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Using two successive reductions: B-equivalence of the system on a variable time scale to a system
on a time scale and a reduction to an impulsive differential equation and by Leggett-Williams fixed
point theorem, we investigate the existence of three positive periodic solutions to the nonlinear
neutral functional differential equation on variable time scales with a transition condition between
two consecutive parts of the scale (d/dt)(x(t) + c(t)x(t − α)) = a(t)g(x(t))x(t) −∑n

j=1 λjfj(t, x(t −
vj(t))), (t, x) ∈ T0(x),Δt|(t,x)∈S2i = Π1

i (t, x) − t, Δx|(t,x)∈S2i = Π2
i (t, x) − x, where Π1

i (t, x) = t2i+1 +
τ2i+1(Π2

i (t, x)) and Π2
i (t, x) = Bix + Ji(x) + x, i = 1, 2, . . . . λj (j = 1, 2, . . . , n) are parameters, T0(x)

is a variable time scale with (ω, p)-property, c(t), a(t), vj(t), and fj(t, x) (j = 1, 2, . . . , n) are ω-
periodic functions of t, Bi+p = Bi, Ji+p(x) = Ji(x) uniformly with respect to i ∈ Z.

1. Introduction

In the last several decades, the theory of dynamic equations on time scales (DETS) has
been developed very intensively. For the full description of the equations we refer to the
nicely written books [1, 2] and papers [3, 4]. The equations have a very special transition
condition for adjoint elements of time scales. To enlarge the field of applications of the DETS,
Akhmet and Turan proposed to generalize the transition operator [5], correspondingly to
investigate differential equations on variable time scales with transition condition (DETC).
In [6], Akhmet and Turan proposed some basic theory of dynamic equations on variable time
scales; the method of investigation is by means of two successive reductions: B-equivalence
of the system [7–9] on a variable time scale to a system on a time scale and a reduction to an
impulsive differential equation [5, 7]. Consequently, these results are very effective to develop
methods of investigation of mechanical models with impacts.
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Also, neutral differential equations arise in many areas of applied mathematics, and
for this reason these equations have received much attention in the last few decades; they are
not only an extension of functional differential equations but also provide good models in
many fields including biology, mechanics, and economics. In particular, qualitative analysis
such as periodicity and stability of solutions of neutral functional differential equations has
been studied extensively by many authors. We refer to [10–19] for some recent work on the
subject of periodicity and stability of neutral equations. In [20], the authors discussed a class
of neutral functional differential equations with impulses and parameters on nonvariable
time scales

(x(t) + c(t)x(t − r1))Δ = a(t)g(x(t))x(t) −
n∑

i=1

λifi(t, x(t − τi(t))),

t /= tj , t ∈ T, j = 1, 2, . . . , q,

x
(
t−j
)
− x

(
t+j

)
= Ij

(
x
(
tj
))
, t = tj , j = 1, 2, . . . , q,

(1.1)

where λi, i = 1, 2, . . . , n are parameters, T is an ω-periodic nonvariable time scale, a ∈
C(T,R+), c ∈ C(T, [0, 1)) and both of them are ω-periodic functions, τi ∈ C(T,R), i =
1, 2, . . . , n are ω-periodic functions, fi ∈ C(T × R

+,R+), i = 1, 2, . . . , n are nondecreasing
with respect to their second arguments and ω-periodic with respect to their first arguments,
respectively; g ∈ C(R,R+) and there exist two positive constants l, L such that 0 < l ≤ g(x) ≤
L <∞ for all x > 0, Ij ∈ C(R,R+) (j = 1, 2, . . . , q) and is bounded, r1 is a constant.

To the best of authors’ knowledge, there has been no paper published on the existence
of solutions to neutral functional differential equations on variable time scales. Our main
purpose of this paper is by using theory of dynamic equations on variable time scales
to investigate the existence of three positive periodic solutions to the nonlinear neutral
functional differential equations on variable time scales with a transition condition between
two consecutive parts of the scale

d
dt

(x(t) + c(t)x(t − α)) = a(t)g(x(t))x(t) −
n∑

j=1

λjfj
(
t, x

(
t − vj(t)

))
, (t, x) ∈ T0(x),

Δt|(t,x)∈S2i = Π1
i (t, x) − t,

Δx|(t,x)∈S2i
= Π2

i (t, x) − x,

(1.2)

where Π1
i (t, x) = t2i+1 + τ2i+1(Π2

i (t, x)) and Π2
i (t, x) = Bix + Ji(x) + x, i = 1, 2, . . . λj (j =

1, 2, . . . , n) are parameters, T0(x) is a variable time scale with (ω, p)-property, c(t), a(t), vj(t),
and fj(t, x) (j = 1, 2, . . . , n) are ω-periodic functions of t, Bi+p = Bi, Ji+p(x) = Ji(x) uniformly
with respect to i ∈ Z.

For convenience, we introduce the notation

a= max
t∈[0,ω]

a(t), a = min
t∈[0,ω]

a(t), c = min
t∈[0,ω]

c(t), c = max
t∈[0,ω]

c(t), r0 = exp

{∫0

ω

a(s)ds

}

.

(1.3)

Throughout this paper, we assume the following.



Journal of Applied Mathematics 3

(H1) T0(x) is a variable time scale with (ω, p)-property, c ∈ C(R, [0, 1)), a ∈
C(R,R+), vj ∈ C(R,R), and fj(t, x) ∈ C(T0(x),R+), (j = 1, 2, . . . , n) are ω-periodic
functions of t, Ji ∈ C(R,R), Bi+p = Bi, Ji+p(x) = Ji(x) uniformly with respect to
i ∈ Z, Ji(0) = 0, Bi ≥ 0 for each i ∈ Z.

(H2) fj(t, x) ∈ C(T0(x),R+) is nondecreasing with respect to x and fj(t, 0) = 0 for each
j ∈ {1, 2, . . . , n}.

(H3) g ∈ C(R,R+) and there exist two positive constants l, L such that 0 < l ≤ g(x) ≤ L <
∞ for all x > 0.

(H4) There exists a number δ > 0 such that (c + c)/2 ≤ δ < 1, 0 ≤ ((2δ − c)(1 − c2))/(1 −
(2δ − c )2) < rL0 (1 − rl0)/(1 − rL0 ) .

2. Preliminaries

Let E be a real Banach space and P be a cone in E. A map ρ is said to be a nonnegative
continuous concave functional on P if ρ : P → [0,∞) is continuous and

ρ
(
tx + (1 − t)y) ≥ tρ(x) + (1 − t)ρ(y) ∀x, y ∈ P and t ∈ [0, 1]. (2.1)

For numbers β1, β4 such that 0 < β1 < β4 and ρ is a nonnegative continuous concave
function on P , we define the following sets: Pβ1 = {x ∈ P : ‖x‖ < β1}, Pβ1 = {x ∈ P : ‖x‖ ≤
β1}, P(ρ, β1, β4) = {x ∈ P : β1 ≤ ρ(x), ‖x‖ ≤ β4}.

Now, we state the following Leggett-Williams fixed-point theorem, which is critical to
the proof of our main results.

Lemma 2.1 (see [21]). Let T : Pβ4 → Pβ4 be completely continuous and ρ nonnegative continuous
concave functional on P such that ρ(u) ≤ ‖u‖ for all u ∈ Pβ4. Suppose that there exist positive
constants β1, β2, β3, β4 with 0 < β1 < β2 < β3 ≤ β4 such that

(1) {u ∈ P(ρ, β2, β3) : ρ(x) > β2}/=φ and ρ(Tu) > β2 for u ∈ P(ρ, β2, β3);

(2) ‖Tu‖ < β1 for u ∈ Pβ1;

(3) ρ(Tu) > β2 for u ∈ P(ρ, β2, β4) with ‖Tu‖ > β3.

Then T has at least three fixed points u1, u2, u3 satisfying

u1 ∈ Pβ1, u2 ∈
{
u ∈ P(ρ, β2, β4

)
: ρ(u) > β2

}
, u3 ∈ Pβ4 \

(
P
(
ρ, β2, β4

) ∪ Pβ1
)
. (2.2)

Let T be a periodic time scale, and let E = {x ∈ C(T,R) : x(t) = x(t + ω)} be a Banach
space with the norm ‖x‖ = supt∈[0,ω]∩T

{|x(t)| : x ∈ E}, and let Φ : E → E be defined by

(Φx)(t) = x(t) + c(t)x(t − τ). (2.3)
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Lemma 2.2 (see [20]). If 0 ≤ c(t) < 1 and E is a Banach space, then Φ has a bounded inverse Φ−1

on E, and for all x ∈ E,

(
Φ−1x

)
(t) =

∑

j≥0

∏

0≤i≤j−1
(−1)kc(t − iτ)x(t − jτ) (2.4)

and ‖Φ−1x‖ ≤ ‖x‖/(1 − c).

Definition 2.3 (see [6]). A nonempty closed setT0(x) inR×R
n is said to be a variable time scale

if for any x0 ∈ R
n the projection of T0(x0) on time axis, that is, the set {t ∈ R : (t, x0) ∈ T0(x0)}

is a time scale in Hilger sense.
Fix a sequence {ti} ⊂ R such that ti < ti+1 for all i ∈ Z, and |ti| → ∞ as |i| → ∞. Denote

δi = t2i−1 − t2i, κi = t2i − t2i−1 and take a sequence of functions {τi(x)} ⊂ C(Rn,R). Assume that

(C1) for some positive numbers θ′, θ ∈ R, θ′ ≤ ti+1 − ti ≤ θ;
(C2) there exists l0, 0 < 2l0 < θ′ such that ‖τi(x)‖ ≤ l0 for all x ∈ R

n, i ∈ Z.

Denote

li := inf
x∈Rn

{ti + τi(x)}, ri := sup
x∈Rn

{ti + τi(x)}. (2.5)

We set

Ei = {(t, x) ∈ R × R
n : t2i + τ2i(x) < t < t2i+1 + τ2i+1(x)},

Si = {(t, x) ∈ R × R
n : t = ti + τi(x)},

Di = {(t, x) ∈ R × R
n : t2i−1 + τ2i−1(x) ≤ t ≤ t2i + τ2i(x)}.

(2.6)

Following [6], we denote T0(x) :=
⋃∞
i=−∞ Di and Tc =

⋃∞
i=−∞[t2i−1, t2i].

A transition operator Πi : S2i → S2i+1, for all i ∈ Z, such that Πi(t, y) =
(Π1

i (t, y),Π
2
i (t, y))where Π1

i : S2i → R and Π2
i : S2i → R

n, and

Π1
i

(
t, y

)
= t2i+1 + τ2i+1

(
Π2
i

(
t, y

))
, Π2

i

(
t, y

)
= Ii

(
y
)
+ y, (2.7)

where Ii : R
n → R

n is a function. One can easily see that Π1
i (t, y) is the time coordinate of

(t+, y+) := Πi(t, y), the image of (t, y) ∈ S2i under the operator Πi, and Π2
i (t, y) is the space

coordinate of the image.
Let t = αi and t = βi be the moments that the graph of y = ϕ(t) intersects the

surface S2i−1 and S2i, respectively, where the surfaces are defined previously. Then, we set
the nonvariable time scale

T
ϕ
c :=

∞⋃

i=−∞

[
αi, βi

]
, (2.8)
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which is the domain of ϕ, and define theΔ-derivative as in the introduction. That is, for t = βi,
we have

ϕΔ(βi
)
=
ϕ(αi+1) − ϕ

(
βi
)

αi+1 − βi ,

ϕΔ(t) = lim
s→ t

ϕ(s) − ϕ(t)
s − t ,

(2.9)

for any other t ∈ T
ϕ
c , whenever the limit exists.

Consider the system on variable time scales:

y′ = A(t)y + f
(
t, y

)
,

(
t, y

) ∈ T0
(
y
)
,

Δt|(t,y)∈S2i = Π1
i

(
t, y

) − t,

Δy|(t,y)∈S2i = Π2
i

(
t, y

) − y,
(2.10)

where A(t) : R → R
n×n is an n × n continuous real-valued matrix function, Bi is an n × n

matrix, functions f(t, y) : T0(y) → R
n and Ji(y) : R

n → R
n are continuous, Π1

i (t, y) =
t2i+1 + τ2i+1(Π2

i (t, y)), and Π2
i (t, y) = Biy + Ji(y) + y.

For any α, β ∈ R we define the oriented interval [α̂, β] as

[
α̂, β

]
=

{[
α, β

]
, if α ≤ β,

[
β, α

]
, otherwise.

(2.11)

Consider the nonvariable time scale

T
0
c =

∞⋃

i=−∞
[l2i−1, r2i], (2.12)

where li, ri, i ∈ Z are defined by (2.5) for the variable time scaleT0(y), and take a continuation
f̃ : T

0
c ×R

n → R
n of f : T0(y) → R

n which is Lipschitzian with the same Lipschitz constant l;
furthermore, if f is a monotone function, a continuation f̃ can also have the same monotony
with f . Set Tc :=

⋃∞
i=−∞[t2i−1, t2i].

(C3) ‖τi(x)− τi(y)‖+ ‖Ji(x)− Ji(y)‖+ ‖f(t, x)− f(t, y)‖ ≤ l‖x −y‖ for arbitrary x, y ∈ R
n,

where l is a Lipschitz constant.

By (C3), in [6], one can see the following important lemma.

Lemma 2.4 (see [6]). Assume (C3) is satisfied. Then there are mappingsWi(z) : R
n → R

n, i ∈ Z,
such that, corresponding to each solution y(t) of (2.10), there is a solution z(t) of the system

z′ = A(t)z + f̃(t, z), t /= t2i,

z(t2i+1) = Biz(t2i) +Wi(z(t2i)) + z(t2i),
(2.13)
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such that y(t) = z(t) for all t ∈ Tc except possibly on ̂[t2i−1, αi] and [β̂i, t2i], where αi and βi are the
moments that y(t) meets the surfaces S2i−1 and S2i, respectively.

Furthermore, the functionsWi satisfy the inequality

∥
∥Wi(z) −Wi

(
y
)∥
∥ ≤ k(l)l∥∥z − y∥∥, (2.14)

uniformly with respect to i ∈ Z for all z, y ∈ R
n such that ‖z‖ ≤ h and ‖y‖ ≤ h; here k(l0) = k(l0, h)

is a bounded function. Under the sense of Lemma 2.4, we say that systems (2.10) and (2.13) are B-
equivalent.

Proof. Fix i ∈ Z. Let z(t) be the solution of (2.10) such that z(t2i) = z, and assume that αi and
βi are solutions of α = t2i−1 + τ2i−1(z(α)) and β = t2i + τ2i(z(β)), respectively. Let z1(t) be the
solution of the system

z′ = A(t)z + f̃(t, z) (2.15)

with the initial condition z1(αi+1) = Π2
i (βi, z(βi)).

We first note that z1(αi+1) = (I + Bi)z(βi) + Ji(z(βi)). Moreover, for t ∈ [t̂2i, βi],

z(t) = z(t2i) +
∫ t

t2i

[
A(s)z(s) + f̃(s, z(s))

]
ds, (2.16)

and for t ∈ [ ̂αi+1, t2i+1],

z1(t) = z1(αi+1) +
∫ t

αi+1

[
A(s)z1(s) + f(s, z1(s))

]
ds

= (I + Bi)z
(
βi
)
+ Ji

(
z
(
βi
))

+
∫ t

αi+1

[
A(s)z1(s) + f̃(s, z1(s))

]
ds

= (I + Bi)

[

z(t2i) +
∫βi

t2i

[
A(s)z(s) + f̃(s, z(s))

]
ds

]

+ Ji
(
z
(
βi
))

+
∫ t

αi+1

[
A(s)z1(s) + f̃(s, z1(s))

]
ds.

(2.17)

Thus, we have

Wi(z) = (I + Bi)
∫βi

t2i

[
A(s)z(s) + f̃(s, z(s))

]
ds + Ji

(
z
(
βi
))

+
∫ t2i+1

αi+1

[
A(s)z1(s) + f̃(s, z1(s))

]
ds.

(2.18)

Substituting (2.18) in (2.13), we see that Wi(z) satisfies the first conclusion of the
lemma.
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Next, we prove (2.14). Let ‖z(t2i)‖ ≤ h. By employ integrals (2.16) and (2.17), we find
that the solutions z(t) and z1(t) determined above satisfy the inequalities ‖z(t)‖ ≤ H and
‖z1(t)‖ ≤ H on [β̂i, t2i] and[ ̂αi+1, t2i+1], where

H =
[
M(1 + l) + (1 +N + l)(h +Ml)eNl+l2

]
eNl+l2 . (2.19)

Let y(t) be the solution of (2.10) such that y(t2i) = y, and assume that αi and βi are solutions
of α = t2i−1 + τ2i−1(y(α)) and β = t2i + τ2i(y(β)), respectively. Let y1(t) be the solution of (2.15)
with initial condition y1(αi+1) = Π2

i (βi, y(βi)). Without loss of any generality, we assume
that βi ≥ βi and αi+1 ≤ αi+1. Application of the Gronwall-Bellman lemma shows that, for

t ∈ [β̂i, t2i],

∥
∥z(t) − y(t)∥∥ ≤ e(N+l)l∥∥z − y∥∥. (2.20)

The equation

y
(
βi

)
= y

(
βi
)
+
∫βi

βi

[
A(s)y(s) + f̃

(
s, y(s)

)]
ds (2.21)

gives us

∥
∥
∥y

(
βi

)
− y(βi

)∥∥
∥ ≤ (NH + lH +M)

(
βi − βi

)
. (2.22)

Thus, we obtain

∥
∥
∥z
(
βi
) − y

(
βi

)∥
∥
∥ ≤ e(N+l)l∥∥z − y∥∥ + (NH + lH +M)

(
βi − βi

)
. (2.23)

Now condition (C3) together with (2.23) leads to

βi − βi ≤
le(N+l)l

1 − l(NH + lH +M)

∥
∥z − y∥∥. (2.24)

Hence (2.23) becomes

∥
∥
∥z
(
βi
) − y

(
βi

)∥
∥
∥ ≤ e(N+l)l

1 − l(NH + lH +M)

∥
∥z − y∥∥. (2.25)

On the other hand,

y1(αi+1) = y1(αi+1) +
∫αi+1

αi+1

[
A(s)y1(s) + f̃

(
s, y1(s)

)]
ds (2.26)
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gives us

∥
∥y1(αi+1) − y1(αi+1)

∥
∥ ≤ (NH + lH +M)(αi+1 − αi+1). (2.27)

Using the transition operators and (2.25)we get

∥
∥z1(αi+1) − y1(αi+1)

∥
∥ ≤ (1 +N + l)e(N+l)l

1 − l(NH + lH +M)

∥
∥z − y∥∥. (2.28)

Condition (C3) and (2.28) imply that

αi+1 − αi+1 ≤ l(1 +N + l)e(N+l)l

1 − l(NH + lH +M)

∥
∥z − y∥∥. (2.29)

From (2.27)–(2.29) we obtain

∥
∥z1(αi+1) − y1(αi+1)

∥
∥ ≤ H1e

(N+l)l∥∥z − y∥∥, (2.30)

whereH1 = (1+N + l)[1+ l(NH + lH +M)]/[1− l(NH + lH +M)]. Solutions z1(t) and y1(t)
on [ ̂αi+1, t2i+1] satisfy the inequality

∥
∥z1(t) − y1(t)

∥
∥ ≤ H1e

2(N+l)l∥∥z − y∥∥. (2.31)

Now subtracting the expression

Wi

(
y
)
= (I + Bi)

∫βi

t2i

[
A(s)y(s) + f̃

(
s, y(s)

)]
ds + Ji

(
y
(
βi

))

+
∫ t2i+1

αi+1

[
A(s)y1(s) + f̃

(
s, y1(s)

)]
ds

(2.32)

from (2.18) and using (2.20), (2.24), (2.29), and (2.31), we conclude that (2.14) holds. The
proof is complete.

A special transformation called ψ-substitution [5], which is change of the independent
variable and defined for t ∈ ⋃∞

i=−∞(t2i−1, t2i] as

ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t −
∑

0<t2k<t

δk, t ≥ 0,

t +
∑

t≤t2k<0
δk, t < 0,

(2.33)
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where δk = t2k+1 − t2k. Setting si = ψ(t2i), we see that this transformation has an inverse given
by

ψ−1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

s +
∑

0<sk<s

δk, s ≥ 0,

s −
∑

s≤sk<0
δk, s < 0.

(2.34)

Lemma 2.5 (see [5, 6]). ψ ′(t) = 1 if t ∈ ⋃∞
i=−∞(t2i−1, t2i].

Proof. Assume that t ≥ 0. Then,

ψ ′(t) = lim
h→ 0

ψ(t + h) − ψ(t)
h

= lim
h→ 0

1
h

[(

t + h −
∑

0<t2k<t+h

δk

)

−
(

t −
∑

0<t2k<t

δk

)]

= 1.
(2.35)

The assertion for t < 0 can be proved in the same way. The proof is complete.

Definition 2.6 (see [5]). The time scale T0 is said to have anω-property if there exists a number
ω ∈ R

+ such that t +ω ∈ T0 whenever t ∈ T0.

Definition 2.7 (see [5]). A sequence {ai} ⊂ R is said to satisfy an (ω, p)-property if there exist
numbers ω ∈ R

+ and p ∈ N such that ai+p = ai +ω for all i ∈ Z.

Definition 2.8 (see [6]). The variable time scale T0(y) is said to satisfy an (ω, p)-property if
(t ±ω, y) is in T0(y)whenever (t, y) is. In this case, there exists p ∈ N such that the sequences
{t2i−1} and {t2i} satisfy the (ω, p)-property and τi+p(y) = τi(y) for all i ∈ Z.

Suppose now that (2.10) is ω-periodic; that is, T0(y) satisfies the (ω, p)-property, A(t)
and f(t, y) areω-periodic functions of t, and Bi+p = Bi, Ji+p(y) = Ji(y) uniformly with respect
to i ∈ Z.

Lemma 2.9 (see [6]). If (2.10) is ω-periodic, then the sequenceWi(z) is p-periodic uniformly with
respect to z ∈ R

n.

Proof. Since the variable time scale T0(y) satisfies an (ω, p)-property, by (2.18), one can easily
see thatWi(z) is p-periodic uniformly with respect to z ∈ R

n. The proof is complete.

Lemma 2.10 (see [5]). If T0 has an ω-property, then the sequence {si}, si = ψ(t2i), is (ω̃, p0)-
periodic with

ω̃ = ω −
∑

0<t2k<ω

δk = ψ(ω). (2.36)



10 Journal of Applied Mathematics

Proof. In order to prove this lemma, we only need to verify that si+p0 = si + ω̃ for all i. Assume
that i ≥ 0, i = np0 + j for some n ∈ Z, 0 ≤ j < p0 and 0 < t0 < · · · < t2(p0−1) < ω. Then

si+p0 = ψ
(
t2(i+p0)

)
= t2(i+p0) −

∑

0<t2k<t2(i+p0)

δk

= t2i +ω −
∑

0<t2k<t2i

δk −
∑

t2i≤t2k<t2(i+p0)
δk = ψ(t2i) +ω −

i+p0−1∑

k=i

δk

= si +ω −
j+p0−1∑

k=j

δk+np0 = si +ω −
j+p0−1∑

k=j

δk = si +ω −
p0−1∑

k=0

δk

= si +ω −
∑

0<t2k<ω

δk = si + ω̃,

(2.37)

where we have used the fact that

j+p0−1∑

k=j

δk =
p0−1∑

k=j

δk +
j+p0−1∑

k=p0

δk =
p0−1∑

k=j

δk +
j−1∑

k=0

δk+p0

=
p0−1∑

k=j

δk +
j−1∑

k=0

δk =
p0−1∑

k=0

δk.

(2.38)

All other cases can be verified similarly. The proof is complete.

Lemma 2.11 (see [5, 6]). If T0(y) satisfies an (ω, p)-property, then ψ(t +ω) = ψ(t) + ψ(ω).

Proof. Assume that t ≥ 0. By Lemma 2.10, we have

ψ(t +ω) = t +ω −
∑

0<t2k<t+ω

δk = t +ω −
∑

0<t2k<ω

δk −
∑

ω≤t2k<t+ω
δk

= t −
∑

ω≤t2k<t+ω
δk + ψ(ω) = ψ(t) + ψ(ω).

(2.39)

The assertion for t < 0 can be proved in the same way. The proof is complete.

Lemma 2.12 (see [5, 6]). A function φ(t) is an ω-periodic function on Tc, if and only if φ(ψ−1(s))
is an ω̃-periodic function on R, where ω̃ = ψ(ω).

Proof. By Lemma 2.11, s + ω̃ = ψ(t +ω). Then the equality

φ
(
ψ−1(s + ω̃)

)
= φ(t +ω) = φ(t) = φ

(
ψ−1(s)

)
(2.40)

completes the proof.

For any fixed x0 ∈ R, we set
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PC(T(x0))

=
{
x ∈ C((t2i−1 + τ2i−1(x0), t2i + τ2i(x0)),R) : Π2

i (t, x) = Bix + Ji(x) + x, i = 1, 2, . . .
}

(2.41)

and consider the Banach space

E = {x : x ∈ PC(T(x0)) : x(t) = x(t +ω)}. (2.42)

Let Φ : E → E be defined by

(Φx)(t) = x(t) + c(t)x(t − α) := y(t). (2.43)

Using the inverse transformation of Φ, we can obtain

Π1
i

(
t,Φ−1y

)
= t2i+1 + τ2i+1

(
Π2
i

(
t,Φ−1y

))
, Π2

i

(
t,Φ−1y

)
= BiΦ−1y + Ji

(
Φ−1y

)
+ Φ−1y.

(2.44)

From the second equation, it is easy to get

Φ
(
Π2
i

(
t,Φ−1y

))
=
(
ΦBiΦ−1

)
y +

(
ΦJiΦ−1

)
y + y := Π̃2

i

(
t, y

)
, (2.45)

that is, Π2
i (t,Φ

−1y) = Φ−1(Π̃2
i (t, y)). Hence

Π1
i

(
t,Φ−1y

)
= t2i+1 + τ2i+1

(
Φ−1Π̃2

i

(
t, y

))
= t2i+1 + τ2i+1Φ−1

(
Π̃2
i

(
t, y

))

:= t2i+1 + τ̃2i+1
(
Π̃2
i

(
t, y

))
:= Π̃1

i

(
t, y

)
.

(2.46)

Therefore, we can obtain the other variable time scale plane T0(y) by the inverse
transformation of Φ and

E′
i =

{(
t, y

) ∈ R × R : t2i + τ̃2i
(
y
)
< t < t2i+1 + τ̃2i+1

(
y
)}
,

S′
i =

{(
t, y

) ∈ R × R : t = ti + τ̃i
(
y
)}
,

D′
i =

{(
t, y

) ∈ R × R : t2i−1 + τ̃2i−1
(
y
) ≤ t ≤ t2i + τ̃2i

(
y
)}
.

(2.47)

Hence, (1.2) can be changed into the following form:

y′ = a(t)g
((
Φ−1y

)
(t)
)
y(t) − a(t)H(

y(t)
) −

n∑

j=1
λjfj

(
t,
(
Φ−1y

)(
t − vj(t)

))
,

(
t, y

) ∈ T0
(
y
)
,

Δt|(t,y)∈S′
2i
= Π̃1

i

(
t, y

) − t,
Δy|(t,y)∈S′

2i
= Π̃2

i

(
t, y

) − y,
(2.48)

whereH(y(t)) = c(t)g((Φ−1y)(t))(Φ−1y)(t − α).
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Define a cone in E by

P0 =
{
y(t) ∈ E : y(t) ≥ k∥∥y∥∥}, (2.49)

where k ∈ (((2δ − c)(1 − c2))/(1 − (2δ − c)2), rL0 (1 − rl0)/(1 − rL0 )].

Lemma 2.13 (see [20]). Suppose that conditions (H1)–(H4) hold and 0 ≤ c(t) < 1 and y ∈ P0, then

α̃
∥
∥y

∥
∥ ≤

(
Φ−1y

)
(t) ≤ 1

1 − c
∥
∥y

∥
∥, (2.50)

lcα̃
∥
∥y

∥
∥ ≤ H(

y(t)
) ≤ Lc

1 − c
∥
∥y

∥
∥, (2.51)

where α̃ = (k/(1 − c2)) − (2δ − c)/(1 − (2δ − c)2).

(H5) ‖τi(x) − τi(y)‖ + ‖Ji(x) − Ji(y)‖ +
∑n

j=1 ‖fj(t, x) − fj(t, y)‖ ≤ l0‖x − y‖ for arbitrary
x, y ∈ R

n, where l0 is a Lipschitz constant.

In view of (H5) by Lemma 2.4, it is easy to get the following lemma.

Lemma 2.14. Assume that (H5) is satisfied. Then there are mappings Wi(z) : R → R, i ∈ Z such
that, corresponding to each solution y(t) of (2.48), there is a solution z(t) of the system

z′ = a(t)g
((
Φ−1z

)
(t)
)
z(t) − a(t)H(z(t)) −

n∑

j=1
λj f̃j

(
t,
(
Φ−1z

)(
t − vj(t)

))
, t /= t2i,

z(t2i+1) =
(
ΦBiΦ−1)(z(t2i)) +

(
ΦWiΦ−1)(z(t2i)) + z(t2i), t = t2i

(2.52)

such that y(t) = z(t) for all t ∈ Tc except possibly on [ ̂t2i−1, αi] and [β̂i, t2i] where αi and βi are the
moments that y(t) meets the surfaces S′

2i−1 and S′
2i, respectively.

Furthermore, the functionsWi satisfy the inequality

∥
∥Wi(z) −Wi

(
y
)∥
∥ ≤ k(l0)l0

∥
∥z − y∥∥, (2.53)

uniformly with respect to i ∈ Z for all z, y ∈ R
n such that ‖z‖ ≤ h and ‖y‖ ≤ h; here k(l0) = k(l0, h)

is a bounded function. Under the sense of lemma 2.14, we say that systems (2.48) and (2.52) are
B-equivalent.

Proof. For fixed i ∈ Z. Let z(t) be the solution of (2.48) such that z(t2i) = z, and assume that αi
and βi are solutions of α = t2i−1 + τ̃2i−1(z(α)) and β = t2i + τ̃2i(z(β)), respectively. Let z1(t) be
the solution of the system

z′ = a(t)g
((

Φ−1z
)
(t)
)
z(t) − a(t)H(z(t)) −

n∑

j=1

λj f̃j
(
t,
(
Φ−1z

)(
t − vj(t)

))

(2.54)

with the initial condition z1(αi+1) = Π̃2
i (βi, z(βi)).
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We first note that z1(αi+1) = (ΦBiΦ−1)(z(βi)) + (ΦJiΦ−1)(z(βi)) + z(βi). Moreover, for
t ∈ [t̂2i, βi],

z(t) = z(t2i) +
∫ t

2i

⎡

⎣a(s)g
((

Φ−1z
)
(s)

)
z(s) − a(s)H(z(s))

−
n∑

j=1

λj f̃j
(
s,
(
Φ−1z

)(
s − vj(s)

))
⎤

⎦ds,

(2.55)

and for t ∈ [ ̂αi+1, t2i+1],

z1(t) = z1(αi+1) +
∫ t

αi+1

⎡

⎣a(s)g
((

Φ−1z1
)
(s)

)
z1(s)

−a(s)H(z1(s)) −
n∑

j=1

λj f̃j
(
s,
(
Φ−1z1

)(
s − vj(s)

))
⎤

⎦ds

=
(
ΦBiΦ−1

)(
z
(
βi
))

+
(
ΦJiΦ−1

)(
z
(
βi
))

+ z
(
βi
)

+
∫ t

αi+1

⎡

⎣a(s)g
((

Φ−1z1
)
(s)

)
z1(s)

−a(s)H(z1(s)) −
n∑

j=1

λj f̃j
(
s,
(
Φ−1z1

)(
s − vj(s)

))
⎤

⎦ds

=
(
Φ(Bi + I)Φ−1

)
⎡

⎣z(t2i) +
∫βi

t2i

⎡

⎣a(s)g
((

Φ−1z
)
(s)

)
z(s) − a(s)H(z(s))

−
n∑

j=1

λj f̃j
(
s,
(
Φ−1z

)(
s − vj(s)

))
⎤

⎦ds

⎤

⎦

+
(
ΦJiΦ−1

)(
z
(
βi
))

+
∫ t

αi+1

⎡

⎣a(s)g
((

Φ−1z1
)
(s)

)
z1(s)

−a(s)H(z1(s)) −
n∑

j=1

λj f̃j
(
s,
(
Φ−1z1

)(
s − vj(s)

))
⎤

⎦ds.

(2.56)

Thus, we set

Wi(z) =
(
Φ(Bi + I)Φ−1

)∫βi

t2i

⎡

⎣a(s)g
((

Φ−1z
)
(s)

)
z(s) − a(s)H(z(s))

−
n∑

j=1

λj f̃j
(
s,
(
Φ−1z

)(
s − vj(s)

))
⎤

⎦ds +
(
ΦJiΦ−1

)(
z
(
βi
))
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+
∫ t2i+1

αi+1

⎡

⎣a(s)g
((

Φ−1z1
)
(s)

)
z1(s)

−a(s)H(z1(s)) −
n∑

j=1

λj f̃j
(
s,
(
Φ−1z1

)(
s − vj(s)

))
⎤

⎦ds.

(2.57)

Substituting (2.57) in (2.52), we see thatWi(z) satisfies the first conclusion of the lemma.
The rest of the proof is similar to that of Lemma 2.4, and we can use Gronwall-Bellman

lemma to show that Wi(z) satisfies (2.53) and it will be omitted here. This completes the
proof.

Next, we will use ψ-substitution, reducing (2.52) to an impulsive differential equation.
Lettingm(s) = z(ψ−1(s)), we obtain, for t /= t2i,

(
Φ−1z

)(
t − vj(t)

)
=
(
Φ−1z

)(
ψ−1(s) − vj

(
ψ−1(s)

))

=
(
Φ−1z

)(
ψ−1

(
ψ
(
ψ−1(s) − vj

(
ψ−1(s)

))))

=
(
Φ−1m

)(
ψ
(
ψ−1(s) − vj

(
ψ−1(s)

)))
:= ν(s),

(2.58)

hence

m′ = a
(
ψ−1(s)

)
g
((

Φ−1m
)
(s)

)
m(s) − a

(
ψ−1(s)

)
H(m(s)) −

n∑

j=1

λj f̃j
(
ψ−1(s), ν(s)

)
, (2.59)

and for t = t2i, we get

m
(
s−i
)
= z(t2i+1) =

(
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si)) +m(si). (2.60)

Thus, the second equation in (2.23) leads to

Δm|s=si =
(
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si)), (2.61)

where Δm|s=si = m(s−i ) − m(si). Hence, m(s) is a solution of the impulsive differential
equation:

m′ = a
(
ψ−1(s)

)
g
((

Φ−1m
)
(s)

)
m(s) − a

(
ψ−1(s)

)
H(m(s)) −

n∑

j=1

λj f̃j
(
ψ−1(s), ν(s)

)
, s /= si,

Δm|s=si =
(
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si)), s = si .

(2.62)
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In the following, we set

PC =
{
m : m|(si,si+1) ∈ C((si, si+1),R), m

(
s+i
)
= m(si), i = 1, 2, . . .

}
(2.63)

and consider the Banach space

E =
{
m : m ∈ PC,m(s) = m(s + ω̃)

}
(2.64)

with the norm ‖m‖ = sups∈[0,ω̃]{|m(s)| : m ∈ E}, where ω̃ = ψ(ω). Define a cone in E by

P =
{
m(s) ∈ E : m(s) ≥ k‖m‖

}
, (2.65)

where k ∈ ((2δ − c)(1 − c2)/(1 − (2δ − c)2), rL0 (1 − rl0)/(1 − rL0 )].
Let the operator Ψ : P → E be defined by

(Ψm)(s) =
∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
,

(2.66)

where

G(s, θ) =
e
∫s
θ a(ψ

−1(r))g((Φ−1m)(r))dr

1 − e
∫0
ω̃ a(ψ

−1(r))g((Φ−1m)(r))dr
, θ ∈ [s, s + ω̃]. (2.67)

By the assumptions, we have

rL0
1 − rL0

≤ G(s, θ) ≤ 1

1 − rl0
. (2.68)

Lemma 2.15. m is an ω̃-periodic solution of (2.62) if and only ifm is a fixed point of the operatorΨ.

Proof. If m(s) is an ω̃-periodic solution of (2.62), for any s ∈ R, there exists i ∈ Z such that si
is the first impulsive point after s. Hence, for θ ∈ [s, si], we have

m(θ) = e
∫θ
s a(ψ

−1(τ))g((Φ−1m)(τ))dτ

−
∫θ

s

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr,

(2.69)
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then

m(si) = e
∫si
s a(ψ−1(τ))g((Φ−1m)(τ))dτm(s)

−
∫ si

s

e
∫si
r a(ψ−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr.

(2.70)

Again, for θ ∈ (si, si+1], then

m(s) = e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

m
(
s+i
)

−
∫θ

si

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

= e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩

(
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si)) +m(si)

⎫
⎬

⎭

−
∫θ

si

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

= e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

−
∫θ

si

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

+ e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

m(si),

e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

m(si)

= e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
e

∫si
s a(ψ−1(τ))g((Φ−1m)(τ))dτ

m(s)

−
∫ si

s

e
∫si
r a(ψ−1(τ))g((Φ−1m)(τ))dτ

×
⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

⎫
⎬

⎭
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= e
∫θ
s a(ψ

−1(τ))g((Φ−1m)(τ))dτm(s)

−
∫si

s

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr.

(2.71)

So we can obtain

m(s) = e
∫θ
s a(ψ

−1(τ))g((Φ−1m)(τ))dτm(s)

−
∫θ

s

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

+ e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

[(
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

]
.

(2.72)

Repeating the above process for θ ∈ [s, s + ω̃], we obtain

m(s) = e
∫θ
s a(ψ

−1(τ))g((Φ−1m)(τ))dτm(s)

−
∫θ

s

e
∫θ
r a(ψ

−1(τ))g((Φ−1m)(τ))dτ

⎧
⎨

⎩
a
(
ψ−1(r)

)
H(m(r)) +

n∑

j=1

λj f̃j
(
ψ−1(r), ν(r)

)
⎫
⎬

⎭
dr

+
∑

i:si∈[s,θ)
e
∫θ
si
a(ψ−1(τ))g((Φ−1m)(τ))dτ

[(
Φ−1BiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

]
.

(2.73)

Noticing that m(s) = m(s + ω̃) and e
∫s
s+ω̃ a(ψ

−1(τ))g((Φ−1m)(τ))dτ = e
∫0
ω̃ a(ψ

−1(τ))g((Φ−1m)(τ))dτ , we find
thatm is a fixed point of Ψ.

Letm be a fixed point of Ψ. If s /= si, i ∈ Z, we have

m′(s) = G(s, s + ω̃)

⎧
⎨

⎩
a
(
ψ−1(s + ω̃)

)
H(m(s + ω̃)) +

n∑

j=1

λj f̃j
(
ψ−1(s + ω̃), ν(s + ω̃)

)
⎫
⎬

⎭

−G(s, s)
⎧
⎨

⎩
a
(
ψ−1(s)

)
H(m(s)) +

n∑

j=1

λj f̃j
(
ψ−1(s), ν(s)

)
⎫
⎬

⎭

+ a
(
ψ−1(s)

)
g
((

Φ−1m
)
(s)

)
m(s).

(2.74)

By Lemmas 2.11 and 2.12, we have ψ(t + ω) = ψ(t) + ψ(ω) = ψ(t) + ω̃, so it is easy to have
t +ω = ψ−1(ψ(t) + ω̃) = ψ−1(s + ω̃) and ν(s + ω̃) = ν(s). Therefore, we can obtain

m′(s) = a
(
ψ−1(s)

)
g
((

Φ−1m
)
(s)

)
m(s) −

⎧
⎨

⎩
a
(
ψ−1(s)

)
H(m(s)) +

n∑

j=1

λj f̃j
(
ψ−1(s), ν(s)

)
⎫
⎬

⎭
.

(2.75)
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If s = si, i ∈ Z, we can get

m
(
s+i
) −m(s−i

)
=

∑

j:sj∈[s+i ,s+i +ω̃)
G
(
si, sj

)((
ΦBiΦ−1

)(
m
(
sj
))

+
(
ΦWiΦ−1

)(
m
(
sj
)))

−
∑

j:sj∈[s−i ,s−i +ω̃)
G
(
si, sj

)((
ΦBiΦ−1

)(
m
(
sj
))

+
(
ΦWiΦ−1

)(
m
(
sj
)))

= G(si, si + ω̃)
((

ΦBiΦ−1
)(
m
(
sj
)
+ ω̃

)
+
(
ΦWiΦ−1

)(
m
(
sj
)
+ ω̃

))

−G(si, si)
((

ΦBiΦ−1
)(
m
(
sj
))

+
(
ΦWiΦ−1

)(
m
(
sj
)))

= −
((

ΦBiΦ−1
)(
m
(
sj
))

+
(
ΦWiΦ−1

)(
m
(
sj
)))

.

(2.76)

Therefore,m is ω̃-periodic solution of (2.62). The proof is complete.

Lemma 2.16. Assume that (H1)–(H5) hold, then Ψ(P) ⊂ P , and Ψ : P → P is compact and contin-
uous.

Proof. By the definition of P , form ∈ P , we have

(Ψm)(s + ω̃) =
∫s+2ω̃

s+ω̃
G(s + ω̃, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s+ω̃,s+2ω̃]
G(s + ω̃, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

=
∫s+ω̃

s

G(s + ω̃, θ + ω̃)

⎧
⎨

⎩
a
(
ψ−1(θ + ω̃)

)
H(m(θ + ω̃))

+
n∑

j=1

λj f̃j
(
ψ−1(θ + ω̃), ν(θ + ω̃)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s + ω̃, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

=
∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

= (Ψm)(s).

(2.77)
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Thus, (Ψm)(s + ω̃) = (Ψm)(s), s ∈ R. So in view of (2.66), (2.68), for m ∈ P, s ∈ [0, ω̃], we
have

(Ψm)(s) =
∫ s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

≥ rL0
1 − rL0

⎧
⎨

⎩

∫ s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≥ k 1

1 − rl0

⎧
⎨

⎩

∫s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≥ k‖Ψm‖.

(2.78)

Therefore, Ψm ⊂ P . Next, we will show that Ψ is continuous and compact. Firstly, we
will consider the continuity of Ψ. Let mn ∈ P and ‖mn − m‖ → 0 as n → +∞, then
m ∈ P and |mn(s) − m(s)| → 0 as n → +∞ for any s ∈ [0, ω̃]. By the continuity of
fj (j = 1, 2, . . . , n), g, Φ, Φ−1, Wi (i = 1, 2, . . . , p), for any s ∈ [0, ω̃] and ε > 0, we have

|H(mn(s)) −H(m(s))| ≤ 1 − rl0
3ω̃a

ε, (2.79)

and denote νn(s) := (Φ−1mn)(ψ(ψ−1(s) − vj(ψ−1(s)))), and it is easy to see that ‖mn −m‖ → 0
as n → +∞ implies ‖νn − ν‖ → 0 as n → +∞, thus

∣
∣
∣f̃j

(
ψ−1(s), νn(s)

) − f̃j
(
ψ−1(s), ν(s)

)∣∣
∣ ≤ 1 − rl0

3ω̃λjn
ε, j = 1, 2, . . . , n,

∣
∣
((
ΦBiΦ−1)(mn(si)) +

(
ΦWiΦ−1)(mn(si))

)

−((ΦBiΦ−1)(m(si)) +
(
ΦWiΦ−1)(m(si))

)∣
∣ ≤ 1 − rl0

3ω̃p
ε,

(2.80)
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where n is sufficiently large. For s ∈ [0, ω̃], we have

‖Ψmn −Ψm‖ = sup
s∈[0,ω̃]

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∫ s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(mn(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), νn(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(mn(si)) +

(
ΦWiΦ−1

)
(mn(si))

)

−
∫ s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

−
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

= sup
s∈[0,ω̃]

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(s)

)
(H(mn(s)) −H(m(s)))

+
n∑

j=1

λj
(
f̃j
(
ψ−1(θ), νn(θ)

)
− f̃j

(
ψ−1(θ), ν(θ)

))
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃)
G(s, si)

(((
ΦBiΦ−1

)
(mn(si)) +

(
ΦWiΦ−1

)
(mn(si))

)

−
((

ΦBiΦ−1
)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

))
∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

≤ ω̃

1 − rl0

⎧
⎨

⎩
a
1 − rl0
3ω̃a

ε +
n∑

j=1

λj
1 − rl0
3ω̃λjn

ε + p
1 − rl0
3ω̃p

ε

⎫
⎬

⎭
= ε.

(2.81)

Therefore, Ψ is continuous on P .
Next, we prove that Ψ is a compact operator. Let S ⊂ P be an arbitrary bounded set in

P , then there exists a number L0 > 0 such that ‖m‖ < L0 for any m ∈ S. We prove that ΨS is
compact. In fact, from (H1), one hasWi(0) = 0, i = 1, 2, . . .; by (2.53), it is easy to see that for
any z ∈ R, one has the following:

‖Wi(z)‖ ≤ k(l0)l0‖z‖ + ‖Wi(0)‖ = k(l0)l0‖z‖, i = 1, 2, . . . . (2.82)

So for any {mn}n∈N
⊂ S and s ∈ [0, ω̃], we have

‖Ψmn‖ = sup
s∈[0,ω̃]

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∫ s+ω̃

s

(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(mn(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), νn(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(mn(si)) +

(
ΦWiΦ−1

)
(mn(si))

)
∣
∣
∣
∣
∣
∣

⎫
⎬

⎭
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≤ ω̃

1 − rl0

⎧
⎨

⎩
a
Lc

1 − c +
n∑

j=1

max
ν∈[−L′

0,L
′
0]s∈[0,ω̃]

λj f̃j
(
ψ−1(s), ν(s)

)

+L0

p∑

i=1

(Bi + k(l0)l0)

}

:= K,

∥
∥(Ψmn)′

∥
∥ = sup

s∈[0,ω̃]

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣
a
(
ψ−1(s)

)
g
((

Φ−1mn

)
(s)

)
mn(s)

−
⎧
⎨

⎩
a
(
ψ−1(s)

)
H(mn(s)) +

n∑

j=1

λj f̃j
(
ψ−1(s), νn(s)

)
⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

≤ aL0‖Ψmn‖ + a Lc

1 − c +
n∑

j=1

max
ν∈[−L′

0,L
′
0]s∈[0,ω̃]

λj f̃j
(
ψ−1(s), ν(s)

)

≤ aL0K + a
Lc

1 − c +
n∑

j=1

max
ν∈[−L′

0,L
′
0]s∈[0,ω̃]

λj f̃j
(
ψ−1(s), ν(s)

)
:= Q,

(2.83)

where L′
0 = L0/(1−c), which implies that {Ψmn}n∈N

and {(Ψmn)
′}n∈N

are uniformly bounded
on [0, ω̃]. Therefore, there exists a subsequence of {Ψmn}n∈N

which converges uniformly on
[0, ω̃]; namely, ΨS is compact. The proof is complete.

3. Main Results

Our main results of this paper are as follows.

Theorem 3.1. Assume that (H1)–(H5) hold, 0 ≤ c(t) < 1, for a sufficiently small Lipschitz constant
l0; suppose that the following conditions hold:

(H6) α̃0 = (1 − c)(1 − rl0) − ω̃aLc − (1 − c)∑p

i=1(Bi + k(l0)l0) > 0.

(H7) There exist positive constants β1, β2, and β4 with 0 < β1 < β2 < β4 such that

sups∈[0,ω̃]fj
(
ψ−1(s), β1/(1 − c)

)

(
β1/(1 − c)

)
α̃0

<
sups∈[0,ω̃]fj

(
ψ−1(s), β4/(1 − c)

)

(
β4/(1 − c)

)
α̃0

<
infs∈[0,ω̃]fj

(
ψ−1(s), α̃β2

)

α̃β2β̃0
,

(3.1)

where β̃0 = ((1 − rL0 )/α̃rL0 ) − ω̃alc and ω̃ = ψ(ω).

Then for all j = 1, 2, . . . , n, λj ∈ (λj1 , λj2], (1.2) has at least three positive ω-periodic solutions, where

λj1 =
α̃β2β̃0

ω̃n infs∈[0,ω̃]fj
(
t, α̃β2

) , λj2 =

(
β4/(1 − c)

)
α̃0

ω̃n sups∈[0,ω̃]fj
(
t, β4/(1 − c)

) , j = 1, 2, . . . , n. (3.2)
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Proof. First of all, since 0 < α̃ < 1/(1 − c) and 0 < r0 < 1, we have α̃0 > 0, so

β̃0 =
1 − rL0
α̃rL0

− ω̃alc > 1 − rL0
α̃rL0

− ω̃alc > 1 − rL0
α̃

− (1 − c)
(
1 − rl0

)

+ (1 − c)
p∑

i=1

(Bi + k(l0)l0)

> (1 − c)
(
rl0 − rL0

)
+ (1 − c)

p∑

i=1

(Bi + k(l0)l0) > 0.

(3.3)

Furthermore, 0 < λj1 < λj2 in view of (3.1).
Now, define for each λj ∈ (λj1 , λj2] andm ∈ P a mapping Ψ : P → P by

(Ψm)(s) =
∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
,

(3.4)

and a function ρ : P → [0,∞) by

ρ(m) = min
s∈[0,ω̃]

m(s). (3.5)

Form ∈ Pβ4 , by Lemma 2.13, we have

0 <
(
Φ−1m

)
(s) <

β4
1 − c . (3.6)

It follows from (2.51), (2.68), (3.6), and (H2), for all j = 1, 2, . . . , n, λj ∈ (λj1, λj2] and m ∈ Pβ4
that

(Ψm)(s) =
∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

≤ 1

1 − rl0

⎧
⎨

⎩

∫ s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≤ 1

1 − rl0

⎧
⎨

⎩
aω̃

Lc

1 − cβ4 + ω̃
n∑

j=1

λj2 sup
s∈[0,ω̃]

f̃j

(

ψ−1(s),
β4

1 − c
)

+ β4
p∑

i=1

(bi + k(l0)l0)

⎫
⎬

⎭



Journal of Applied Mathematics 23

=
1

1 − rl0

⎧
⎨

⎩
aω̃

Lc

1 − cβ4+
n∑

j=1

(
β4/(1 − c)

)
α0

ω̃nsups∈[0,ω̃]f̃j
(
ψ−1(s), β4/(1 − c)

) sup
s∈[0,ω̃]

f̃j

(

ψ−1(s),
β4

1 − c
)

+β4
p∑

i=1

(Bi + k(l0)l0)

⎫
⎬

⎭
≤ β4.

(3.7)

By Lemma 2.16, we know that Ψ is completely continuous on Pβ4 .
We now assert that the condition (2) of Lemma 2.1 holds. Indeed, if m ∈ Pβ1 , then

similar to above argument, by (3.1), we have

(Ψm)(s) =
∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

≤ 1

1 − rl0

⎧
⎨

⎩

∫s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≤ 1

1 − rl0

⎧
⎨

⎩

∫ s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≤ 1

1 − rl0

⎧
⎨

⎩
aω̃

Lc

1 − cβ1 + ω̃
n∑

j=1

λj2 sup
s∈[0,ω̃]

f̃j

(

ψ−1(s),
β1

1 − c
)

+ β1
p∑

i=1

(Bi + k(l0) l0)

⎫
⎬

⎭

=
1

1 − rl0

⎧
⎪⎪⎨

⎪⎪⎩
aω̃

Lc

1 − cβ1+
n∑

j=1

(
β4/(1 − c)

)
α0

ω̃n sups∈[0,ω̃]f̃j
(
ψ−1(s), β4/(1 − c)

) sup
s∈[0,ω̃]

f̃j

(

ψ−1(s),
β1

1 − c
)

+β1
p∑

i=1

(Bi + k(l0)l0)

⎫
⎪⎪⎬

⎪⎪⎭

<
1

1 − rl0

{

aω̃
Lc

1 − cβ1 +
β4

1 − cα0
β1
β4

+ β1
p∑

i=1

(Bi + k(l0)l0)

}

= β1.

(3.8)

Hence, ‖Ψm‖ < β1 holds.
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Choose a positive constant β3 such that 0 < β2 < kβ3 < β3 ≤ β4. Next, we show that
the condition (1) of Lemma 2.1 holds. Obviously, ρ is a concave continuous function on P

with ρ(m) ≤ ‖m‖ for m ∈ Pβ4 . We notice that if m(s) = (2/5)β2 + (3/5)β3 for s ∈ [0, ω̃], then
m ∈ {m ∈ P(ρ, β2, β3) : ρ(m) > β2} which implies {m ∈ P(ρ, β2, β3) : ρ(m) > β2}/= ∅. For
m ∈ P(ρ, β2, β3), we have

β2 ≤ ρ(m) = min
s∈[0,ω̃]

m(s) ≤ ‖m‖ ≤ β3, (3.9)

which implies, from (2.50), that

(
Φ−1m

)
(s) ≥ α̃‖m‖ ≥ αβ2. (3.10)

And it is also clear that Φ(x) is nondecreasing for x > 0 and Bi,Wi ∈ C(R,R+), and we can
easily have ΦBiΦ−1, ΦWiΦ−1 ∈ C(R,R+). Hence

ρ(Ψm) = min
s∈[0,ω̃]

(Ψm)(s)

= min
s∈[0,ω̃]

⎧
⎨

⎩

∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≥ rL0
1 − rL0

min
s∈[0,ω̃]

⎧
⎨

⎩

∫s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), α̃β2

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

>
rL0

1 − rL0

⎧
⎨

⎩
ω̃alcα̃β2 + ω̃

n∑

j=1

λj1 inf
s∈[0,ω̃]

f̃j
(
ψ−1(s), α̃β2

)

+ min
β2≤m≤β3

p∑

i=1

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
}

≥ rL0
1 − rL0

⎧
⎪⎨

⎪⎩
ω̃alcα̃β2 + ω̃

n∑

j=1

α̃β2β̃0

ω̃n infs∈[0,ω̃]f̃j
(
ψ−1(s), α̃β2

) inf
s∈[0,ω̃]

f̃j
(
ψ−1(s), α̃β2

)

+ min
β2≤m≤β3

p∑

i=1

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)

⎫
⎪⎬

⎪⎭
> β2

(3.11)

for allm ∈ P(ρ, β2, β3).
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Finally, we prove that the condition (3) of Lemma 2.1 holds. Let m ∈ P(ρ, β2, β4) and
‖Ψm‖ > β3, then ρ(Ψm) > β2. We notice that (3.4) implies that

‖Ψm‖ ≤ 1

1 − rl0

⎧
⎪⎨

⎪⎩

∫s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), α̃β2

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭
.

(3.12)

Thus

ρ(Ψm) = min
s∈[0,ω̃]

⎧
⎨

⎩

∫s+ω̃

s

G(s, θ)

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]
G(s, si)

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≥ rL0
1 − rL0

min
s∈[0,ω̃]

⎧
⎪⎨

⎪⎩

∫s+ω̃

s

⎧
⎨

⎩
a
(
ψ−1(θ)

)
H(m(θ)) +

n∑

j=1

λj f̃j
(
ψ−1(θ), ν(θ)

)
⎫
⎬

⎭
dθ

+
∑

i:si∈[s,s+ω̃]

((
ΦBiΦ−1

)
(m(si)) +

(
ΦWiΦ−1

)
(m(si))

)
⎫
⎬

⎭

≥
rL0

(
1 − rl0

)

1 − rl0
‖Ψm‖ ≥ kβ3 > β2.

(3.13)

To sum up, all the hypotheses of Lemma 2.1 are satisfied. Hence Ψ has at least three positive
fixed points. That is, (1.2) has at least three positive ω-periodic solutions. This completes the
proof.

Corollary 3.2. Suppose (H1)–(H6) hold. If

lim
x→∞

sups∈[0,ω̃]fj
(
ψ−1(s), x

)

x
= 0, (3.14)

lim
x→ 0

sups∈[0,ω̃]fj
(
ψ−1(s), x

)

x
= 0, (3.15)

where ω̃ = ψ(ω); then (1.2) has at least three positive ω-periodic solutions.



26 Journal of Applied Mathematics

Proof. In view of (3.14), we can choose β4 > β2 > 0 such that the second inequality in (3.1)
holds, and in view of (3.15), we can choose β1 ∈ (0, β2) such that the first inequality in (3.1)
holds. Therefore, the conclusion of Theorem 3.1 holds. This completes the proof.

4. An Example

Let us consider the variable time scale T0(x) constructed by ti = i, τi(x) = (−1)il0 sinx, where
|x| > 1 for all t ∈ T0(x), 0 < l0 < (1/2) and consider π-periodic system:

(

x(t) +
1
9
|cos t|x(t − α)

)′
=
1
π
|sin t|

(
1
3
+
1
3
e−x

)

x(t) − l0
3n

n∑

j=1

λjx
1/2(t) ln

(
x
(
t − e(1/j)| sin t|

)
+ 1

)
,

(t, x) ∈ T0(x),

x+ =0.03
(
2
3

)i

x + 0.02l0 sinx + x,

t+ =2i + 1 − l0 sinx,
(4.1)

where α is a constant, λj , j = 1, 2, . . . , n are nonnegative parameters. In this case,
c(t) = (1/9)| cos t|, a(t) = 1/π, g(x(t)) = (1/3) + (1/3)e−x, Bi = 0.03(2/3)i, Ji(x) =
0.02l0 sinx, vj(t) = e(1/j)| sin t| and fj(t, x(t − vj(t))) = (l0/3n)x1/2(t) ln(x(t − vj(t)) + 1), j =
1, 2, . . . , n, i ∈ N. Obviously, (H1)–(H3) are satisfied, and it is easy to see that (3.14) and (3.15)
hold.

By the formula of ψ-substitution and δk = 1, one can find

ω̃ = ψ(ω) = ω −
∑

0<2k<ω

δk = π − 1. (4.2)

Clearly, L = (2/3), l = (1/3), 0 ≤ c(t) ≤ (1/9) < 1, r0 = e−(π−1)(1/π) ≈ 0.5058 and
c = 1/9, c = 0, so we can find δ = (c + c)/2 = 1/18, and it is easy to check that ((2δ −
c)(1 − c2))/(1 − (2δ − c)2) = 9/80 ≈ 0.1125 < (rL0 (1 − rl0))/(1 − rL0 ) = 0.3532. Thus, (H4) holds.
Furthermore, we also have

∥
∥
∥
∥
∥

∂fj

∂x

∥
∥
∥
∥
∥
=
l0
3n

∥
∥
∥
∥
∥

ln(x + 1)
2x1/2

+
x1/2

x + 1

∥
∥
∥
∥
∥
≤ l0

3n

(∥
∥
∥
∥
∥

ln (x + 1)1/2

x1/2

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

x1/2

x + 1

∥
∥
∥
∥
∥

)

≤ l0
3n

(∥
∥
∥
∥
∥

(x + 1)1/2

x1/2

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

x1/2

x + 1

∥
∥
∥
∥
∥

)

=
l0
3n

(∥
∥
∥
∥
∥

(

1 +
1
x

)1/2
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

x1/2

x + 1

∥
∥
∥
∥
∥

)

<
l0
3n

(2 + 1) =
l0
n
.

(4.3)

Hence, for any x1, x2 ∈ R, one can get

n∑

j=1

∣
∣fj(t, x1) − fj(t, x2)

∣
∣ ≤

∣
∣
∣
∣
∣

∂fj

∂x

∣
∣
∣
∣
∣
|x1 − x2| < n · l0

n
|x1 − x2| = l0|x1 − x2|. (4.4)
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So (H5) is satisfied. For a sufficiently small l0, one can also have

α̃0 = (1 − c)
(
1 − rl0

)
− ω̃aLc − (1 − c)

p∑

i=1

(Bi + k(l0)l0) = 0.0768 − 8
9

p∑

i=1

k(l0)l0, (4.5)

since k(l0) is a bounded function; for a sufficiently small l0, one can have α̃0 > 0 such that
(H6) holds. Therefore, according to Corollary 3.2, (4.1) has at least three positive π-periodic
solutions.
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