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We discuss the following problem: when aP + bQ + cPQ + dQP + ePQP + fQPQ + gPQPQ of
idempotent matrices P and Q, where a, b, c, d, e, f, g ∈ C and a/= 0, b /= 0, is group involutory.

1. Introduction

Throughout this paper C
n×n stands for the set of n × n complex matrices. Let A ∈ C

n×n. A is
said to be idempotent if A2 = A. A is said to be group invertible if there exists an X ∈ C

n×n

such that

AXA = A, XAX = X, AX = XA (1.1)

hold. If such an X exists, then it is unique, denoted by Ag , and called the group inverse of A.
It is well known that the group inverse of a square matrix A exists if and only if rank(A2) =
rank(A) (see, e.g., [1] for details). Clearly, not every matrix is group invertible. But the group
inverse of every idempotent matrix exists and is this matrix itself.

Recall that a matrix Awith the group inverse is said to be group involutory if Ag = A.
A is the group involutory matrix if and only if it is tripotent, that is, satisfiesA3 = A (see [2]).
Thus, for a nonzero idempotent matrix P and a nonzero scalar a, aP is a group involutory
matrix if and only if either a = 1 or a = −1.

Recently, some properties of linear combinations of idempotents or projections are
widely discussed (see, e.g., [3–12] and the literature mentioned below). In [13], authors
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established a complete solution to the problem of when a linear combination of two different
projectors is also a projector. In [14], authors considered the following problem: when a linear
combination of nonzero different idempotent matrices is the group involutory matrix. In
[15], authors provided the complete list of situations in which a linear combination of two
idempotent matrices is the group involutory matrix. In [16], authors discussed the group
inverse of aP + bQ+ cPQ+dQP + ePQP + fQPQ+gPQPQ of idempotent matrices P andQ,
where a, b, c, d, e, f, g ∈ C with a, b /= 0, deduced its explicit expressions, and some necessary
and sufficient conditions for the existence of the group inverse of aP + bQ + cPQ.

In this paper, we will investigate the following problem: when aP + bQ+ cPQ+dQP +
ePQP + fQPQ + gPQPQ is group involutory. To this end, we need the results below.

Lemma 1.1 (see [16, Theorems 2.1 and 2.4]). Let P,Q ∈ C
n×n be two different nonzero idempotent

matrices. Suppose (PQ)2 = (QP)2. Then for any scalars a, b, c, d, e, f, g, where a, b /= 0 and
θ = a+ b+ c+d+ e+ f +g, aP + bQ+ cPQ+dQP + ePQP + fQPQ+g(PQ)2 is group invertible,
and

(i) if θ /= 0, then
(
aP + bQ + cPQ + dQP + ePQP + fQPQ + g(PQ)2

)
g

=
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP

+
(
2
a
+
1
b
+
c + d

ab
+
cd − be

a2b

)
PQP +

(
1
a
+
2
b
+
c + d

ab
+
cd − af

ab2

)
QPQ

−
(
2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2
− 1
θ

)
PQPQ;

(1.2)

(ii) if θ = 0, then
(
aP + bQ + cPQ + dQP + ePQP + fQPQ + g(PQ)2

)
g

=
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP

+
(
2
a
+
1
b
+
c + d

ab
+
cd − be

a2b

)
PQP +

(
1
a
+
2
b
+
c + d

ab
+
cd − af

ab2

)
QPQ

−
(
2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2

)
(PQ)2.

(1.3)

Lemma 1.2 (see [16, Theorem 3.1]). Let P,Q ∈ C
n×n be two different nonzero idempotent matrices.

Suppose (QP)2 = 0. Then for any scalars a, b, c, d, e, f , and g, where a, b /= 0, aP + bQ + cPQ +
dQP + ePQP + fQPQ + g(PQ)2 is group invertible, and

(
aP + bQ + cPQ + dQP + ePQP + fQPQ + g(PQ)2

)
g

=
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP
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+
(
2
a
+
1
b
+
c + d

ab
+
cd − be

a2b

)
PQP +

(
1
a
+
2
b
+
c + d

ab
+
cd − af

ab2

)
QPQ

−
(

2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2

)
(PQ)2.

(1.4)

2. Main Results

In this section, we will research when some combination of two nonzero idempotent matrices
is a group involutory matrix.

First, we will discuss some situations lying in the category of (PQ)2 = (QP)2.

Theorem 2.1. Let P,Q ∈ C
n×n be two different nonzero idempotent matrices with (PQ)2 = (QP)2,

and let A be a combination of the form

A = aP + bQ + cPQ + dQP + ePQP + fQPQ + gPQPQ, (2.1)

where a, b, c, d, e, f, g ∈ C with a, b /= 0. Denote θ = a + b + c + d + e + f + g. Then the following list
comprises characteristics of all cases where A is the group involutory matrix:

(a) the cases denoted by (a1) ∼ (a3), in which

PQ = QP, (2.2)

and any of the following sets of additional conditions hold:

(a1) either a = 1 or a = −1, either θ = 1 or θ = −1 or θ = 0, and Q = PQ;

(a2) either b = 1 or b = −1, either θ = 1 or θ = −1 or θ = 0, and P = PQ;

(a3) either a = 1 or a = −1, either b = 1 or b = −1, either θ = 1 or θ = −1 or θ = 0 or PQ = 0.

(b) the cases denoted by (b1) ∼ (b6), in which

PQ/=QP, PQP = QPQ, (2.3)

and any of the following sets of additional conditions hold:

(b1) a = ±1, b = ∓1, either θ = 1 or θ = −1 or θ = 0 or PQP = 0;

(b2) a = b = ±1, c = d = ∓1, either θ = 1 or θ = −1 or θ = 0 or PQP = 0;

(b3) a = b = ±1, c = ∓1, either θ = 1 or θ = −1 or θ = 0, and QP = PQP ;

(b4) a = b = ±1, d = ∓1, either θ = 1 or θ = −1 or θ = 0, and PQ = PQP ;

(b5) a = b = ±1, c = ∓1, and QP = 0;

(b6) a = b = ±1, d = ∓1, and PQ = 0,

(c) the cases denoted by (c1) ∼ (c18), in which

PQP /=QPQ, PQPQ = QPQP, (2.4)
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and any of the following sets of additional conditions hold:

(c1) a = ±1, b = ∓1, c + d + 2e ± cd = ±1, either θ = 1 or θ = −1, and QPQ = PQPQ;

(c2) a = b = e = ±1, c = d = ∓1, either θ = 1 or θ = −1, and QPQ = PQPQ;

(c3) a = ±1, b = ∓1, c + d + 2f ∓ cd = ∓1, either θ = 1 or θ = −1, and PQP = PQPQ;

(c4) a = b = f = ±1, c = d = ∓1, either θ = 1 or θ = −1, and PQP = PQPQ;

(c5) a = ±1, b = ∓1, c + d + 2e ± cd = ±1, c + d + 2f ∓ cd = ∓1, either g = 1 or g = −1;
(c6) a = b = e = f = ±1, c = d = ∓1, either g = ∓1 or g = ∓3;
(c7) a = ±1, b = ∓1, c + d + 2e ± cd = ±1, and QPQ = 0;

(c8) a = b = e = ±1, c = d = ∓1, and QPQ = 0;

(c9) a = ±1, b = ∓1, c + d + 2f ∓ cd = ∓1, and PQP = 0;

(c10) a = b = f = ±1, c = d = ∓1, and PQP = 0;

(c11) a = ±1, b = ∓1, c + d + 2e ± cd = ±1, c + d + 2f ∓ cd = ∓1, and PQPQ = 0;

(c12) a = b = e = f = ±1, c = d = ∓1, and PQPQ = 0;

(c13) a = ±1, b = ∓1, 2e + c + d ± cd = ±1, θ = 0, and QPQ = PQPQ;

(c14) a = b = e = ±1, c = d = ∓1, θ = 0, and QPQ = PQPQ;

(c15) a = ±1, b = ∓1, 2f + c + d ∓ cd = ∓1, θ = 0, and PQP = PQPQ;

(c16) a = b = f = ±1, c = d = ∓1, θ = 0, and PQP = PQPQ;

(c17) a = ±1, b = ∓1, 2e + c + d ± cd = ±1, 2f + c + d ∓ cd = ∓1, g = 0;

(c18) a = b = e = f = ±1, c = d = ∓1, g = ∓2.

Proof. Obviously, the condition (2.2) implies that the group inverse of A exists and is of the
form (1.2) when θ /= 0 or the form (1.3) when θ = 0 by Lemma 1.1. So do the conditions (2.2),
(2.3), and (2.4). We will straightforwardly show that a matrixA of the form (2.1) is the group
involutory matrix if and only if A −Ag = 0.

(a) Under the condition (2.2), A = aP + bQ + μPQ, where μ = c + d + e + f + g.
(1) If θ /= 0, then

Ag =
1
a
P +

1
b
Q +

(
1
θ
− 1
a
− 1
b

)
PQ, (2.5)

and so

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
μ − 1

θ
+
1
a
+
1
b

)
PQ = 0. (2.6)

Multiplying (2.6) by P and Q, respectively, leads to

(
a − 1

a

)
P +
(
b − 1

b

)
PQ +

(
μ − 1

θ
+
1
a
+
1
b

)
PQ = 0,

(
a − 1

a

)
PQ +

(
b − 1

b

)
Q +

(
μ − 1

θ
+
1
a
+
1
b

)
PQ = 0,

(2.7)



Journal of Applied Mathematics 5

and then

(
a − 1

a

)
P +
(
b − 1

b

)
PQ =

(
a − 1

a

)
PQ +

(
b − 1

b

)
Q. (2.8)

Multiplying the above equation, respectively, by P and by Q, we get

(
a − 1

a

)
(P − PQ) = 0,

(
b − 1

b

)
(Q − PQ) = 0. (2.9)

Thus, since P /=Q, we have three situations: P = PQ and b = b−1; a = a−1 andQ = PQ; a = a−1

and b = b−1.
When Q = PQ and a = a−1, (2.6) becomes (θ − θ−1)Q = 0 and then θ = ±1. Therefore,

we obtain (a1) except the situation θ = 0. Similarly, when b = b−1 and P = PQ, we have (a2)
except the situation θ = 0. When a = a−1 and b = b−1, (2.6) becomes (θ − θ−1)PQ = 0 and then
θ = ±1 or PQ = 0. Therefore, we obtain (a3) except the situation θ = 0.

(2) If θ = 0, then

Ag =
1
a
P +

1
b
Q −

(
1
a
+
1
b

)
PQ, (2.10)

and then

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
μ +

1
a
+
1
b

)
PQ = 0. (2.11)

Analogous to the process of reaching (2.9) in (a)(1), we have

(
b − 1

b

)
(Q − PQ) = 0,

(
a − 1

a

)
(P − PQ) = 0. (2.12)

Thus, we have three situations: P = PQ and b = b−1; a = a−1 andQ = PQ; a = a−1 and b = b−1,
since P /=Q. Similar to the argument in (a)(1), substituting them, respectively, into (2.11), we
can obtain the situation θ = 0, respectively, in (a1), (a2), and (a3).

(b) Under the condition (2.3),A = aP + bQ + cPQ + dQP + νPQP , where ν = e + f + g.
(1) If θ /= 0, then

Ag =
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP

+
(
1
a
+
1
b
+
c + d

ab
+
1
θ

)
PQP,

(2.13)
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and so

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
c +

1
a
+
1
b
+

c

ab

)
PQ

+
(
d +

1
a
+
1
b
+

d

ab

)
QP +

(
ν − 1

a
− 1
b
− c + d

ab
− 1
θ

)
PQP = 0.

(2.14)

Multiplying the above equation, respectively, on the two sides by P yields

0 =
(
a − 1

a

)
P +
(
c + b +

1
a
+

c

ab

)
PQ +

(
ν + d − c

ab
− 1
θ

)
PQP, (2.15)

0 =
(
a − 1

a

)
P +
(
b + d +

1
a
+

d

ab

)
QP +

(
ν + c − d

ab
− 1
θ

)
PQP. (2.16)

Multiplying (2.15) on the left sides by Q and (2.16) on the right sides by Q, by (2.3), we have

(
a − 1

a

)
QP +

(
b + c + d + ν +

1
a
− 1
θ

)
QPQ = 0,

(
a − 1

a

)
PQ +

(
b + c + d + ν +

1
a
− 1
θ

)
QPQ = 0,

(2.17)

and then (a − a−1)(QP − PQ) = 0. Since QP /=PQ, a = a−1. Similarly, b = b−1.
Substituting a = a−1 inside (2.17) yields (θ−θ−1)QPQ = 0 and then θ = θ−1 orQPQ = 0.

We will discuss the remainder for detail as follows:
When a = a−1, b = b−1, (2.14) becomes

0 =
(
c +

1
a
+
1
b
+

c

ab

)
PQ +

(
d +

1
a
+
1
b
+

d

ab

)
QP

+
(
ν − 1

a
− 1
b
− c + d

ab
− 1
θ

)
PQP,

(2.18)

(i) if a + b = 0, then

c +
1
a
+
1
b
+

c

ab
= 0, d +

1
a
+
1
b
+

d

ab
= 0, (2.19)

and so it follows from (2.18) that

(
θ − 1

θ

)
PQP =

(
ν + c + d − 1

θ

)
PQP = 0. (2.20)

Therefore, either θ = θ−1 or PQP = 0 implies that (2.18) holds, namely, (2.14) holds. Thus, we
have (b1) except the situation θ = 0.
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(ii) if a = b, then (2.18) becomes

0 = (2c + 2a)PQ + (2d + 2a)QP +
(
2ν − θ − 1

θ

)
PQP. (2.21)

Multiplying the above equation, respectively, on the right side by P and on the left side byQ,
we have

0 = (2c + 2a)PQ +
(
ν + d − c − 1

θ

)
PQP, (2.22)

0 = (2d + 2a)QP +
(
ν + c − d − 1

θ

)
PQP. (2.23)

So if θ = θ−1, then the two equations above (2.22) and (2.23) become, respectively,

(c + a)(PQ − PQP) = 0, (d + a)(QP − PQP) = 0. (2.24)

Or if PQP = 0, then (2.22) and (2.23) become, respectively,

(c + a)PQ = 0, (d + a)QP = 0. (2.25)

Since PQ/=QP , it follows from (2.24) and (2.25) that we have the six situations: θ = θ−1 and
c = d = −a; θ = θ−1, c = −a and QP = PQP ; θ = θ−1, d = −a, and PQ = PQP ; c = −a and
QP = 0; d = −a and PQ = 0; c = d = −a and PQP = 0. Thus, we have (b2) ∼ (b4) except the
situation θ = 0, and (b5) and (b6).

(2) If θ = 0, then

Ag =
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP +

(
1
a
+
1
b
+
c + d

ab

)
PQP, (2.26)

and then

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
c +

1
a
+
1
b
+

c

ab

)
PQ

+
(
d +

1
a
+
1
b
+

d

ab

)
QP +

(
ν − 1

a
− 1
b
− c + d

ab

)
PQP = 0.

(2.27)

Analogous to the process in (b)(1), using (2.27)we can obtain

(
a − 1

a

)
QP −

(
a − 1

a

)
PQP = 0,

(
a − 1

a

)
PQ −

(
a − 1

a

)
PQP = 0.

(2.28)
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Thus, since PQ/=QP , PQ/=PQP and/or QP /=PQP and then a = a−1. Similarly, b = b−1.
Hence, a = ±b.

(i) If a = −b, then

c +
1
a
+
1
b
+

c

ab
= 0,

d +
1
a
+
1
b
+

d

ab
= 0,

ν − 1
a
− 1
b
− c + d

ab
= − 2(a + b) = 0.

(2.29)

Thus, (2.27) holds. Hence we have the situation θ = 0 in (b1).
(ii) If a = b, then (2.27) becomes

(c + a)PQ + (d + a)QP + νPQP = 0. (2.30)

Multiplying the above equation on the left side, respectively, by P and by Q, we have

(c + a)(PQ − PQP) = 0, (d + a)(QP − PQP) = 0. (2.31)

Thus, c = d = −a; c = −a and QP = PQP ; d = −a and PQ = PQP . Hence, we have the
situation θ = 0, respectively, in (b2), (b3), and (b4).

(c) Under the condition (2.4),

A = aP + bQ + cPQ + dQP + ePQP + fQPQP + gPQPQ. (2.32)

(1) If θ /= 0, then

Ag =
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP

+
(
2
a
+
1
b
+
c + d

ab
+
cd − be

a2b

)
PQP +

(
1
a
+
2
b
+
c + d

ab
+
cd − af

ab2

)
QPQ

−
(
2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2
− 1
θ

)
PQPQ,

(2.33)

and so

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
c +

1
a
+
1
b
+

c

ab

)
PQ +

(
d +

1
a
+
1
b
+

d

ab

)
QP

+
(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP
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+
(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ

+
(
g +

2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2
− 1
θ

)
PQPQ = 0.

(2.34)

If PQ = 0, then QPQ = 0 = PQP and so it contradicts (2.4). Thus PQ/= 0. Similarly, QP /= 0.
Multiplying (2.34) on the left side by QP yields

(
a − 1

a

)
QP +

(
b + c +

1
a
+

c

ab

)
QPQ +

(
d + e + f + g − c

ab
− 1
θ

)
PQPQ = 0. (2.35)

Multiplying the above equation, respectively, on the left side by P and on the right side by
PQ yields, by (2.4),

0 =
(
a − 1

a

)
PQP +

(
1
a
− a + θ − 1

θ

)
PQPQ, (2.36)

0 =
(
a − 1

a

)
QPQ +

(
1
a
− a + θ − 1

θ

)
PQPQ. (2.37)

Since PQP /=QPQ, a = a−1 by (2.36) and (2.37). Similarly, we can gain b = b−1. Substituting
a = a−1 inside (2.36) yields θ = θ−1 or PQPQ = 0.

(i) Consider the case of a = a−1, b = b−1 and θ = θ−1.
Substituting a = a−1, b = b−1, and θ = θ−1 inside (2.35) yields

(
a + b + c +

c

ab

)
(QPQ − PQPQ) = 0. (2.38)

Similarly, we have

(
a + b + d +

d

ab

)
(PQP − PQPQ) = 0. (2.39)

If PQP = PQPQ, thenQPQ/=PQPQ by the hypothesis PQP /=QPQ and so a + b + c +
c/ab = 0 by (2.38). Multiplying (2.34) on the right side by Q yields

(
a + c + d + 2f − cd

a

)
(QPQ − PQPQ) = 0. (2.40)

Thus, a + c + d + 2f − cd/a = 0 and then (2.14) becomes

(
a + b + d +

d

ab

)
QP +

(
f − a − 2b − c + d

ab
− cd − af

a

)
QPQ

+
(
b + e + g +

cd − af

a
− θ

)
PQP = 0.

(2.41)
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Multiplying the above equation on the right side by P yields

(
a + b + d +

d

ab

)
(QP − PQP) = 0. (2.42)

Assume PQ = PQP . Then QPQ = QPQP = PQPQ = PQ = PQP and it contradicts the
hypothesis PQP /=QPQ. Thus, a + b + d + d/ab = 0.

Similarly, ifQPQ = PQPQ, then we can obtain a+b+d+
d

ab
= 0, b+c+d+2e−cd/b = 0,

and a + b + c + c/ab = 0.
Obviously, if QPQ/=QPQP and QPQ/=PQPQ, we have a + b + d + d/ab = 0, a + b +

c + c/ab = 0, b + c + d + 2e − cd/b = 0, and a + c + d + 2f − cd/a = 0.
Next, we calculate these scalars. If a + b = 0, then a + b + c + c/ab = 0 for any c and

a + b + d + d/ab = 0 for any d, and so c, d, e are chosen to satisfy b + c + d + 2e − cd/b = 0.
Similarly c, d, f are chosen to satisfy a + c + d + 2f − cd/a = 0.

If a = b, then c = d = −a, and e = a by solving b + c + d + 2e − cd/b = 0, and f = a by
solving a + c + d + 2f − cd/a = 0.

Note that b + c + d + 2e − cd/b = 0 and a + c + d + 2f − cd/a = 0 imply g = θ − (a + b).
Hence, we have (c1) ∼ (c6).

(ii) Consider the case of a = a−1, b = b−1, and PQPQ = 0.
Multiplying (2.34), respectively, on the right side by QP and on the left side by PQ

yields

(
c +

1
a
+
1
b
+

c

ab

)
QPQ = 0,

(
d +

1
a
+
1
b
+

d

ab

)
PQP = 0.

(2.43)

If QPQ = 0, then PQP /= 0 and so a + b + d + d/ab = 0 and (2.34) becomes

0 =
(
c +

1
a
+
1
b
+

c

ab

)
PQ +

(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP. (2.44)

Multiplying (2.44) on right side by Q yields

(
c +

1
a
+
1
b
+

c

ab

)
PQ = 0. (2.45)

Since PQ/= 0, a + b + c + c/ab = 0 and then (2.44) becomes

(
2e + b + c + d − cd

b

)
PQP. (2.46)

Thus, 2e + b + c + d − cd/b = 0.
If PQP = 0, then we, similarly, have a + b + c + c/ab = 0, a + b + d + d/ab = 0, and

2f + a + c + d − cd/a = 0.



Journal of Applied Mathematics 11

If PQP /= 0 and QPQ/= 0, then, multiplying (2.34), on the right side by Q and on the
left side by P yields a + b + c + c/ab = 0, and multiplying (2.34) on the right side by P and on
the left side by Q yields a + b + d + d/ab = 0. Thus, (2.34) becomes

(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP +

(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ = 0. (2.47)

Multiplying the equation above on the right side, respectively, by P and by Q yields

2e + b + c + d − cd

b
= 0, 2f + a + c + d − cd

a
= 0. (2.48)

As the argument above in (i), we have (c7) ∼ (c12).
(2) If θ = 0, then

Ag =
1
a
P +

1
b
Q −

(
1
a
+
1
b
+

c

ab

)
PQ −

(
1
a
+
1
b
+

d

ab

)
QP

+
(
2
a
+
1
b
+
c + d

ab
+
cd − be

a2b

)
PQP +

(
1
a
+
2
b
+
c + d

ab
+
cd − af

ab2

)
QPQ

−
(
2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2

)
PQPQ,

(2.49)

and so

A −Ag =
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
c +

1
a
+
1
b
+

c

ab

)
PQ

+
(
d +

1
a
+
1
b
+

d

ab

)
QP +

(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP

+
(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ

+
(
g +

2
a
+
2
b
+
c + d

ab
+
cd − be

a2b
+
cd − af

ab2

)
PQPQ = 0.

(2.50)

Analogous to the process in (c)(1), using (2.50), we can get

(
a − 1

a

)
(PQP − PQPQ) = 0,

(
a − 1

a

)
(QPQ − PQPQ) = 0.

(2.51)
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Thus, since PQP /=QPQ, PQP /=PQPQ and/or QPQ/=PQPQ and then a = a−1.
Similarly, b = b−1. Therefore, multiplying (2.50) on the right side by Q and on the left side
by P yields

(
a + b + c +

c

ab

)
(PQ − PQPQ) = 0. (2.52)

Multiplying (2.50) on the right side by P and on the left side by Q yields

(
a + b + d +

d

ab

)
(QP − PQPQ) = 0. (2.53)

Since PQ/=PQPQ andQP /=PQPQ, a+ b+ c+ c/ab = 0 and a+ b+d+d/ab = 0. Multiplying
(2.50) on the left side, respectively, by P and by Q yields

(
2e + b + c + d − cd

b

)
(PQP − PQPQ) = 0,

(
2f + a + c + d − cd

a

)
(QPQ − PQPQ) = 0.

(2.54)

Thus, we have 2e + b + c + d − cd/b = 0 and QPQ = PQPQ; 2f + a + c + d − cd/a = 0 and
PQP = PQPQ; 2e + b + c + d − cd/b = 0 and 2f + a + c + d − cd/a = 0.

Note that 2e + b + c + d − cd/b = 0 and 2f + a + c + d − cd/a = 0 imply g = −(a + b) by
θ = 0. As the argument above in (c)(1), we have (c13) ∼ (c18).

Remark 2.2. Clearly, [15, (a) and (b) in Theorem] are the special cases in Theorem 2.1.

Example 2.3. Let

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.55)
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Then they, obviously, are idempotent, and (PQ)2 = (QP)2 but PQP /=QPQ. By
Theorem 2.1(c5),

A = P −Q + 2PQ + 2QP − 7
2
PQP − 1

2
QPQ + PQPQ (2.56)

is the group involutory matrix, namely, A = Ag , since 2 + 2 + 2 ∗ (−7/2) + 2 ∗ 2 = 1 and
2 + 2 + 2 ∗ (−1/2) − 2 ∗ 2 = −1. By Theorem 2.1(c17),

P −Q + PQ − 2QP + 2PQP −QPQ (2.57)

is group involutory since 1 − 2 + 2 ∗ 2 + 1 ∗ (−2) = 1 and 1 − 2 + 2 ∗ (−1) − 1 ∗ (−2) = −1.

Next, we will study the situation (PQ)2 = 0 or (QP)2 = 0.

Theorem 2.4. Let P,Q ∈ C
n×n be two different nonzero idempotent matrices, and let A be a

combination of the form

A = aP + bQ + cPQ + dQP + ePQP + fQPQ + gPQPQ, (2.58)

where a, b, c, d, e, f, g ∈ C with a, b /= 0. Suppose that

PQPQ/= 0, QPQP = 0, (2.59)

and any of the following sets of additional conditions hold:

(d1) a = b = ±1, c = d = ∓1, e = f = ±1, g = ∓1;
(d2) a = ±1, b = ∓1, 2e + c + d ± cd = ±1, 2f + c + d ∓ cd = ∓1.
Then A is the group involutory matrix.

Proof. By Lemma 1.2,

0 = A −Ag

=
(
a − 1

a

)
P +
(
b − 1

b

)
Q +

(
c +

1
a
+
1
b
+

c

ab

)
PQ +

(
d +

1
a
+
1
b
+

d

ab

)
QP

+
(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP

+
(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ

+

(
g +

2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2

)
(PQ)2.

(2.60)
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Since PQPQ/= 0, multiplying (2.60), respectively, on the right side and on the right side by
PQPQ yields

(
a − 1

a

)
PQPQ = 0,

(
b − 1

b

)
PQPQ = 0, (2.61)

and so a = a−1 and b = b−1. Substituting them inside (2.60), we get

0 =
(
c +

1
a
+
1
b
+

c

ab

)
PQ +

(
d +

1
a
+
1
b
+

d

ab

)
QP

+
(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP

+
(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ

+

(
g +

2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2

)
PQPQ.

(2.62)

Multiplying (2.62) on the left side by PQP yields

(
c +

1
a
+
1
b
+

c

ab

)
PQPQ = 0, (2.63)

and then

c +
1
a
+
1
b
+

c

ab
= 0. (2.64)

So (2.62) becomes

0 =
(
d +

1
a
+
1
b
+

d

ab

)
QP +

(
e − 2

a
− 1
b
− c + d

ab
− cd − be

a2b

)
PQP

+
(
f − 1

a
− 2
b
− c + d

ab
− cd − af

ab2

)
QPQ

+

(
g +

2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2

)
PQPQ.

(2.65)

Multiplying (2.65) on the left side by PQ and on the right side by P yields

(
d +

1
a
+
1
b
+

d

ab

)
PQPQ = 0. (2.66)
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Therefore,

d +
1
a
+
1
b
+

d

ab
= 0. (2.67)

Similarly, we can obtain

0 = e − 2
a
− 1
b
− c + d

ab
− cd − be

a2b
,

0 = f − 1
a
− 2
b
− c + d

ab
− cd − af

ab2
,

0 = g +
2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2
.

(2.68)

By (2.64) and (2.67), we can obtain

1
b
+ c + d + 2e − cd

b
= 0,

1
a
+ c + d + 2f − cd

a
= 0. (2.69)

Since a = a−1 and b = b−1, a = ±b. If a = −b, then (2.64) holds for any c, (2.67) holds for any d,
and, for any c, d, e, f satisfying (2.69) and any g,

g +
2
a
+
2
b
+
2c + d + g

ab
+
cd − be − ce

a2b
+
cd − af − cf

ab2
+

c2d

a2b2

= c2d − 2c − d − (e + f
)
+
c

a

(
e − f

)

= c2d − 2c − d + (c + d) +
c

a

(
1
a
− cd

a

)
= 0.

(2.70)

If a = b, then, by (2.64) ∼ (2.69), c = d = −a and e = f = a and so g = −a from (2.68).
Hence, we have (d1) and (d2).

Example 2.5. Let

P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0

1 0 0 1

0 0 1 0

1 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠

. (2.71)

Obviously they are idempotent, and (QP)2 = 0 but (PQ)2 /= 0. By Theorem 2.4(d2),

P −Q + 2PQ − 2QP +
5
2
PQP − 5

2
QPQ − 2PQPQ (2.72)

is group involutory since 2 − 2 + 2 ∗ (5/2) + 2 ∗ (−2) = 1 and 2 − 2 + 2 ∗ (−5/2) − 2 ∗ (−2) = −1.
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Similarly, we have the following result.

Theorem 2.6. Let P,Q ∈ C
n×n be two different nonzero idempotent matrices, and let A be a

combination of the form

A = aP + bQ + cPQ + dQP + ePQP + fQPQ + hQPQP, (2.73)

where a, b, c, d, e, f, h ∈ C with a, b /= 0. Suppose that

QPQP /= 0, PQPQ = 0, (2.74)

and any of the following sets of additional conditions hold:

(e1) a = b = ±1, c = d = ∓1, e = f = ±1, h = ∓1;
(e2) a = ±1, b = ∓1, 2e + c + d ± cd = ±1, 2f + c + d ∓ cd = ∓1.

Then A is the group involutory matrix.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11061005)
and the Ministry of Education Science anf Technology Key Project (210164) and Grants
(HCIC201103) of Guangxi Key Laborarory of Hybrid Computational and IC Design Analysis
Open Fund.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer, New York,
NY, USA, 2nd edition, 2003.

[2] R. Bru and N. Thome, “Group inverse and group involutory matrices,” Linear and Multilinear Algebra,
vol. 45, no. 2-3, pp. 207–218, 1998.

[3] J. K. Baksalary andO.M. Baksalary, “On linear combinations of generalized projectors,” Linear Algebra
and its Applications, vol. 388, pp. 17–24, 2004.
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