ds

)
, t ≥ t0. (2.9)
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Lemma 2.3 (Hardy-Sobolev inequality [27]). Let Ω ⊂ Rm(m ≥ 3) be a bounded open set
containing the origin and u ∈ H1(Ω) = {ω | ω ∈ L2(Ω), Diω = ∂ω/∂xi ∈ L2(Ω), 1 ≤ i ≤ m}.
Then there exists a positive constant Cm = Cm(Ω) such that

(m − 2)2

4

∫

Ω

u2

|x|2
dx ≤

∫

Ω
|∇u|2dx + Cm

∫

∂Ω
u2dσ. (2.10)

Lemma 2.4. If a > 0 and b > 0, then ab ≤ (1/ε)a2 + εb2 holds for any ε > 0.

3. Main Results

Theorem 3.1. Provided that

(1) for x = (x1, . . . , xm)
T ∈ Ω(m ≥ 3), there exists a constant β such that |x|2 = ∑m

s=1x
2
s < β.

In addition, there exists a constant D > 0 such that Dis = Dis(t, x, u) ≥ D > 0. Denote
D(m − 2)2/2β = χ,

(2) Pik(ui(tk, x)) = −θikui(tk, x), 0 ≤ θik ≤ 2,

(3) there exists a constant γ satisfying γ + λ + hρeγτ > 0 as well as λ + hρeγτ < 0, where
λ = maxi=1,...,n(−χ − 2ai +

∑n
j=1(b

2
ij + c2ij)) + ρ, ρ = nmaxi=1,...,n(li

2),

then, the equilibrium point u = 0 of problems ((2.5)–(2.8)) is globally exponentially stable with
convergence rate – (λ + hρeγτ)/2.

Proof. Multiplying both sides of (2.1) by ui(t, x) and integrating with respect to spatial
variable x on Ω, we get

d
(∫

Ω ui
2(t, x)dx

)

dt
= 2

m∑

s=1

∫

Ω
ui(t, x)

∂

∂xs

(
Dis

∂ui(t, x)
∂xs

)
dx − 2ai

∫

Ω
u2
i (t, x)dx

+ 2
n∑

j=1

bij

∫

Ω
ui(t, x)fj

(
uj(t, x)

)
dx

+ 2
n∑

j=1

cij

∫

Ω
ui(t, x)fj

(
uj

(
t − τj(t), x

))
dx t ≥ t0, t /= tk, k = 1, 2, . . . .

(3.1)

Regarding the right-hand part of (3.1), the first term becomes by using Green formula,
Dirichlet boundary condition, Lemma 2.3, and condition 1 of Theorem 3.1

2
m∑

s=1

∫

Ω
ui(t, x)

∂

∂xs

(
Dis

∂ui(t, x)
∂xs

)
dx = −2

m∑

s=1

∫

Ω
Dis

(
∂ui(t, x)

∂xs

)2

dx

≤ −D(m − 2)2

2

∫

Ω

u2
i (t, x)

|x|2
dx ≤ −D(m − 2)2

2β

∫

Ω
u2
i (t, x)dx � −χ

∫

Ω
u2
i (t, x)dx.

(3.2)
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Moreover, we derive from (H1) that

2
n∑

j=1

bij

∫

Ω
ui(t, x)fj

(
uj(t, x)

)
dx ≤ 2

n∑

j=1

∣∣bij
∣∣
∫

Ω
|ui(t, x)|

∣∣fj
(
uj(t, x)

)∣∣dx

≤ 2
n∑

j=1

∫

Ω
lj
∣∣bij
∣∣|ui(t, x)|

∣∣uj(t, x)
∣∣dx

≤
n∑

j=1

∫

Ω

(
b2iju

2
i (t, x) + l2j u

2
i (t, x)

)
dx,

2
n∑

j=1

cij

∫

Ω
ui(t, x)fj

(
uj

(
t − τj(t), x

))
dx ≤ 2

n∑

j=1

∣∣cij
∣∣
∫

Ω
|ui(t, x)|

∣∣fj
(
uj

(
t − τj(t), x

))∣∣dx

≤ 2
n∑

j=1

∫

Ω
lj
∣∣cij
∣∣|ui(t, x)|

∣∣uj

(
t − τj(t), x

)∣∣dx

≤
n∑

j=1

∫

Ω

(
c2iju

2
i (t, x) + l2j u

2
i

(
t − τj(t), x

))
dx.

(3.3)

Consequently, substituting ((2.10)–(3.14)) into (3.1) produces

d
(∫

Ω u2
i (t, x)dx

)

dt
≤ −χ

∫

Ω
u2
i (t, x)dx − 2ai

∫

Ω
u2
i (t, x)dx

+
n∑

j=1

∫

Ω

(
b2iju

2
i (t, x) + l2j u

2
i (t, x)

)
dx

+
n∑

j=1

∫

Ω

(
c2iju

2
i (t, x)+l

2
j u

2
i

(
t−τj(t), x

))
dx

(3.4)

for t ≥ t0, t /= tk, k = 1, 2, . . . .
We define a Lyapunov function Vi(t) as Vi(t) =

∫
Ω u2

i (t, x)dx. It is easy to find that
Vi(t) is a piecewise continuous function with points of discontinuity of the first kind tk (k =
1, 2, . . .), where it is continuous from the left, that is, Vi(tk − 0) = Vi(tk) (k = 1, 2, . . .). In
addition, due to Vi(t0 + 0) ≤ Vi(t0) and the following estimate derived from condition 2 of
Theorem 3.1

u2
i (tk + 0, x) = (−θikui(tk, x) + ui(tk, x))

2 = (1 − θik)
2u2

i (tk, x) ≤ u2
i (tk, x) (k = 1, 2, . . .),

(3.5)

we have

Vi(tk + 0) ≤ Vi(tk), k = 0, 1, 2, . . . . (3.6)
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holds for t = tk (k = 0, 1, 2, . . .). Put t ∈ (tk, tk+1), k = 0, 1, 2, . . . . Then for the derivative
dVi(t)/dt of Vi with respect to problems ((2.5)–(2.8)), it results from (3.4) that

dVi(t)
dt

≤ −χ
∫

Ω
u2
i (t, x)dx − 2ai

∫

Ω
u2
i (t, x)dx +

n∑

j=1

∫

Ω

(
b2iju

2
i (t, x) + l2j u

2
i (t, x)

)
dx

+
n∑

j=1

∫

Ω

(
c2iju

2
i (t, x) + l2j u

2
j

(
t − τj(t), x

))
dx ≤

⎛

⎝−χ−2ai +
n∑

j=1

b2ij +
n∑

j=1

c2ij

⎞

⎠Vi(t)

+ max
i=1,...,n

(
l2i

) n∑

j=1

Vj(t) + max
i=1,...,n

(
li
2
) n∑

j=1

Vj

(
t − τj(t)

)
t ∈ (tk, tk+1), k = 0, 1, 2, . . . .

(3.7)

Choose V (t) of the form V (t) =
∑n

i=1Vi(t). From (3.7), one then reads

dV (t)
dt

≤
⎛

⎝max
i=1,...,n

⎛

⎝−χ − 2ai +
n∑

j=1

(
b2ij + c2ij

)
⎞

⎠ + nmax
i=1,...,n

(
li
2
)
⎞

⎠V (t)

+ nmax
i=1,...,n

(
li
2
) n∑

j=1

Vj

(
t − τj

)

= λV (t) + ρ
n∑

j=1

Vj

(
t − τj(t)

)
t ∈ (tk, tk+1), k = 0, 1, 2, . . . .

(3.8)

Construct V ∗(t) = eγ(t−t0)V (t), where γ satisfies γ + λ + hρeγτ > 0 and λ + hρeγτ < 0.
Evidently, V ∗(t) is also a piecewise continuous function with points of discontinuity of the
first kind tk (k = 1, 2, . . .), in which it is continuous from the left, that is V ∗(tk − 0) = V ∗(tk)
(k = 1, 2, . . .). Moreover, at t = tk (k = 0, 1, 2, . . .), we find by use of (3.6)

V ∗(tk + 0) ≤ V ∗(tk), k = 0, 1, 2, . . . . (3.9)

Set t ∈ (tk, tk+1), k = 0, 1, 2, . . .. By virtue of (3.8), one has

dV ∗(t)
dt

= γeγ(t−t0)V (t) + eγ(t−t0)
dV (t)
dt

≤ γeγ(t−t0)V (t) +

⎛

⎝λV (t) + ρ
n∑

j=1

Vj

(
t − τj(t)

)
⎞

⎠eγ(t−t0)

=
(
γ + λ

)
V ∗(t) + ρeγ(t−t0)

n∑

j=1

Vj

(
t − τj(t)

)
t ∈ (tk, tk+1), k = 0, 1, 2, . . . .

(3.10)
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Choose small enough ε > 0. Integrating (3.10) from tk + ε to t gives

V ∗(t) ≤ V ∗(tk + ε) +
(
γ + λ

) ∫ t

tk+ε
V ∗(s)ds

+
∫ t

tk+ε
ρeγ(s−t0)

n∑

j=1

Vj

(
s−τj(s)

)
ds, t ∈ (tk, tk+1), k = 0, 1, 2, . . .

(3.11)

which yields after letting ε → 0 in (3.11)

V ∗(t) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds

+
∫ t

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s−τj(s)

)
ds, t ∈ (tk, tk+1), k = 0, 1, 2, . . . .

(3.12)

We now proceed to estimate the value of V ∗(t) at t = tk+1, k = 0, 1, 2, . . . . For small
enough ε > 0, we put t = tk+1 − ε. Now an application of (3.12) leads to, for k = 0, 1, 2, . . .,

V ∗(tk+1 − ε) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ tk+1−ε

tk

V ∗(s)ds +
∫ tk+1−ε

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s − τj(s)

)
ds.

(3.13)

If we let ε → 0 in (3.13), there results

V ∗(tk+1 − 0) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ tk+1

tk

V ∗(s)ds

+
∫ tk+1

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s − τj(s)

)
ds, k = 0, 1, 2, . . . .

(3.14)

Note that V ∗(tk+1 − 0) = V ∗(tk+1) is applicable for k = 0, 1, 2, . . . . Thus,

V ∗(tk+1) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ tk+1

tk

V ∗(s)ds +
∫ tk+1

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s − τj(s)

)
ds (3.15)

holds for k = 0, 1, 2, . . . . By synthesizing (3.12) and (3.15), we then arrive at

V ∗(t) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds

+
∫ t

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s − τj(s)

)
ds t ∈ (tk, tk+1], k=0, 1, 2, . . . .

(3.16)



Journal of Applied Mathematics 9

This, together with (3.9), results in

V ∗(t) ≤ V ∗(tk) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds +
∫ t

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s−τj(s)

)
ds (3.17)

for t ∈ (tk, tk+1], k=0, 1, 2, . . . .
Recalling assumptions that 0 ≤ τj(t) ≤ τ and

•
τj(t) < 1 − 1/h (h > 0), we have

∫ t

tk

ρeγ(s−t0)
n∑

j=1

Vj

(
s − τj((s))

)
ds =

n∑

j=1

∫ t−τj (t)

tk−τj (tk)
ρeγ(θ+τj (s)−t0)Vj(θ)

1

1 − •
τj(s)

dθ

≤ hρeγτ
n∑

j=1

∫ t−τj (t)

tk−τj (tk)
eγ(θ−t0)Vj(θ)dθ.

(3.18)

Hence,

V ∗(t) ≤ V ∗(tk) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t−τj (t)

tk−τj (tk)
eγ(s−t0)Vj(s)ds

t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(3.19)

By induction argument, we reach

V ∗(tk) ≤ V ∗(tk−1) +
(
γ + λ

) ∫ tk

tk−1
V ∗(s)ds + hρeγτ

n∑

j=1

∫ tk−τj (tk)

tk−1−τj (tk−1)
eγ(s−t0)Vj(s)ds,

...

V ∗(t2) ≤ V ∗(t1) +
(
γ + λ

) ∫ t2

t1

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t2−τj (t2)

t1−τj (t1)
eγ(s−t0)Vj(s)ds,

V ∗(t1) ≤ V ∗(t0) +
(
γ + λ

) ∫ t1

t0

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t1−τj (t1)

t0−τj (t0)
eγ(s−t0)Vj(s)ds.

(3.20)

Therefore,

V ∗(t) ≤ V ∗(t0) +
(
γ + λ

) ∫ t

t0

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t−τj (t)

t0−τj (t0)
eγ(s−t0)Vj(s)ds

≤ V ∗(t0) +
(
γ + λ

) ∫ t

t0

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t

t0−τj (t0)
eγ(s−t0)Vj(s)ds
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= V ∗(t0) +
(
γ + λ + hρeγτ

) ∫ t

t0

V ∗(s)ds

+ hρeγτ
n∑

j=1

∫ t0

t0−τj (t0)
eγ(s−t0)Vj(s)ds t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(3.21)

Since

hρeγτ
n∑

j=1

∫ t0

t0−τj (t0)
eγ(s−t0)Vj(s)ds ≤ hρeγτ

n∑

j=1

∫ t0

t0−τ
Vj(s)ds

= hρeγτ
∫ t0

t0−τ

⎛

⎝
n∑

j=1

∫

Ω
ϕ2
j (s, x)dx

⎞

⎠ds ≤ τhρeγτ
∥∥ϕ
∥∥2
Ω,

(3.22)

we claim

V ∗(t) ≤ V ∗(t0) + τhρeγτ
∥∥ϕ
∥∥2
Ω +
(
γ + λ + hρeγτ

) ∫ t

t0

V ∗(s)ds t ∈ (tk, tk+1], k = 0, 1, 2 . . . .

(3.23)

According to Lemma 2.2, we claim

V ∗(t) ≤
(
V ∗(t0) + τhρeγτ

∥∥ϕ
∥∥2
Ω

)
exp
{(

γ + λ + hρeγτ
)
(t − t0)

}
, t ≥ t0 (3.24)

which reduces to

∥∥u
(
t, x; t0, ϕ

)∥∥
Ω ≤
√
1 + τhρeγτ

∥∥ϕ
∥∥
Ω exp

{(
λ + hρeγτ

2

)
(t − t0)

}
, t ≥ t0. (3.25)

This completes the proof.

Remark 3.2. According to the conditions of Theorem 3.1, we see that the reaction-diffusion
term do influence the stability of problem ((2.5)–(2.8)). Moreover, besides the reaction-
diffusion coefficients, the dimension of the space and the boundary of spatial variables have
also an effect on the stability of the equilibrium point u = 0.

Theorem 3.3. Providing that

(1) for x = (x1, . . . , xm)
T ∈ Ω(m ≥ 3), there exist constants β such that |x|2 =

∑m
s=1x

2
s < β,

in addition, there exists constant D > 0 such that Dis = Dis(t, x, u) ≥ D > 0; denote
D(m − 2)2/2β = χ,

(2) Pik(ui(tk, x)) = −θikui(tk, x), 1 −
√
1 + α ≤ θik ≤ 1 +

√
1 + α, α ≥ 0,

(3) infk=1,2...(tk − tk−1) > μ,
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(4) there exists constant γ which satisfies γ + λ + hρeγτ > 0 and λ + hρeγτ + ln(1 + α)/μ < 0,
where λ = maxi=1,...,n(−χ − 2ai +

∑n
j=1(b

2
ij + c2ij)) + ρ and ρ = nmaxi=1,...,n(li

2), then,
the equilibrium point u = 0 of problem ((2.5)–(2.8)) is globally exponentially stable with
convergence rate –(1/2)(λ + hρeγτ + ln(1 + α)/μ).

Proof. Define a Lyapunov function V of the form V (t) =
∑n

i=1Vi(t), where Vi(t) =
∫
Ω u2

i (t, x)dx.
Obviously, V (t) is a piecewise continuous function with points of discontinuity of the first
kind tk, k = 1, 2, . . ., where it is continuous from the left, that is, V1(tk−0) = V1(tk) (k = 1, 2, . . .).
Furthermore, for t = tk (k = 0, 1, 2, . . .), it follows from condition 2 of Theorem 3.3 that

u2
i (tk + 0, x) − u2

i (tk, x) = (1 − θik)
2u2

i (tk, x) − u2
i (tk, x) ≤ αu2

i (tk, x). (3.26)

Thereby,

V (tk + 0) ≤ αV (tk) + V (tk), k = 0, 1, 2, . . . . (3.27)

Construct another Lyapunov function defined by V ∗(t) = eγ(t−t0)V (t), where γ satisfies
γ + λ + hρeγτ > 0 and λ + hρeγτ + (ln(1 + α)/μ) < 0. Then, V ∗(t) is also a piecewise continuous
function with points of discontinuity of the first kind tk, k = 1, 2, . . ., where it is continuous
from the left, that is V ∗(tk − 0) = V ∗(tk) (k = 1, 2, . . .). And for t = tk (k = 0, 1, 2, . . .), it results
from (3.27) that

V ∗(tk + 0) ≤ αV ∗(tk) + V ∗(tk), k = 0, 1, 2, . . . . (3.28)

Set t ∈ (tk, tk+1], k = 0, 1, 2, . . . . Following the same procedure as in Theorem 3.1, we
get

V ∗(t) ≤ V ∗(tk + 0) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds + hρeγτ

×
n∑

j=1

∫ t−τj (t)

tk−τj (tk)
eγ(θ−t0)Vj(θ)dθ t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(3.29)

The relations (3.28) and (3.29) yield

V ∗(t) − V ∗(tk) ≤ αV ∗(tk) +
(
γ + λ

) ∫ t

tk

V ∗(s)ds + hρeγτ

×
n∑

j=1

∫ t−τj (t)

tk−τj (tk)
eγ(θ−t0)Vj(θ)dθ t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(3.30)
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By induction argument, we arrive at

V ∗(tk) − V ∗(tk−1) ≤ αV ∗(tk−1) +
(
γ + λ

) ∫ tk

tk−1
V ∗(s)ds + hρeγτ

n∑

j=1

∫ tk−τj (tk)

tk−1−τj (tk−1)
eγ(θ−t0)Vj(θ)dθ,

...

V ∗(t2) − V ∗(t1) ≤ αV ∗(t1) +
(
γ + λ

) ∫ t2

t1

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t2−τj (t2)

t1−τj (t1)
eγ(θ−t0)Vj(θ)dθ,

V ∗(t1) − V ∗(t0) ≤ αV ∗(t0) +
(
γ + λ

) ∫ t1

t0

V ∗(s)ds + hρeγτ
n∑

j=1

∫ t1−τj (t1)

t0−τj (t0)
eγ(θ−t0)Vj(θ)dθ.

(3.31)

Hence,

V ∗(t) − V ∗(t0) ≤ αV ∗(t0) +
(
γ + λ

) ∫ t

t0

V ∗(s)ds

+ hρeγτ
n∑

j=1

∫ t−τj (t)

t0−τj (t0)
eγ(θ−t0)Vj(θ)dθ + α

∑

t0<tk<t

V (tk)

≤ αV ∗(t0) +
(
γ + λ + hρeγτ

) ∫ t

t0

V ∗(s)ds

+ hρeγτ
n∑

j=1

∫ t0

t0−τj (t0)
eγ(θ−t0)Vj(θ)dθ + α

∑

t0<tk<t

V (tk) t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(3.32)

Introducing hρeγτ
∑n

j=1

∫ t0
t0−τj (t0) e

γ(θ−t0)Vj(θ)dθ ≤ τhρeγτ‖ϕ‖2Ω as shown in the proof of
Theorem 3.1 into (3.32), the expression becomes

V ∗(t) − V ∗(t0) ≤ αV ∗(t0) + τhρeγτ
∥∥ϕ
∥∥2
Ω +
(
γ + λ + hρeγτ

) ∫ t

t0

V ∗(s)ds

+ α
∑

t0<tk<t

V (tk) t ∈ (tk, tk+1], k = 0, 1, 2 . . . .
(3.33)

It then results from Lemma 2.2 that

V ∗(t) ≤
(
(α + 1)V ∗(t0) + τhρeγτ

∥∥ϕ
∥∥2
Ω

) ∏

t0<tk<t

(1 + α) exp
((
γ + λ + hρeγτ

)
(t − t0)

)

=
(
(α + 1)V ∗(t0) + τhρeγτ

∥∥ϕ
∥∥2
Ω

)
(1 + α)k exp

((
γ + λ + hρeγτ

)
(t − t0)

)
, t ≥ t0.

(3.34)
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On the other hand, since infk=1,2,...(tk − tk−1) > μ, one has k < (tk − t0)/μ. Thereby,

(1 + α)k < exp
{
ln(1 + α)

μ
(tk − t0)

}
< exp

{
ln(1 + α)

μ
(t − t0)

}
. (3.35)

And (3.34) can be rewritten as

V ∗(t) ≤
(
(α + 1)V ∗(t0) + τhρeγτ

∥∥ϕ
∥∥2
Ω

)
exp
((

γ + λ + hρeγτ +
ln(1 + α)

μ

)
(t − t0)

)
(3.36)

which implies

∥∥u
(
t, x; t0, ϕ

)∥∥
Ω ≤
√(

α + 1 + τhρeγτ
)∥∥ϕ
∥∥
Ω exp

(
1
2

(
λ + hρeγτ +

ln(1 + α)
μ

)
(t − t0)

)
, t ≥ t0.

(3.37)

The proof is completed.

Remark 3.4. Theorem 3.1 is in fact the special case of Theorem 3.3 by choosing α = 0. Due to
Lemma 2.4, we know

2
n∑

j=1

bij

∫

Ω
ui(t, x)f

(
uj(t, x)

)
dx ≤

n∑

j=1

∫

Ω

(
ε1b

2
iju

2
i (t, x) +

l2j

ε1
u2
i (t, x)

)
dx,

2
n∑

j=1

cij

∫

Ω
ui(t, x)f

(
uj

(
t − τj , x

))
dx ≤

n∑

j=1

∫

Ω

(
ε2c

2
iju

2
i (t, x) +

l2j

ε2
u2
i

(
t − τj , x

)
)
dx

(3.38)

hold for any ε1, ε2 > 0.
In the sequel, we follow the same procedures as in Theorems 3.1 and 3.3 to find the

following theorems.

Theorem 3.5. Provided that

(1) for x = (x1, . . . , xm)
T ∈ Ω(m ≥ 3), there exists a constant β such that |x|2 = ∑m

s=1x
2
s < β.

in addition, there exists a constant D > 0 such that Dis = Dis(t, x, u) ≥ D > 0; denote
D(m − 2)2/2β = χ,

(2) Pik(ui(tk, x)) = −θikui(tk, x), 0 ≤ θik ≤ 2,

(3) there exist constants γ and ε1, ε2 > 0 such that γ + λ + hρeγτ > 0 and λ + hρeγτ < 0,
where λ = maxi=1,...,n(−χ − 2ai +

∑n
j=1( ε1b

2
ij + ε2c

2
ij)) + (n/ε1)maxi=1,...,n(l2i ) and ρ =

(n/ε2)maxi=1,...,n(l2i ), then, the equilibrium point u = 0 of problem ((2.5)–(2.8)) is globally
exponentially stable with convergence rate –(λ + hρeγτ)/2.

Theorem 3.6. Assume that

(1) for x = (x1, . . . , xm)
T ∈ Ω(m ≥ 3), there exists a constant β such that |x|2 = ∑m

s=1x
2
s < β;

In addition, there exists a constant D > 0 such that Dis = Dis(t, x, u) ≥ D > 0; denote
D(m − 2)2/2β = χ,
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(2) Pik(ui(tk, x)) = −θikui(tk, x), 1 −
√
1 + α ≤ θik ≤ 1 +

√
1 + α, α ≥ 0,

(3) infk=1,2,...(tk − tk−1) > μ,

(4) there exist constants γ and ε1, ε2 > 0 such that γ + λ + hρeγτ > 0 and λ + hρeγτ + ln(1 +
α)/μ < 0, where λ = maxi=1,...,n(−χ − 2ai +

∑n
j=1( ε1b

2
ij + ε2c

2
ij)) + (n/ε1)maxi=1,...,n(l2i )

and ρ = (n/ε2)maxi=1,...,n(l2i ).

Then, the equilibrium point u = 0 of problem ((2.5)–(2.8)) is globally exponentially stable with
convergence rate −(1/2)(λ + hρeγτ + ln(1 + α)/μ).

Further, on the condition that |Pik(ui(tk, x))| ≤ θik|ui(tk, x)|, where θ2
ik
< (α−1)/2 and α ≥ 1,

we obtain, for t = tk (k = 1, 2, . . .),

u2
i (tk + 0, x) − u2

i (tk, x) = (Pik(ui(tk, x)) + ui(tk, x))2 − u2
i (tk, x)

≤ 2(ui(tk, x))2 + 2(Pik(ui(tk, x)))2 − u2
i (tk, x)

≤
(
2 + 2θ2

ik

)
(ui(tk, x))2 − u2

i (tk, x) ≤ αu2
i (tk, x).

(3.39)

Identical with the proof of Theorem 3.3, we present the theorem as follows.

Theorem 3.7. Assume that

(1) for x = (x1, . . . , xm)
T ∈ Ω(m ≥ 3), there exists a constant β such that |x|2 = ∑m

s=1x
2
s < β.

in addition, there exists a constant D > 0 such that Dis = Dis(t, x, u) ≥ D > 0. Denote
D(m − 2)2/2β = χ,

(2) |Pik(ui(tk, x))| ≤ θik|ui(tk, x)|, where θ2
ik ≤ (α − 1)/2 and α ≥ 1,

(3) infk=1,2,...(tk − tk−1) > μ,

(4) there exist constants γ and ε1, ε2 > 0 such that γ + λ + hρeγτ > 0 and λ + hρeγτ +
ln(1 + α)/μ < 0, where λ = maxi=1,...,n(−χ − 2ai +

∑n
j=1(ε1b

2
ij + ε2c

2
ij)) +

(n/ε1)maxi=1,...,n(li
2) and ρ = (n/ε2)maxi=1,...,n(li

2).

Then, the equilibrium point u = 0 of problem ((2.5)–(2.8)) is globally exponentially stable with
convergence rate −1/2(λ + hρeγτ + ln(1 + α)/μ).

Remark 3.8. Different from Theorems 3.1–3.6, the impulsive part in Theorem 3.7 could be
nonlinear and this will be of more applicability. Actually, Theorems 3.1–3.6 can be regarded
as the special cases of Theorem 3.7.

4. Examples

Example 4.1. Consider the following impulsive reaction-diffusion delayed neural network:

∂ui(t, x)
∂t

=
m∑

s=1

∂

∂xs

(
Dis

∂ui(t, x)
∂xs

)
− aiui(t, x) +

n∑

j=1

bijfj
(
uj(t, x)

)
+

n∑

j=1

cijfj
(
uj

(
t − τj(t), x

))

t ≥ 0, t /= tk, x ∈ Ω, k = 1, 2, . . . , i = 1, . . . , n
(4.1)
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with the impulsive effects characterized by

u1(tk + 0, x) = u1(tk, x) + 1.343u1(tk, x), u2(tk + 0, x) = u2(tk, x) + 1.343u2(tk, x)

k = 1, 2, . . . , x ∈ Ω
(4.2)

and initial condition (2.3) and Dirichlet condition (2.4), where n = 2, m = 4, Ω =
{(x1, . . . , x4)

T |∑4
i=1x

2
i < 4}, a1 = a2 = 6.5, (Dis)2×4 =

(
1.2 2.3 2.5 3.1
1.8 3.2 2.7 3.4

)
, (bij)2×2 =

( −0.23 1.3
−0.1 3

)
,

(cij)2×2 =
( −0.1 −0.2

0.1 −0.3
)
, fj(uj) = (1/4)(|uj + 1| − |uj − 1|), 0 ≤ τj(t) ≤ 0.5, and

•
τj(t) < 0. For

β = 4 and D = 1.2, we compute χ = 0.6. This, together with the chosen li = 1/2, yields

λ = max
i=1,...,n

⎛

⎝−χ − 2ai +
n∑

j=1

(
b2ij + c2ij

)
⎞

⎠ + nmax
i=1,...,n

(
l2i

)
= −4, ρ = nmax

i=1,...,n

(
l2i

)
=

1
2
. (4.3)

By selecting γ = 2.6, τ = 0.5 and h = 1, we estimate

γ + λ + hρeγτ = 2.6 − 4 +
1
2
e1.3 > 0, λ + hρeγτ = −4 + 1

2
e1.3 < 0. (4.4)

According to Theorem 3.1, we therefore conclude that the system in Example 4.1 is
globally exponential stable.

Example 4.2. Consider the following impulsive reaction-diffusion delayed neural network:

∂ui(t, x)
∂t

=
m∑

s=1

∂

∂xs

(
Dis

∂ui(t, x)
∂xs

)
− aiui(t, x) +

n∑

j=1

bijfj
(
uj(t, x)

)
+

n∑

j=1

cijfj
(
uj

(
t − τj(t), x

))

t ≥ 0, t /= tk, x ∈ Ω, k = 1, 2, . . . , i = 1, . . . , n
(4.5)

with the impulsive effects featured by

u1(tk + 0, x) = u1(tk, x) + arctan(0.5u1(tk, x)), u2(tk + 0, x) = u2(tk, x) + arctan(0.5u2(tk, x))

k = 1, 2, . . . , x ∈ Ω
(4.6)

and initial condition (2.3) and Dirichlet condition (2.4), where n = 2, m = 4, Ω =
{(x1, . . . , x4)

T |∑4
i=1x

2
i < 4}, a1 = a2 = 6.5, (Dis)2×4 =

(
1.2 2.3 2.5 3.1
1.8 3.2 2.7 3.4

)
, (bij)2×2 =

( −0.23 1.3
−0.1 3

)
,

(cij)2×2 =
( −0.1 −0.2

0.1 −0.3
)
, fj(uj) = 1/4(|uj + 1| − |uj − 1|), 0 ≤ τj(t) ≤ 0.5,

•
τj(t) < 0, and
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infk=1,2,...(tk − tk−1) > 1. For β = 4 and D = 1.2, we computeχ = 0.6. This, together with
li = 1/2 and ε1 = ε2 = 1, yields

ρ =
n

ε2
max
i=1,...,n

(
l2i

)
=

1
2
, λ = max

i=1,...,n

⎛

⎝−χ − 2ai +
n∑

j=1

(
ε1b

2
ij + ε2c

2
ij

)
⎞

⎠ +
n

ε1
max
i=1,...,n

(
l2i

)
= −4.

(4.7)

Select α = 1.5 by setting θik = 0.5. Hence, we compute by letting μ = 1, γ = 3, τ = 0.5,
and h = 1 that

γ + λ + hρeγτ = 3 − 4 +
1
2
e1.5 > 0, λ + hρeγτ +

ln(1 + α)
μ

= −4 + 1
2
e1.5 + ln 2.5 < 0. (4.8)

It is then concluded from Theorem 3.7 that the system in Example 4.2 is globally
exponentially stable.
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