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We study strong convergence of the sequence generated by implicit and explicit general iterative
methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits
the duality mapping Jϕ, where ϕ is a gauge function on [0,∞). Our results improve and extend
those announced by G. Marino and H.-K. Xu (2006) and many authors.

1. Introduction

Let E be a real Banach space and E∗ the dual space of E. Let K be a nonempty, closed, and
convex subset of E. A (one-parameter) nonexpansive semigroup is a family F = {T(t) : t ≥ 0}
of self-mappings of K such that

(i) T(0)x = x for all x ∈ K,

(ii) T(t + s)x = T(t)T(s)x for all t, s ≥ 0 and x ∈ K,

(iii) for each x ∈ K, the mapping T(·)x is continuous,

(iv) for each t ≥ 0, T(t) is nonexpansive, that is,

∥
∥T(t)x − T(t)y

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ K. (1.1)

We denote F by the common fixed points set of F, that is, F :=
⋂

t≥0 F(T(t)).
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In 1967, Halpern [1] introduced the following classical iteration for a nonexpansive
mapping T : K → K in a real Hilbert space:

xn+1 = αnu + (1 − αn)Txn, n ≥ 0, (1.2)

where {αn} ⊂ (0, 1) and u ∈ K.
In 1977, Lions [2] obtained a strong convergence provide the real sequence {αn} satis-

fies the following conditions:
C1: limn→∞αn = 0; C2:

∑∞
n=0 αn = ∞; C3: limn→∞(αn − αn−1)/α2

n = 0.
Reich [3] also extended the result of Halpern fromHilbert spaces to uniformly smooth

Banach spaces. However, both Halpern’s and Lion’s conditions imposed on the real sequence
{αn} excluded the canonical choice αn = 1/(n + 1).

In 1992, Wittmann [4] proved that the sequence {xn} converges strongly to a fixed
point of T if {αn} satisfies the following conditions:

C1: limn→∞αn = 0; C2:
∑∞

n=0 αn = ∞; C3:
∑∞

n=0 |αn+1 − αn| < ∞.
Shioji and Takahashi [5] extended Wittmann’s result to real Banach spaces with uni-

formly Gâteaux differentiable norms and in which each nonempty closed convex and
bounded subset has the fixed point property for nonexpansive mappings. The concept of
the Halpern iterative scheme has been widely used to approximate the fixed points for
nonexpansive mappings (see, e.g., [6–12] and the reference cited therein).

Let f : K → K be a contraction. In 2000, Moudafi [13] introduced the explicit viscosity
approximation method for a nonexpansive mapping T as follows:

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0, (1.3)

where αn ∈ (0, 1). Xu [14] also studied the iteration process (1.3) in uniformly smooth Banach
spaces.

LetA be a strongly positive bounded linear operator on a real Hilbert spaceH, that is,
there is a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.4)

A typical problem is to minimize a quadratic function over the fixed points set of a
nonexpansive mapping on a Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.5)

where C is the fixed points set of a nonexpansive mapping T on H and b is a given point in
H.

In 2006, Marino and Xu [15] introduced the following general iterative method for a
nonexpansive mapping T in a Hilbert space H:

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 1, (1.6)
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where {αn} ⊂ (0, 1), f is a contraction on H, and A is a strongly positive bounded linear
operator on H. They proved that the sequence {xn} generated by (1.6) converges strongly to
a fixed point x∗ ∈ F(T)which also solves the variational inequality

〈(

A − γf
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T), (1.7)

which is the optimality condition for the minimization problem: minx∈C(1/2)〈Ax, x〉 − h(x),
where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Suzuki [16] first introduced the following implicit viscosity method for a nonexpan-
sive semigroup {T(t) : t ≥ 0} in a Hilbert space:

xn = αnu + (1 − αn)T(tn)xn, n ≥ 1, (1.8)

where {αn} ⊂ (0, 1) and u ∈ K. He proved strong convergence of iteration (1.8) under suitable
conditions. Subsequently, Xu [17] extended Suzuki’s [16] result from a Hilbert space to a
uniformly convex Banach space which admits a weakly sequentially continuous normalized
duality mapping.

Motivated by Chen and Song [18], in 2007, Chen and He [19] investigated the implicit
and explicit viscosity methods for a nonexpansive semigroup without integral in a reflexive
Banach space which admits a weakly sequentially continuous normalized duality mapping:

xn = αnf(xn) + (1 − αn)T(tn)xn, n ≥ 1, (1.9)

xn+1 = αnf(xn) + (1 − αn)T(tn)xn, n ≥ 1, (1.10)

where {αn} ⊂ (0, 1).
In 2008, Song and Xu [20] also studied the iterations (1.9) and (1.10) in a reflexive and

strictly convex Banach space with a Gâteaux differentiable norm. Subsequently, Cholamjiak
and Suantai [21] extended Song and Xu’s results to a Banach space which admits duality
mapping with a gauge function. Wangkeeree and Kamraksa [22] and Wangkeeree et al. [23]
obtained the convergence results concerning the duality mapping with a gauge function in
Banach spaces. The convergence of iterations for a nonexpansive semigroup and nonlinear
mappings has been studied by many authors (see, e.g., [24–38]).

Let E be a real reflexive Banach space which admits the duality mapping Jϕ with a
gauge ϕ. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on E. Recall that an operator A is
said to be strongly positive if there exists a constant γ > 0 such that

〈

Ax, Jϕ(x)
〉 ≥ γ‖x‖ϕ(‖x‖),

∥
∥αI − βA

∥
∥ = sup

‖x‖≤1

∣
∣
〈(

αI − βA
)

x, Jϕ(x)
〉∣
∣,

(1.11)

where α ∈ [0, 1] and β ∈ [−1, 1].
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Motivated by Chen and Song [18], Chen and He [19], Marino and Xu [15], Colao et al.
[39], and Wangkeeree et al. [23], we study strong convergence of the following general itera-
tive methods:

xn = αnγf(xn) + (I − αnA)T(tn)xn, n ≥ 1, (1.12)

xn+1 = αnγf(xn) + (I − αnA)T(tn)xn, n ≥ 1, (1.13)

where {αn} ⊂ (0, 1), f is a contraction on E and A is a positive bounded linear operator on E.

2. Preliminaries

A Banach space E is called strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1
and x /=y. A Banach space E is called uniformly convex if for each ε > 0 there is a δ > 0 such
that for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε, ‖x + y‖ ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{

1 −
∥
∥
∥
∥

1
2
(

x + y
)
∥
∥
∥
∥
: ‖x‖,∥∥y∥∥ ≤ 1,

∥
∥x − y

∥
∥ ≥ ε

}

, (2.1)

for all ε ∈ [0, 2]. E is uniformly convex if δE(0) = 0, and δE(ε) > 0 for all 0 < ε ≤ 2. It is known
that every uniformly convex Banach space is strictly convex and reflexive. Let S(E) = {x ∈
E : ‖x‖ = 1}. Then the norm of E is said to be Gâteaux differentiable if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ S(E). In this case E is called smooth. The norm of E is said to be Fréchet
differentiable if for each x ∈ S(E), the limit is attained uniformly for y ∈ S(E). The norm of E is
called uniformly Fréchet differentiable, if the limit is attained uniformly for x, y ∈ S(E). It is well
known that (uniformly) Fréchet differentiability of the norm of E implies (uniformly) Gâteaux
differentiability of the norm of E.

Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{
1
2
(∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥
) − 1 : x ∈ S(E),

∥
∥y

∥
∥ ≤ t

}

. (2.3)

A Banach space E is called uniformly smooth if ρE(t)/t → 0 as t → 0. See [40–42] for
more details.

We need the following definitions and results which can be found in [40, 41, 43].

Definition 2.1. A continuous strictly increasing function ϕ : [0,∞) → [0,∞) is said to be
gauge function if ϕ(0) = 0 and limt→∞ϕ(t) = ∞.
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Definition 2.2. Let E be a normed space and ϕ a gauge function. Then the mapping Jϕ : E →
2E

∗
defined by

Jϕ(x) =
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖ϕ(‖x‖), ∥
∥f∗∥∥ = ϕ(‖x‖)}, x ∈ E, (2.4)

is called the duality mapping with gauge function ϕ.

In the particular case ϕ(t) = t, the duality mapping Jϕ = J is called the normalized
duality mapping.

In the case ϕ(t) = tq−1, q > 1, the duality mapping Jϕ = Jq is called the generalized
duality mapping. It follows from the definition that Jϕ(x) = ϕ(‖x‖)/‖x‖J(x) and Jq(x) =
‖x‖q−2J(x), q > 1.

Remark 2.3. For the gauge function ϕ, the function Φ : [0,∞) → [0,∞) defined by

Φ(t) =
∫ t

0
ϕ(s)ds (2.5)

is a continuous convex and strictly increasing function on [0,∞). Therefore, Φ has a continu-
ous inverse function Φ−1.

It is noted that if 0 ≤ k ≤ 1, then ϕ(kx) ≤ ϕ(x). Further

Φ(kt) =
∫kt

0
ϕ(s)ds = k

∫ t

0
ϕ(kx)dx ≤ k

∫ t

0
ϕ(x)dx = kΦ(t). (2.6)

Remark 2.4. For each x in a Banach space E, Jϕ(x) = ∂Φ(‖x‖), where ∂ denotes the sub-
differential.

We also know the following facts:

(i) Jϕ is a nonempty, closed, and convex set in E∗ for each x ∈ E,

(ii) Jϕ is a function when E∗ is strictly convex,

(iii) If Jϕ is single-valued, then

Jϕ(λx) =
sign(λ)ϕ(‖λx‖)

ϕ(‖x‖) Jϕ(x), ∀x ∈ E, λ ∈ R,

〈

x − y, Jϕ(x) − Jϕ
(

y
)〉 ≥ (

ϕ(‖x‖) − ϕ
(∥
∥y

∥
∥
))(‖x‖ − ∥

∥y
∥
∥
)

, ∀x, y ∈ E.

(2.7)

Following Browder [43], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ϕ for which the duality mapping Jϕ is single-valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} with xn ⇀ x,
the sequence {Jϕ(xn)} converges weakly∗ to Jϕ(x). It is known that the space �p has a weakly
continuous duality mapping with a gauge function ϕ(t) = tp−1 for all 1 < p < ∞. Moreover, ϕ
is invariant on [0, 1].
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Lemma 2.5 (See [44]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈

y, Jϕ
(

x + y
)〉

. (2.8)

In particular, for all x, y ∈ E,

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, J
(

x + y
)〉

. (2.9)

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E. Then the following
holds:

lim sup
n→∞

Φ
(∥
∥xn − y

∥
∥
)

= lim sup
n→∞

Φ(‖xn − x‖) + Φ
(∥
∥x − y

∥
∥
)

(2.10)

for all x, y ∈ E.

Lemma 2.6 (See [23]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ. Let A be a strongly positive bounded linear operator on E with coefficient γ > 0 and
0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ).

Lemma 2.7 (See [12]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + γnδn, n ≥ 1, (2.11)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(a)

∑∞
n=1 γn = ∞; (b) lim supn→∞δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞an = 0.

3. Implicit Iteration Scheme

In this section, we prove a strong convergence theorem of an implicit iterative method (1.12).

Theorem 3.1. Let E be a reflexive which admits a weakly continuous duality mapping Jϕ with gauge
ϕ such that ϕ is invariant on [0, 1]. Let F = {T(t) : t ≥ 0} be a nonexpansive semigroup on E such that
F /= ∅. Let f be a contraction on E with the coefficient α ∈ (0, 1) and A a strongly positive bounded
linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let {αn} and {tn} be real sequences
satisfying 0 < αn < 1, tn > 0 and limn→∞tn = limn→∞αn/tn = 0. Then {xn} defined by (1.12)
converges strongly to q ∈ F which solves the following variational inequality:

〈(

A − γf
)(

q
)

, Jϕ
(

q −w
)〉 ≤ 0, ∀w ∈ F. (3.1)
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Proof. First, we prove the uniqueness of the solution to the variational inequality (3.1) in F.
Suppose that p, q ∈ F satisfy (3.1), so we have

〈(

A − γf
)(

p
)

, Jϕ
(

p − q
)〉 ≤ 0,

〈(

A − γf
)(

q
)

, Jϕ
(

q − p
)〉 ≤ 0.

(3.2)

Adding the above inequalities, we get

〈

A
(

p
) −A

(

q
) − γ

(

f
(

p
) − f

(

q
))

, Jϕ
(

p − q
)〉 ≤ 0. (3.3)

This shows that

〈

A
(

p − q
)

, Jϕ
(

p − q
)〉 ≤ γ

〈

f
(

p
) − f

(

q
)

, Jϕ
(

p − q
)〉

, (3.4)

which implies by the strong positivity of A

γ
∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ 〈

A
(

p − q
)

, Jϕ
(

p − q
)〉 ≤ γα

∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
)

. (3.5)

Since ϕ is invariant on [0, 1],

ϕ(1)γ
∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ γα

∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
)

. (3.6)

It follows that

(

ϕ(1)γ − γα
)∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ 0. (3.7)

Therefore p = q since 0 < γ < (γϕ(1))/α.
We next prove that {xn} is bounded. For each w ∈ F, by Lemma 2.6, we have

‖xn −w‖ =
∥
∥αnγf(xn) + (I − αnA)T(tn)xn −w

∥
∥

=
∥
∥(I − αnA)T(tn)xn − (I − αnA)w + αn

(

γf(xn) −A(w)
)∥
∥

≤ ϕ(1)
(

1 − αnγ
)‖xn −w‖ + αn

(

γα‖xn −w‖ + ∥
∥γf(w) −A(w)

∥
∥
)

≤ ‖xn −w‖ − αnϕ(1)γ‖xn −w‖ + αnγα‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥,

(3.8)

which yields

‖xn −w‖ ≤ 1
ϕ(1)γ − γα

∥
∥γf(w) −A(w)

∥
∥. (3.9)

Hence {xn} is bounded. So are {f(xn)} and {AT(tn)xn}.
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We next prove that {xn} is relatively sequentially compact. By the reflexivity of E and
the boundedness of {xn}, there exists a subsequence {xnj} of {xn} and a point p in E such that
xnj ⇀ p as j → ∞. Now we show that p ∈ F. Put xj = xnj , βj = αnj and sj = tnj for j ∈ N, fix
t > 0. We see that

∥
∥xj − T(t)p

∥
∥ ≤

[t/sj ]−1∑

k=0

∥
∥T

(

(k + 1)sj
)

xj − T
(

ksj
)

xj+1
∥
∥

+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

xj − T

([

t

sj

]

sj

)

p

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

p − T(t)p

∥
∥
∥
∥
∥

≤
[

t

sj

]

∥
∥T

(

sj
)

xj − xj

∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

=

[

t

sj

]

βj
∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

≤ tβj

sj

∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥

+max
{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ sj

}

.

(3.10)

So we have

lim sup
j→∞

Φ
(∥
∥xj − T(t)p

∥
∥
) ≤ lim sup

j→∞
Φ
(∥
∥xj − p

∥
∥
)

. (3.11)

On the other hand, by Lemma 2.5 (ii), we have

lim sup
j→∞

Φ
(∥
∥xj − T(t)p

∥
∥
)

= lim sup
j→∞

Φ
(∥
∥xj − p

∥
∥
)

+ Φ
(∥
∥T(t)p − p

∥
∥
)

. (3.12)

Combining (3.11) and (3.12), we have

Φ
(∥
∥T(t)p − p

∥
∥
) ≤ 0. (3.13)

This implies that p ∈ F. Further, we see that

‖xj − p‖ϕ(‖xj − p‖) =
〈

xj − p, Jϕ
(

xj − p
)〉

=
〈(

I − βjA
)

T
(

sj
)

xj −
(

I − βjA
)

p, Jϕ
(

xj − p
)〉

+ βj
〈

γf
(

xj

) − γf
(

p
)

, Jϕ
(

xj − p
)〉

+ βj
〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

≤ ϕ(1)
(

1 − βjγ
)∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
)

+ βjγα
∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
)

+ βj
〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

.

(3.14)
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So we have

∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
) ≤ 1

ϕ(1)γ − γα

〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

. (3.15)

By the definition of Φ, it is easily seen that

Φ
(∥
∥xj − p

∥
∥
) ≤ ∥

∥xj − p
∥
∥ϕ

(∥
∥xj − p

∥
∥
)

. (3.16)

Hence

Φ
(∥
∥xj − p

∥
∥
) ≤ 1

ϕ(1)γ − γα

〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

. (3.17)

ThereforeΦ(‖xj − p‖) → 0 as j → ∞ since Jϕ is weakly continuous; consequently, xj → p as
j → ∞ by the continuity of Φ. Hence {xn} is relatively sequentially compact.

Finally, we prove that p is a solution in F to the variational inequality (3.1). For any
w ∈ F, we see that

〈

(I − T(tn))xn − (I − T(tn))w, Jϕ(xn −w)
〉

=
〈

xn −w, Jϕ(xn −w)
〉

− 〈

T(tn)xn − T(tn)w, Jϕ(xn −w)
〉

≥ ‖xn −w‖ϕ‖xn −w‖
− ‖T(tn)xn − T(tn)w‖∥∥Jϕ(xn −w)

∥
∥

≥ ‖xn −w‖ϕ‖xn −w‖
− ‖xn −w‖∥∥Jϕ(xn −w)

∥
∥

= 0.

(3.18)

On the other hand, we have

(

A − γf
)

(xn) = − 1
αn

(I − αnA)(I − T(tn))xn, (3.19)

which implies

〈(

A − γf
)

(xn), Jϕ(xn −w)
〉

= − 1
αn

〈

(I − T(tn))xn − (I − T(tn))w, Jϕ(xn −w)
〉

+
〈

A(I − T(tn))xn, Jϕ(xn −w)
〉

≤ 〈

A(I − T(tn))xn, Jϕ(xn −w)
〉

.

(3.20)

Observe

∥
∥xj − T

(

sj
)

xj

∥
∥ = βj

∥
∥γf

(

xj

) −AT
(

sj
)

xj

∥
∥ → 0, (3.21)
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as j → ∞. Replacing n by nj and letting j → ∞ in (3.20), we obtain

〈(

A − γf
)(

p
)

, Jϕ
(

p −w
)〉 ≤ 0, ∀w ∈ F. (3.22)

So p ∈ F is a solution of variational inequality (3.1); and hence p = q by the uniqueness. In a
summary, we have proved that {xn} is relatively sequentially compact and each cluster point
of {xn} (as n → ∞) equals q. Therefore xn → q as n → ∞. This completes the proof.

4. Explicit Iteration Scheme

In this section, utilizing the implicit version in Theorem 3.1, we consider the explicit one in a
reflexive Banach space which admits the duality mapping Jϕ.

Theorem 4.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0,1]. Let {T(t) : t ≥ 0} be a nonexpansive semigroup
on E such that F /= ∅. Let f be a contraction on E with the coefficient α ∈ (0, 1) and A a strongly
positive bounded linear operator with coefficient γ > 0 and 0 < γ < γ ϕ(1)/α. Let {αn} and {tn} be
real sequences satisfying 0 < αn < 1,

∑∞
n=1 αn = ∞, tn > 0 and limn→∞tn = limn→∞αn/tn = 0.

Then {xn} defined by (1.13) converges strongly to q ∈ F which also solves the variational inequality
(3.1).

Proof. Since αn → 0, we may assume that αn < ϕ(1)‖A‖−1 and 1−αn(ϕ(1)γ − γα) > 0 for all n.
First we prove that {xn} is bounded. For each w ∈ F, by Lemma 2.6, we have

‖xn+1 −w‖ =
∥
∥αnγf(xn) + (I − αnA)T(tn)xn −w

∥
∥

=
∥
∥(I − αnA)T(tn)xn − (I − αnA)w + αn

(

γf(xn) −A(w)
)∥
∥

≤ ϕ(1)
(

1 − αnγ
)‖xn −w‖ + αnγα‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥

=
(

ϕ(1) − αn

(

ϕ(1)γ − γα
))‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥

≤ (

1 − αn

(

ϕ(1)γ − γα
))‖xn −w‖ + αn

(

ϕ(1)γ − γα
))

∥
∥γf(w) −A(w)

∥
∥

ϕ(1)γ − γα
.

(4.1)

It follows from induction that

‖xn+1 −w‖ ≤ max

{

‖x1 −w‖,
∥
∥γf(w) −A(w)

∥
∥

ϕ(1)γ − γα

}

, n ≥ 1. (4.2)

Thus {xn} is bounded, and hence so are {f(xn)} and {AT(tn)xn}. From Theorem 3.1, there is
a unique solution q ∈ F to the following variational inequality:

〈(

A − γf
)

q, Jϕ
(

q −w
)〉 ≤ 0, ∀w ∈ F. (4.3)
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Next we prove that

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn+1
)〉 ≤ 0. (4.4)

Indeed, we can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn

)〉

= lim sup
j→∞

〈(

A − γf
)

q, Jϕ
(

q − xnj

)〉

. (4.5)

Further, we can assume that xnj ⇀ p ∈ E by the reflexivity of E and the boundedness of {xn}.
Now we show that p ∈ F. Put xj = xnj , βj = αnj and sj = tnj for j ∈ N, fix t > 0. We obtain

∥
∥xj+1 − T(t)p

∥
∥ ≤

[t/sj ]−1∑

k=0

∥
∥T

(

(k + 1)sj
)

xj − T
(

ksj
)

xj+1
∥
∥

+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

xj − T

([

t

sj

]

sj

)

p

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

p − T(t)p

∥
∥
∥
∥
∥

≤
[

t

sj

]

∥
∥T

(

sj
)

xj − xj+1
∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

=

[

t

sj

]

βj
∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

≤ tβj

sj

∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥

+max
{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ sj

}

.

(4.6)

It follows that lim supn→∞Φ(‖xj −T(t)p‖) ≤ lim supn→∞Φ(‖xj −p‖). From Lemma 2.5 (ii)we
have

lim sup
n→∞

Φ
(∥
∥xj − T(t)p

∥
∥
)

= lim sup
n→∞

Φ
(∥
∥xj − p

∥
∥
)

+ Φ
(∥
∥T(t)p − p

∥
∥
)

. (4.7)

So we have Φ(‖T(t)p − p‖) ≤ 0 and hence p ∈ F. Since the duality mapping Jϕ is weakly
sequentially continuous,

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn+1
)〉

= lim sup
j→∞

〈(

A − γf
)

q, Jϕ
(

q − xnj+1

)〉

=
〈(

A − γf
)

q, Jϕ
(

q − p
)〉 ≤ 0.

(4.8)
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Finally, we show that xn → q. From Lemma 2.5 (i), we have

Φ
(∥
∥xn+1 − q

∥
∥
)

= Φ
(∥
∥(I − αnA)T(tn)xn − (I − αnA)q + αn

(

γf(xn) − γf
(

q
))

+αn

(

γf
(

q
) −A

(

q
))∥
∥
)

≤ Φ
(∥
∥(I − αnA)

(

T(tn)xn − q
)

+ αn

(

γf(xn) − γf
(

q
))∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

≤ Φ
(

ϕ(1)
(

1 − αnγ
)∥
∥xn − q

∥
∥ + αnγα

∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

= Φ
((

ϕ(1) − αn

(

ϕ(1)γ − γα
))∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

≤ (

1 − αn

(

ϕ(1)γ − γα
))

Φ
(∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

.

(4.9)

Note that
∑∞

n=1 αn = ∞ and lim supn→∞〈γf(q)−A(q), Jϕ(xn+1 −q)〉 ≤ 0. Using Lemma 2.7, we
have xn → q as n → ∞ by the continuity of Φ. This completes the proof.

Remark 4.2. Theorems 3.1 and 4.1 improve and extend the main results proved in [15] in the
following senses:

(i) from a nonexpansive mapping to a nonexpansive semigroup,

(ii) from a real Hilbert space to a reflexive Banach space which admits a weakly contin-
uous duality mapping with gauge functions.

Acknowledgments

The authors wish to thank the editor and the referee for valuable suggestions. K. Nammanee
was supported by the Thailand Research Fund, the Commission on Higher Education, and
the University of Phayao under Grant MRG5380202. S. Suantai and P. Cholamjiak wish to
thank the Thailand Research Fund and the Centre of Excellence in Mathematics, Thailand.

References

[1] B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the American Mathematical Society, vol.
73, pp. 957–961, 1967.

[2] P.-L. Lions, “Approximation de points fixes de contractions,”Comptes Rendus de l’Académie des Sciences,
vol. 284, no. 21, pp. A1357–A1359, 1977.

[3] S. Reich, “Approximating fixed points of nonexpansive mappings,” Panamerican Mathematical Journal,
vol. 4, no. 2, pp. 23–28, 1994.

[4] R.Wittmann, “Approximation of fixed points of nonexpansive mappings,”Archiv der Mathematik, vol.
58, no. 5, pp. 486–491, 1992.

[5] N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive
mappings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12, pp.
3641–3645, 1997.



Journal of Applied Mathematics 13

[6] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, “Approximation of common fixed points of a
countable family of nonexpansive mappings in a Banach space,” Nonlinear Analysis. Theory, Methods
& Applications, vol. 67, no. 8, pp. 2350–2360, 2007.

[7] C. E. Chidume and C. O. Chidume, “Iterative approximation of fixed points of nonexpansive
mappings,” Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 288–295, 2006.

[8] Y. J. Cho, S. M. Kang, and H. Zhou, “Some control conditions on iterative methods,” Communications
on Applied Nonlinear Analysis, vol. 12, no. 2, pp. 27–34, 2005.

[9] T.-H. Kim and H.-K. Xu, “Strong convergence of modified Mann iterations,” Nonlinear Analysis.
Theory, Methods & Applications, vol. 61, no. 1-2, pp. 51–60, 2005.

[10] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[11] H.-K. Xu, “Another control condition in an iterative method for nonexpansive mappings,” Bulletin of
the Australian Mathematical Society, vol. 65, no. 1, pp. 109–113, 2002.

[12] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,
vol. 66, no. 1, pp. 240–256, 2002.

[13] A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical
Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.

[14] H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical
Analysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.

[15] G. Marino and H.-K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,”
Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.

[16] T. Suzuki, “On strong convergence to common fixed points of nonexpansive semigroups in Hilbert
spaces,” Proceedings of the American Mathematical Society, vol. 131, no. 7, pp. 2133–2136, 2003.

[17] H.-K. Xu, “A strong convergence theorem for contraction semigroups in Banach spaces,” Bulletin of
the Australian Mathematical Society, vol. 72, no. 3, pp. 371–379, 2005.

[18] R. Chen and Y. Song, “Convergence to common fixed point of nonexpansive semigroups,” Journal of
Computational and Applied Mathematics, vol. 200, no. 2, pp. 566–575, 2007.

[19] R. Chen and H. He, “Viscosity approximation of common fixed points of nonexpansive semigroups
in Banach space,” Applied Mathematics Letters, vol. 20, no. 7, pp. 751–757, 2007.

[20] Y. Song and S. Xu, “Strong convergence theorems for nonexpansive semigroup in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 338, no. 1, pp. 152–161, 2008.

[21] P. Cholamjiak and S. Suantai, “Viscosity approximation methods for a nonexpansive semigroup in
Banach spaces with gauge functions,” Journal of Global Optimization. In press.

[22] R. Wangkeeree and U. Kamraksa, “Strong convergence theorems of viscosity iterative methods for a
countable family of strict pseudo-contractions in Banach spaces,” Fixed Point Theory and Applications,
vol. 2010, Article ID 579725, 21 pages, 2010.

[23] R. Wangkeeree, N. Petrot, and R. Wangkeeree, “The general iterative methods for nonexpansive
mappings in Banach spaces,” Journal of Global Optimization, vol. 51, no. 1, pp. 27–46, 2011.

[24] I. K. Argyros, Y. J. Cho, and X. Qin, “On the implicit iterative process for strictly pseudo-contractive
mappings in Banach spaces,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp.
208–216, 2009.

[25] S.-S. Chang, Y. J. Cho, H. W. J. Lee, and C. K. Chan, “Strong convergence theorems for Lipschitzian
demicontraction semigroups in Banach spaces,” Fixed Point Theory and Applications, vol. 11, Article ID
583423, 10 pages, 2011.
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