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We introduce an iterative process which converges strongly to a common point of solution of
variational inequality problem for a monotone mapping and fixed point of uniformly Lipschitzian
relatively asymptotically nonexpansive mapping in Banach spaces. As a consequence, we provide
a scheme that converges strongly to a common zero of finite family of monotone mappings under
suitable conditions. Our theorems improve and unify most of the results that have been proved for
this important class of nonlinear operators.

1. Introduction

Let E be a smooth Banach space. Throughout this paper, we denote by φ : E × E → R the
function defined by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2, for x, y ∈ E, (1.1)

which was studied by Alber [1], Kamimura and Takahashi [2], and Reich [3], where J is the
normalized duality mapping from E to 2E

∗
defined by

Jx :=
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2 = ∥∥f∗∥∥2

}
, (1.2)
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where 〈·, ·〉 denotes the duality pairing. It is well known that if E is smooth, then J is single-
valued, and, if E has uniformly Gâteaux differentiable norm, then J is uniformly continuous
on bounded subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with
a strictly convex dual, then J−1 is single valued, one-to-one, surjective, and it is the duality
mapping from E∗ into E, and thus JJ−1 = IE∗ and J−1J = IE (see [4]).

It is obvious from the definition of the function φ that

(‖x‖ − ∥
∥y

∥
∥)2 ≤ φ

(
x, y

) ≤ (‖x‖ + ∥
∥y

∥
∥)2 for x, y ∈ E, (1.3)

and, in a Hilbert space H, (1.1) reduces to φ(x, y) = ‖x − y‖2, for x, y ∈ H.
Let E be a reflexive, strictly convex, and smooth Banach space, and letC be a nonempty

closed and convex subset of E. The generalized projection mapping, introduced by Alber [1], is
a mapping ΠC : E → C that assigns an arbitrary point x ∈ E to the minimizer, x, of φ(·, x)
over C, that is, ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = min
{
φ
(
y, x

)
, y ∈ C

}
. (1.4)

Let E be a real Banach space with dual E∗. A mapping A : D(A) ⊂ E → E∗ is said to be
monotone if, for each x, y ∈ D(A), the following inequality holds:

〈
x − y,Ax −Ay

〉 ≥ 0. (1.5)

A is said to be γ-inverse strongly monotone if there exists positive real number γ such that

〈
x − y,Ax −Ay

〉 ≥ γ
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ K. (1.6)

If A is γ-inverse strongly monotone, then it is Lipschitz continuous with constant 1/γ , that is,
‖Ax −Ay‖ ≤ (1/γ)‖x − y‖, for all x, y ∈ D(A), and it is called strongly monotone if there exists
k > 0 such that, for all x, y ∈ D(A),

〈
x − y,Ax −Ay

〉 ≥ k
∥∥x − y

∥∥2
. (1.7)

Clearly, the class of monotonemappings include the class of stronglymonotone and γ-inverse
strongly monotone mappings.

Suppose that A is monotone mapping from C into E∗. The variational inequality
problem is formulated as finding a point u ∈ C such that 〈v − u,Au〉 ≥ 0, for all v ∈ C.
The set of solutions of the variational inequality problems is denoted by VI(C,A).

The notion of monotone mappings was introduced by Zarantonello [5], Minty [6],
and Kacurovskii [7] in Hilbert spaces. Monotonicity conditions in the context of variational
methods for nonlinear operator equations were also used by Vainberg and Kachurovisky [8].
Variational inequalities were initially studied by Stampacchia [9, 10] and ever since have been
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widely studied in general Banach spaces (see, e.g., [2, 11–13]). Such a problem is connected
with the convexminimization problem, the complementarity problem, the problem of finding
point u ∈ C satisfying 0 ∈ Au.

If E = H, a Hilbert space, one method of solving a point u ∈ VI(C,A) is the projection
algorithm which starts with any point x1 = x ∈ C and updates iteratively as xn+1 according
to the formula

xn+1 = PC(xn − αnAxn), for any n ≥ 1, (1.8)

where PC is the metric projection from H onto C and {αn} is a sequence of positive real
numbers. In the case that A is γ-inverse strongly monotone, Iiduka et al. [14] proved that the
sequence {xn} generated by (3.35) converges weakly to some element of VI(C,A).

In the case that E is a 2-uniformly convex and uniformly smooth Banach space, Iiduka
and Takahashi [15] introduced the following iteration scheme for finding a solution of the
variational inequality problem for an inverse strongly monotone operator A:

xn+1 = ΠCJ
−1(Jxn − αnAxn), for any n ≥ 1, (1.9)

where ΠC is the generalized projection from E onto C, J is the normalized duality mapping
from E into E∗, and {αn} is a sequence of positive real numbers. They proved that the
sequence {xn} generated by (1.9) converges weakly to some element of VI(C,A) provided that
A satisfies ‖Ax‖ ≤ ‖Ax −Ap‖, for x ∈ C and p ∈ VI(C,A).

It is worth to mention that the convergence is weak convergence.
To obtain strong convergence, when E = H, a Hilbert space andA is γ-inverse strongly

monotone; Iiduka et al. [14] studied the following iterative scheme:

x0 ∈ C, chosen arbitrary,

yn = PC(xn − αnAxn),

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0), n ≥ 1, for n ≥ 1,

(1.10)

where {αn} is a sequence in [0, 2γ]. They proved that the sequence {xn} generated by (1.10)
converges strongly to PVI(C,A)(x0), where PVI(C,A) is themetric projection fromH onto VI(C,A)
provided that A satisfies ‖Ax‖ ≤ ‖Ax −Ap‖, for x ∈ C and p ∈ VI(C,A).

In the case that E is 2-uniformly convex and uniformly smooth Banach space, Iiduka
and Takahashi [11] studied the following iterative scheme for a variational inequality
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problem for γ-inverse strongly monotone mapping:

x0 ∈ K, chosen arbitrary,

yn = ΠCJ
−1(Jxn − αnAxn),

Cn =
{
z ∈ E : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ E : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n ≥ 1, for n ≥ 1,

(1.11)

where ΠCn∩Qn is the generalized projection from E onto Cn ∩Qn, J is the normalized duality
mapping from E into E∗, and {αn} is a positive real sequence satisfying certain condition.
Then, they proved that the sequence {xn} converges strongly to an element of VI(C,A)
provided that VI(C,A)/= ∅ and A satisfies ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and p ∈ VI(C,A).

Remark 1.1. We remark that the computation of xn+1 in Algorithms (1.10) and (1.11) is not
simple because of the involvement of computation of Cn+1 from Cn and Qn for each n ≥ 1.

Let T be a mapping from C into itself. We denote by F(T) the fixed points set of T . A
point p in C is said to be an asymptotic fixed point of T (see [3]) if C contains a sequence {xn}
which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed
points of T will be denoted by F̂(T). A mapping T from C into itself is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for each x, y ∈ C and is called relatively nonexpansive if (R1) F(T)/= ∅;
(R2) φ(p, Tx) ≤ φ(p, x) for x ∈ C and (R3) F(T) = F̂(T). T is called relatively quasi-nonexpansive
if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C, and p ∈ F(T).

A mapping T from C into itself is said to be asymptotically nonexpansive if there exists
{kn} ⊂ [1,∞) such that kn → 1 and ‖Tnx − Tny‖ ≤ kn‖x − y‖ for each x, y ∈ C and is called
relatively asymptotically nonexpansive if there exists {kn} ⊂ [1,∞) such that (N1) F(T)/= ∅; (N2)
φ(p, Tnx) ≤ knφ(p, x) for x ∈ C and p ∈ F(T), and (N3) F(T) = F̂(T), where kn → 1 as
n → ∞. A-self mapping on C is called uniformly L-Lipschitzian if there exists L > 0 such that
‖Tnx−Tny‖ ≤ L‖x−y‖ for all x, y ∈ C. T is called closed if xn → x and Txn → y, then Tx = y.

Clearly, we note that the class of relatively nonexpansive mappings is contained in
a class of relatively asymptotically nonexpansive mappings but the converse is not true.
Now, we give an example of relatively asymptotically nonexpansive mapping which is not
relatively nonexpansive.

Example 1.2 (see [16]). Let X = lp, where 1 < p < ∞, and C = {x = (x1, x2, . . .) ∈ X;xn ≥
0}. Then C is closed and convex subset of X. Note that C is not bounded. Obviously, X is
uniformly convex and uniformly smooth. Let {λn} and{λn} be sequences of real numbers
satisfying the following properties:

(i) 0 < λn < 1, λn > 1, λn ↑ 1, and λn ↓ 1,

(ii) λn+1λn = 1 and λj+1λn+j < 1 for all n and j (e.g., λn = 1−1/(n+1), λn = 1+1/(n+1)).
Then, the map T : C → C defined by

Tx :=
(
0, λ1|sinx1|, λ2x2, λ2x3, λ3x4, λ3x5, . . .

)
, (1.12)
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for all x = (x1, x2, . . .) ∈ C, is uniformly Lipschitzian which is relatively asymptotically
nonexpansive but not relatively nonexpansive (see [16] for the details). Note also that
F(T) = {0}.

In 2005, Matsushita and Takahashi [17] proposed the following hybrid iteration
methodwith generalized projection for relatively nonexpansive mapping T in a Banach space
E:

x0 ∈ C, chosen arbitrary,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C; 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n ≥ 1.

(1.13)

They proved that, if the sequence {αn} is bounded above from one, then the sequence {xn}
generated by (1.13) converges strongly to ΠF(T)x0.

Recently, many authors have considered the problem of finding a common element
of the fixed-point set of relatively nonexpansive mapping and the solution set of variational
inequality problem for γ-inverse monotone mapping (see, e.g., [12, 13, 18–20]).

In [21], Iiduka and Takahashi studied the following iterative scheme for a common
point of solution of a variational inequality problem for γ-inverse strongly monotone
mapping A and fixed point of nonexpansive mapping T in a Hilbert space H:

x1 = x ∈ C,

xn+1 = αnx + (1 − αn)SPC(xn − λnAxn), n ≥ 1,
(1.14)

where {αn} is sequences satisfying certain condition. They proved that the sequence {xn}
converges strongly to an element of F := F(S) ∩ VI(C,A) provided that F /= ∅.

In the case that E is a Banach space more general than Hilbert spaces, Zegeye et al.
[12] studied the following iterative scheme for a common point of solution of a variational
inequality problem for γ-inverse strongly monotone mapping A and fixed point of a closed
relatively quasi-nonexpansive mapping T in a 2-uniformly convex and uniformly smooth
Banach space E:

C1 = C, chosen arbitrary,

zn = ΠC(xn − λnAxn),

yn = J−1
(
βJxn +

(
1 − β

)
JTzn

)
,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

) ≤ φ(z, xn)
}
,

xn+1 = ΠCn+1(x0), n ≥ 1,

(1.15)

where {λn} is sequences satisfying certain condition. They proved that the sequence {xn}
converges strongly to an element of F := F(S)∩VI(C,A)/= ∅ provided that F /= ∅ andA satisfies
‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and p ∈ F.

Furthermore, Zegeye and Shahzad [22] studied the following iterative scheme for
common point of solution of a variational inequality problem for γ-inverse strongly
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monotone mapping A and fixed point of a relatively asymptotically nonexpansive mapping
on a closed convex and bounded set C which is a subset of a real Hilbert space H:

C1 = C, chosen arbitrary,

zn = PC(xn − λnAxn),

yn = αnxn + (1 − αn)Snzn,

Cn+1 =
{
z ∈ Cn : ‖z − un‖2 ≤ ‖z − xn‖2 + θn

}
,

xn+1 = PCn+1(x0), n ≥ 1,

(1.16)

where PCn is the metric projection from H into Cn and θn = (1 − αn)(k2
n − 1)(diam(C))2 and

{αn}, {λn} are sequences satisfying certain condition. Then, they proved that the sequence
{xn} converges strongly to an element of F := F(S) ∩ VI(C,A)/= ∅ provided that F /= ∅ and A
satisfies ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and p ∈ F.

Remark 1.3. We again remark that the computation of xn+1 in Algorithms (1.13), (1.15), and
(1.16) is not simple because of the involvement of computation ofCn+1 fromCn for each n ≥ 1.

It is our purpose in this paper to introduce an iterative scheme {xn} which converges
strongly to a common point of solution of variational inequality problem for a monotone
operator A : C → E∗ satisfying appropriate conditions, for some nonempty closed convex
subset C of a Banach space E and fixed points of uniformly L-Lipschitzian relatively
asymptotically nonexpansive mapping in Banach spaces. As a consequence, we provide a
scheme which converges strongly to a common zero of finite family of monotone mappings.
Our scheme does not involve computation of Cn+1 from Cn or Qn, for each n ≥ 1. Our
theorems improve and unify most of the results that have been proved for this important
class of nonlinear operators.

2. Preliminaries

Let E be a normed linear space with dimE ≥ 2. The modulus of smoothness of E is the function
ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1;

∥∥y
∥∥ = τ

}

. (2.1)

The space E is said to be smooth if ρE(τ) > 0, for all τ > 0, and E is called uniformly smooth if
and only if limt→ 0+(ρE(t)/t) = 0.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ =
∥∥y

∥∥ = 1; ε =
∥∥x − y

∥∥
}
. (2.2)

E is called uniformly convex if and only if δE(ε) > 0, for every ε ∈ (0, 2].
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In the sequel, we will need the following results.

Lemma 2.1 (see [23]). Let C be a nonempty closed and convex subset of a real reflexive, strictly
convex, and smooth Banach space E. IfA : C → E∗ is continuous monotone mapping, then VI(C,A)
is closed and convex.

Lemma 2.2. Let C be a closed convex subset of a uniformly convex and smooth Banach space E, and
let S be continuous relatively asymptotically nonexpansive mapping from C into itself. Then, F(S) is
closed and convex.

Lemma 2.3 (see [1]). Let K be a nonempty closed and convex subset of a real reflexive, strictly
convex, and smooth Banach space E, and let x ∈ E. Then, for all y ∈ K,

φ
(
y,ΠKx

)
+ φ(ΠKx, x) ≤ φ

(
y, x

)
. (2.3)

Lemma 2.4 (see [2]). Let E be a real smooth and uniformly convex Banach space, and let {xn} and
{yn} be two sequences of E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then
xn − yn → 0, as n → ∞.

We make use of the function V : E × E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x‖2, ∀x ∈ E, x∗ ∈ E, (2.4)

studied by Alber [1]. That is, V (x, y) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. We know the
following lemma.

Lemma 2.5 (see [1]). Let E be reflexive strictly convex and smooth Banach space with E∗ as its dual.
Then,

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.5)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.6 (see [1]). Let C be a convex subset of a real smooth Banach space E. Let x ∈ E. Then
x0 = ΠCx if and only if

〈z − x0, Jx − Jx0〉 ≤ 0, ∀z ∈ C. (2.6)

Lemma 2.7 (see [12]). Let E be a uniformly convex Banach space and BR(0) a closed ball of E. Then,
there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such
that

‖α1x1 + α2x2 + α3x3‖2 ≤ αi‖x1‖2 + α2‖x2‖2 + α3‖x3‖2 − αiαjg
(∥∥xi − xj

∥∥), (2.7)

for αi ∈ (0, 1) such that α1 + α2 + α3 = 1 and xi ∈ BR(0) := {x ∈ E : ‖x‖ ≤ R}, for i = 1, 2, 3.



8 Journal of Applied Mathematics

Let E be a smooth and strictly convex Banach space, C a nonempty closed convex
subset of E, and A : C → E∗ a monotone operator satisfying

D(A) ⊆ C ⊆ J−1(∩r>0R(J + rA)), (2.8)

for r > 0. Then, we can define the resolvent Qr : C → D(A) of A by

Qrx := {z ∈ D(A) : Jx ∈ Jz + rAz}, ∀x ∈ C. (2.9)

In other words, Qrx = (J + rA)−1Jx for x ∈ C. We know that Qrx is single-valued mapping
from C into D(A), for all x ∈ C and r > 0 and F(Qr) = A−1(0), where F(Qr) is the set of fixed
points of Qr (see, [4]).

Lemma 2.8 (see [24]). Let E be a smooth and strictly convex Banach space, C a nonempty closed
convex subset of E, and A ⊂ E × E∗ a monotone operator satisfying (2.8) and A−1(0) is nonempty.
Let Qr be the resolvent of A. Then, for each r > 0,

φ(u,Qrx) + φ(Qrx, x) ≤ φ(u, x) (2.10)

for all u ∈ A−1(0) and x ∈ C, that is, Qr is relatively nonexpansive.

Lemma 2.9 (see [25]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤
(
1 − βn

)
an + βnδn, n ≥ n0, (2.11)

where {βn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: limn→∞βn = 0,
∑∞

n=1 βn = ∞,
and lim supn→∞δn ≤ 0. Then, limn→∞an = 0.

Lemma 2.10 (see [26]). Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+1 for all i ∈ N. Then, there exists a nondecreasing sequence {mk} ⊂ N
such that mk → ∞, and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N:

amk ≤ amk+1, ak ≤ amk+1. (2.12)

In fact,mk = max{j ≤ k : aj < aj+1}.

3. Main Result

We note that, as it is mentioned in [27], if C is a subset of a real Banach space E and A : C →
E∗ is a mapping satisfying ‖Ax‖ ≤ ‖Ax −Ap‖, for all x ∈ C and p ∈ VI(C,A), then

VI(C,A) = A−1(0) =
{
p ∈ C : Ap = 0

}
. (3.1)
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In fact, clearly, A−1(0) ⊆ VI(C,A). Now, we show that VI(C,A) ⊆ A−1(0). Let p ∈
VI(C,A), then we have by hypothesis that ‖Ap‖ ≤ ‖Ap − Ap‖ = 0 which implies that p ∈
A−1(0). Hence, VI(C,A) ⊆ A−1(0). Therefore, VI(C,A) = A−1(0). Now we prove the main
theorem of our paper.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. Let A : C → E∗ be a monotone mapping satisfying (2.8) and ‖Ax‖ ≤
‖Ax −Ap‖, for all x ∈ C and p ∈ VI(C,A). Let T : C → C be a uniformly L-Lipschitzian relatively
asymptotically nonexpansive mapping with sequence {kn}. Assume that F := VI(C,A) ∩ F(S) is
nonempty. Let Qr be the resolvent of A and {xn} a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJT

nyn + θnJQryn

)
,

(3.2)

where αn ∈ (0, 1) such that limn→∞αn = 0, limn→∞((kn − 1)/αn) = 0,
∑∞

n=1 αn = ∞,
{βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such that βn + γn + θn = 1. Then, {xn} converges strongly to
an element of F.

Proof. Let p := ΠFw. Then, from (3.2), Lemma 2.3, and property of φ, we get that

φ
(
p, yn

)
= φ

(
p,ΠCJ

−1(αnJw + (1 − αn)Jxn)
)

≤ φ
(
p, J−1(αnJw + (1 − αn)Jxn)

)

=
∥∥p

∥∥2 − 2
〈
p, αnJw + (1 − αn)Jxn

〉
+ ‖αnJw + (1 − αn)Jxn‖2

≤ ∥∥p
∥∥2 − 2αn

〈
p, Jw

〉 − 2(1 − αn)
〈
p, Jxn

〉
+ αn‖Jw‖2 + (1 − αn)‖Jxn‖2

= αnφ
(
p,w

)
+ (1 − αn)φ

(
p, xn

)
.

(3.3)

Now, from (3.2) and relatively asymptotically nonexpansiveness of T , relatively nonexpan-
siveness of Qr , property of φ, and (3.3), we get that

φ
(
p, xn+1

)
= φ

(
p, J−1

(
βnJxn + γnJT

nyn + θnJQryn

))

≤ βnφ
(
p, xn

)
+ γnφ

(
p, Tnyn

)
+ θnφ

(
p,Qryn

)

≤ βnφ
(
p, xn

)
+ γnknφ

(
p, yn

)
+ θnφ

(
p, yn

)

≤ βnφ
(
p, xn

)
+
(
γnkn + θn

)
φ
(
p, yn

)

≤ βnφ
(
p, xn

)
+
(
γnkn + θn

)[
αnφ

(
p,w

)
+ (1 − αn)φ

(
p, xn

)]

≤ (
γnkn + θn

)
αnφ

(
p,w

)
+
[
βn +

(
γnkn + θn

)
(1 − αn)

]
φ
(
p, xn

)

≤ (
γnkn + θn

)
αnφ

(
p,w

)
+
[(
1 − αn

(
γnkn + θn

))
+ γn(kn − 1)

] × φ
(
p, xn

)

≤ cnφ
(
p,w

)
+ [1 − (1 − ε)cn]φ

(
p, xn

)
,

(3.4)
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where cn = αn(γnkn + θn), since there exists N0 > 0 such that γn(kn − 1)/αn ≤ ε(γnkn + θn) for
all n ≥ N0 and for some ε > 0 satisfying (1 − ε)cn ≤ 1. Thus, by induction,

φ
(
p, xn+1

) ≤ max
{
φ
(
p, x0

)
, (1 − ε)−1φ

(
p,w

)}
, ∀n ≥ N0 (3.5)

which implies that {xn}, and hence {yn} is bounded. Now, let zn = J−1(αnJw + (1 − αn)Jxn).
Then we have that yn = ΠCzn. Using Lemmas 2.3, 2.5, and property of φ, we obtain that

φ
(
p, yn

) ≤ φ
(
p, zn

)
= V

(
p, Jzn

)

≤ V
(
p, Jzn − αn

(
Jw − Jp

)) − 2
〈
zn − p,−αn

(
Jw − Jp

)〉

= φ
(
p, J−1

(
αnJp + (1 − αn)Jwn

))
+ 2αn

〈
zn − p, Jw − Jp

〉

≤ αnφ
(
p, p

)
+ (1 − αn)φ

(
p,wn

)
+ 2αn

〈
zn − p, Jw − Jp

〉

= (1 − αn)φ
(
p,wn

)
+ 2αn

〈
zn − p, Jw − Jp

〉

≤ (1 − αn)φ
(
p, xn

)
+ 2αn

〈
zn − p, Jw − Jp

〉
.

(3.6)

Furthermore, from (3.2), Lemma 2.7, relatively asymptotically nonexpansiveness of T ,
relatively nonexpansiveness of Qr , and (3.6), we have that

φ
(
p, xn+1

)
= φ

(
p, J−1

(
βnJxn + γnJT

nyn + θnJQryn

))

=
∥∥p

∥∥2 − 〈
p, βnJxn + γnJT

nyn + θnJQryn

〉
+
∥∥βnJxn + γnJT

nyn + θnJQryn

∥∥2
(3.7)

≤ ∥∥p
∥∥2 − 2βn

〈
p, Jxn

〉 − 2γn
〈
p, JTnyn

〉 − 2θn
〈
p, JQryn

〉

+ βn‖Jxn‖2 + γn
∥∥JTnyn

∥∥2 + θn
∥∥JQryn

∥∥2 − γnβng
(∥∥Jxn − JTnyn

∥∥)

≤ βnφ
(
p, xn

)
+ γnφ

(
p, Tnyn

)
+ θnφ

(
p,Qryn

) − γnβng
(∥∥Jxn − JTnyn

∥∥)

≤ βnφ
(
p, xn

)
+
(
γn + θn

)
φ
(
p, yn

)
+ γn(kn − 1)φ

(
p, yn

) − γnβng
(∥∥Jxn − JTnyn

∥∥)

≤ βnφ
(
p, xn

)
+
(
γn + θn

)[
(1 − αn)φ

(
p, xn

)
+ 2αn

〈
zn − p, Jw − Jp

〉]

+ γn(kn − 1)φ
(
p, yn

) − γnβng
(∥∥Jxn − JTnyn

∥∥)

≤ [
βn +

(
γn + θn

)
(1 − αn)

]
φ
(
p, xn

)
+ 2αn

(
γn + θn

)〈
zn − p, Jw − Jp

〉

+ γn(kn − 1)φ
(
p, yn

) − γnβng
(∥∥Jxn − JTnyn

∥∥)

≤ (1 − δn)φ
(
p, xn

)
+ 2δn

〈
zn − p, Jw − Jp

〉
+ (kn − 1)M − γnβng

(∥∥Jxn − JTnyn

∥∥)

(3.8)

≤ (1 − δn)φ
(
p, xn

)
+ 2δn

〈
zn − p, Jw − Jp

〉
+ (kn − 1)M, (3.9)

for some M > 0, where δn = (γn + θn)αn.
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Similarly, from (3.7), we obtain that

φ
(
p, xn+1

)
= φ

(
p, J−1

(
βnJxn + γnJT

nyn + θnJQryn

))

≤ (1 − δn)φ
(
p, xn

)
+ 2δ

〈
zn − p, Jw − Jp

〉
+ (kn − 1)M − θnβng

(∥∥Jxn − JQryn

∥
∥)

≤ (1 − δn)φ
(
p, xn

)
+ 2δn

〈
zn − p, Jw − Jp

〉
+ (kn − 1)M,

(∗)

for some M > 0. Note that {δn} satisfies that limn→∞δn = 0 and
∑

δn = ∞.
Now, the rest of the proof is divided into two parts.

Case 1. Suppose that there exists n0 ∈ N > N0 such that {φ(p, xn)} is nonincreasing for all
n ≥ n0. In this situation, {φ(p, xn)} is then convergent. Then, from (3.8) and (∗), we have that

γnβng
(∥∥Jxn − JTnyn

∥∥) −→ 0, θnβng
(∥∥Jxn − JQryn

∥∥) −→ 0, (3.10)

which implies, by the property of g, that

Jxn − JTnyn −→ 0, Jxn − JQryn −→ 0, as n −→ ∞, (3.11)

and, hence, since J−1 is uniformly continuous on bounded sets, we obtain that

xn − Tnyn −→ 0, xn −Qryn −→ 0, as n −→ ∞. (3.12)

Furthermore, Lemma 2.3, property of φ, and the fact that αn → 0 as n → ∞ imply that

φ
(
xn, yn

)
= φ(xn,ΠCzn) ≤ φ(xn, zn)

= φ(xn, J
−1(αnJw + (1 − αn)Jxn)

≤ αnφ(xn,w) + (1 − αn)φ(xn, xn)

≤ αnφ(xn,w) + (1 − αn)φ(xn, xn) −→ 0, as n −→ ∞,

(3.13)

and hence

xn − yn −→ 0, xn − zn −→ 0, as n −→ ∞. (3.14)

Therefore, from (3.12) and (3.14), we obtain that

yn − zn −→ 0, yn − Tnyn −→ 0, yn −Qryn −→ 0, as n −→ ∞. (3.15)

But observe that from (3.2) and (3.11), we have

‖Jxn+1 − Jxn‖ ≤ γn
∥∥JTnyn − Jxn

∥∥ + θn
∥∥JQryn − Jxn

∥∥ −→ 0, (3.16)
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as n → ∞. Thus, as J−1 is uniformly continuous on bounded sets, we have that xn+1−xn → 0
which implies from (3.14) that xn+1 − yn → 0, as n → ∞, and that

∥
∥yn+1 − yn

∥
∥ ≤ ∥

∥yn+1 − xn+1
∥
∥ +

∥
∥xn+1 − yn

∥
∥ −→ 0, as n −→ ∞. (3.17)

Furthermore, since

∥
∥yn − Tyn

∥
∥ ≤ ∥

∥yn − Tnyn

∥
∥ +

∥
∥
∥Tnyn − Tn+1yn

∥
∥
∥ +

∥
∥
∥Tn+1yn − Tyn

∥
∥
∥,

≤ ∥
∥yn − Tnyn

∥
∥ +

∥
∥
∥Tn+1yn − Tn+1yn+1

∥
∥
∥ +

∥
∥
∥Tn+1yn+1 − yn+1

∥
∥
∥

+
∥
∥yn+1 − yn

∥
∥ +

∥
∥yn − Tnyn

∥
∥ +

∥
∥T

(
Tnyn

) − Tyn

∥
∥

≤ ∥
∥yn − Tnyn

∥
∥ + L

∥
∥yn − yn+1

∥
∥ +

∥
∥
∥Tn+1yn+1 − yn+1

∥
∥
∥

+
∥
∥yn+1 − yn

∥
∥ +

∥
∥yn − Tnyn

∥
∥ +

∥
∥T

(
Tnyn

) − Tyn

∥
∥

≤ 2
∥∥yn − Tnyn

∥∥ + (1 + L)
∥∥yn − yn+1

∥∥ +
∥∥∥Tn+1yn+1 − yn+1

∥∥∥ +
∥∥T

(
Tnyn

) − Tyn

∥∥,

(3.18)

we have from (3.17), (3.15), and uniform continuity of T that

∥∥yn − Tyn

∥∥ −→ 0, as n −→ ∞. (3.19)

Since {zn} is bounded and E is reflexive, we choose a subsequence {zni} of {zn} such that
zni ⇀ z and lim supn→∞〈zn − p, Jw − Jp〉 = limi→∞〈zni − p, Jw − Jp〉. Then, from (3.14) and
(3.15)we get that

yni ⇀ z, xni ⇀ z, as i −→ ∞. (3.20)

Thus, since T satisfies condition (N3), we obtain from (3.19) that z ∈ F(T) and the fact that
Qr is relatively nonexpansive and yni ⇀ z implies that z ∈ F(Qr) = A−1(0), and, hence, using
(3.1), we obtain that z ∈ VI(C,A).

Therefore, from the above discussions, we obtain that z ∈ F := F(T)∩VI(C,A). Hence,
by Lemma 2.6, we immediately obtain that lim supn→∞〈zn−p, Jw−Jp〉 = limi→∞〈zni−p, Jw−
Jp〉 = 〈z− p, Jw − Jp〉 ≤ 0. It follows from Lemma 2.9 and (3.9) that φ(p, xn) → 0, as n → ∞.
Consequently, xn → p.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

φ
(
p, xni

)
< φ

(
p, xni+1

)
(3.21)

for all i ∈ N. Then, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞, φ(p, xmk) ≤ φ(p, xmk+1) and φ(p, xk) ≤ φ(p, xmk+1) for all k ∈ N. Then, from
(3.8), (∗) and the fact δn → 0, we have

g
(∥∥Jxmk − JTmkymk

∥∥) −→ 0, g
(∥∥Jxmk − JQrymk

∥∥) −→ 0, as k −→ ∞. (3.22)
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Thus, using the same proof as in Case 1, we obtain that ymk − Tymk → 0, ymk −Qrymk → 0,
as k → ∞, and, hence, we obtain that

lim sup
k→∞

〈
zmk − p, Jw − Jp

〉 ≤ 0. (3.23)

Then, from (3.9), we have that

φ
(
p, xmk+1

) ≤ (1 − δmk)φ
(
p, xmk

)
+ 2δmk

〈
zmk − p, Jw − Jp

〉
+ (kmk − 1)M. (3.24)

Since φ(p, xmk) ≤ φ(p, xmk+1), (3.24) implies that

δmkφ
(
p, xmk

) ≤ φ
(
p, xmk

) − φ
(
p, xmk+1

)
+ 2δmk

〈
zmk − p, Jw − Jp

〉
+ (kmk − 1)M

≤ 2δmk

〈
zmk − p, Jw − Jp

〉
+ (kmk − 1)M.

(3.25)

In particular, since δmk > 0, we get

φ
(
p, xmk

) ≤ 2
〈
zmk − p, Jw − Jp

〉
+
(kmk − 1)

δmk

M. (3.26)

Then, from (3.23) and the fact that (kmk − 1)/δmk → 0, we obtain φ(p, xmk) → 0, as k → ∞.
This together with (3.24) gives φ(p, xmk+1) → 0, as k → ∞. But φ(p, xk) ≤ φ(p, xmk+1), for all
k ∈ N, thus we obtain that xk → p. Therefore, from the above two cases, we can conclude
that {xn} converges strongly to p and the proof is complete.

If, in Theorem 3.1, we assume that T is relatively nonexpansive, we get the following
corollary.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. Let A : C → E∗ be a monotone mapping satisfying (2.8) and ‖Ax‖ ≤
‖Ax −Ap‖, for all x ∈ C and p ∈ VI(C,A). Let T : C → C be a relatively nonexpansive mapping.
Assume that F := VI(C,A) ∩ F(S) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJTyn + θnJQryn

)
,

(3.27)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such
that βn + γn + θn = 1. Then, {xn} converges strongly to an element of F.

Proof. We note that the method of proof of Theorem 3.1 provides the required assertion.

If E = H, a real Hilbert space, then E is uniformly convex and uniformly smooth real
Banach space. In this case, J = I, identity map on H and ΠC = PC, projection mapping from
H onto C. Thus, the following corollary holds.
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Corollary 3.3. LetC be a nonempty, closed, and convex subset of a real Hilbert spaceH. LetA : C →
H be a monotone mapping satisfying (2.8) and ‖Ax‖ ≤ ‖Ax−Ap‖, for all x ∈ C and p ∈ V I(C,A).
Let T : C → C be a uniformly L-Lipschitzian relatively asymptotically nonexpansive mapping with
sequence {kn}. Assume that F := V I(C,A) ∩ F(S) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = PC(αnw + (1 − αn)xn),

xn+1 = βnxn + γnT
nyn + θnQryn,

(3.28)

where αn ∈ (0, 1) such that limn→∞αn = 0, limn→∞((kn − 1)/αn) = 0,
∑∞

n=1 αn = ∞,
{βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such that βn + γn + θn = 1. Then, {xn} converges strongly to
an element of F.

Now, we state the second main theorem of our paper.

Theorem 3.4. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. LetA : C → E∗ be a monotone mapping satisfying (2.8). Let T : C → C
be a uniformly L-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {kn}.
Assume that F := A−1(0) ∩ F(S) is nonempty. Let Qr be the resolvent of A and {xn} a sequence
generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJT

nyn + θnJQryn

)
,

(3.29)

where αn ∈ (0, 1) such that limn→∞αn = 0, limn→∞((kn − 1)/αn) = 0,
∑∞

n=1 αn = ∞,
{βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such that βn + γn + θn = 1. Then, {xn} converges strongly to
an element of F.

Proof. Similar method of proof of Theorem 3.1 provides the required assertion.

If, in Theorem 3.4, A = 0, then we have the following corollary. Similar proof of
Theorem 3.1 provides the assertion.

Corollary 3.5. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. Let T : C → C be a uniformly L-Lipschitzian relatively asymptotically
nonexpansive mapping with sequence {kn}. Assume that F := F(S) is nonempty. Let {xn} be a
sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn +

(
1 − βn

)
JTnyn

)
,

(3.30)

where αn ∈ (0, 1) such that limn→∞αn = 0, limn→∞((kn − 1)/αn) = 0,
∑∞

n=1 αn = ∞, {βn} ⊂
[c, d] ⊂ (0, 1). Then, {xn} converges strongly to an element of F.



Journal of Applied Mathematics 15

If, in Theorem 3.4, T = I, identity mapping on C, then we have the following corollary.

Corollary 3.6. Let C be a nonempty, closed, and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let A : C → E∗ be a monotone mapping satisfying (2.8). Assume that
F := A−1(0) is nonempty. Let Qr be the resolvent of A and {xn} a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn +

(
1 − βn

)
JQryn

)
,

(3.31)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂ [c, d] ⊂ (0, 1). Then, {xn}
converges strongly to an element of F.

If, in Theorem 3.4, we assume that T is relatively nonexpansive, we get the following
corollary.

Corollary 3.7. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. LetA : C → E∗ be a monotone mapping satisfying (2.8). Let T : C → C
be a relatively nonexpansive mapping. Assume that F := A−1(0) ∩ F(S) is nonempty. Let {xn} be a
sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJTyn + θnJQryn

)
,

(3.32)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such
that βn + γn + θn = 1. Then, {xn} converges strongly to an element of F.

We may also get the following corollary for a common zero of monotone mappings.

Corollary 3.8. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. LetA,B : C → E∗ be monotone mappings satisfying (2.8). Suppose that
T1 = (J + rA)−1J and T2 = (J + rB)−1J . Assume that F := A−1(0) ∩ B−1(0) is nonempty. Let {xn}
be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJT1yn + θnJT2yn

)
,

(3.33)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such
that βn + γn + θn = 1. Then, {xn} converges strongly to an element of F.

Proof. Clearly, from Lemma 2.8, we know that T1 and T2 are relatively nonexpansive
mappings. We also have that F(T1) = A−1(0) and F(T2) = B−1(0). Thus, the conclusion follows
from Corollary 3.7.
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Remark 3.9. We remark that from Corollary 3.8 the scheme converges strongly to a common
zero of twomonotone operators. Wemay also have the following theorem for a common zero
of finite family of monotone mappings.

Theorem 3.10. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. Let Ai : C → E∗, i = 1, 2, . . . ,N be monotone mappings satisfying
(2.8). Suppose that Ti = (J + rAi)

−1J , and assume that F := ∩N
i=1A

−1
i (0) is nonempty. Let {xn} be a

sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βn,0Jxn + βn,1JT1yn + · · · + βn,NJTNyn

)
,

(3.34)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [c, d] ⊂ (0, 1), for
i = 0, 1, 2, . . . ,N, such that

∑N
i=0 βn,i = 1. Then, {xn} converges strongly to an element of F.

A monotone mapping A : C → E∗ is said to be maximal monotone if its graph is not
properly contained in the graph of any monotone operator. We know that if A is maximal
monotone operator, then A−1(0) is closed and convex: see [4] for more details. The following
Lemma is well known.

Lemma 3.11 (see [28]). Let E be a smooth and strictly convex and reflexive Banach space, let C be a
nonempty closed convex subset of E, and let A : C → E∗ be a monotone operator. Then A is maximal
if and only if R(J + rA) = E∗ for all r > 0.

We note from the above lemma that ifA is maximal then it satisfies condition (2.8) and
hence we have the following corollary.

Corollary 3.12. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E. Let A : C → E∗ be a maximal monotone mapping. Let T : C → C
be a uniformly L-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {kn}.
Assume that F := A−1(0) ∩ F(S) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(
βnJxn + γnJT

nyn + θnJQryn

)
,

(3.35)

where αn ∈ (0, 1) such that limn→∞αn = 0, limn→∞((kn − 1)/αn) = 0,
∑∞

n=1 αn = ∞,
{βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such that βn + γn + θn = 1. Then, {xn} converges strongly to
an element of F.

4. Application

In this section, we study the problem of finding a minimizer of a lower semicontinuous
continuously convex functional in Banach spaces.
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Theorem 4.1. Let E be a uniformly convex and uniformly smooth real Banach space. Let f, g : E →
(−∞,∞) be a proper lower semicontinuous convex functions. Assume that F := (∂f)−1(0)∩(∂g)−1(0)
is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

hn = argmin
{
f(z) +

1
2r

φ
(
z, yn

)
, z ∈ E

}
,

tn = argmin
{
g(z) +

1
2r

φ
(
z, yn

)
, z ∈ E

}
,

xn+1 = J−1
(
βnJxn + γnJhn + θnJtn

)
,

(4.1)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn}, {γn}, {θn} ⊂ [c, d] ⊂ (0, 1) such
that βn + γn + θn = 1. Then, {xn} converges strongly to an element of F.

Proof. Let A and B be operators defined by A = ∂f and B = ∂g and Qr = (J + rA)−1J , QB
r =

(J + rB)−1J for all r > 0. Then, by Rockafellar [29],A and B are maximal monotonemappings.
We also have that

hn = QA
r y = argmin

{
f(z) +

1
2r

φ
(
z, y

)
, z ∈ E

}
,

tn = QB
r y = argmin

{
g(z) +

1
2r

φ
(
z, y

)
, z ∈ E

}
,

(4.2)

for all y ∈ E and r > 0. Furthermore, we have that F(QA
r ) = A−1(0) and F(QB

r ) = B−1(0). Thus,
by Corollary 3.8, we obtain the desired result.

Remark 4.2. Consider the following.

(1) Theorem 3.1 improves and extends the corresponding results of Zegeye et al. [12]
and Zegeye and Shahzad [22] in the sense that either our scheme does not require
computation of Cn+1 for each n ≥ 1 or the space considered is more general.

(2) Corollary 3.5 improves the corresponding results of Nakajo and Takahashi [30] and
Matsushita and Takahashi [17] in the sense that either our scheme does not require
computation of Cn+1 for each n ≥ 1 or the class of mappings considered in our
corollary is more general.

(3) Corollary 3.6 improves the corresponding results of Iiduka and Takahashi [11],
Iiduka et al. [14], and Alber [1] in the sense that our scheme does not require
computation of Cn+1 for each n ≥ 1 or the class of mappings considered in our
corollary is more general.
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