
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 528469, 19 pages
doi:10.1155/2012/528469

Research Article
Scanning Reduction Strategy in MEG/EEG
Beamformer Source Imaging

Jun Hee Hong and Sung Chan Jun

School of Information and Communications, Gwangju Institute of Science and Technology,
Gwangju 500-712, Republic of Korea

Correspondence should be addressed to Sung Chan Jun, scjun@gist.ac.kr

Received 20 August 2011; Accepted 18 September 2011

Academic Editor: Venky Krishnan

Copyright q 2012 J. H. Hong and S. C. Jun. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

MEG/EEG beamformer source imaging is a promising approach which can easily address spati-
otemporal multi-dipole problems without a priori information on the number of sources and is
robust to noise. Despite such promise, beamformer generally has weakness which is degrading
localization performance for correlated sources and is requiring of dense scanning for covering all
possible interesting (entire) source areas. Wide source space scanning yields all interesting area
images, and it results in lengthy computation time. Therefore, an efficient source space scanning
strategy would be beneficial in achieving accelerated beamformer source imaging. We propose
a new strategy in computing beamformer to reduce scanning points and still maintain effective
accuracy (good spatial resolution). This new strategy uses the distribution of correlation values
between measurements and lead-field vectors. Scanning source points are chosen yielding higher
RMS correlations than the predetermined correlation thresholds. We discuss how correlation
thresholds depend on SNR and verify the feasibility and efficacy of our proposed strategy to
improve the beamformer through numerical and empirical experiments. Our proposed strategy
could in time accelerate the conventional beamformer up to over 40% without sacrificing spatial
accuracy.

1. Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are noninvasive im-
aging technologies which provide functional information about human brain dynamics by
providing millisecond temporal images over the entire brain. These technologies have been
widely used to diagnose epilepsy and forward neuroscience research. Particularly, MEG/
EEG source localization estimates current sources from measured spatiotemporal data.
Inherently, MEG/EEG source localization is mathematically ill-posed; that is, it has no unique
solution and is very sensitive to noise. For a couple of decades, many researchers have
tried to develop methods to deal with these difficulties in calculation, resulting in extensive
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research and commercialization of MEG/EEG source localization methods (see [1, 2] for a
review).

In the early 1990s, beamformer techniques originated in the field of antenna signal
processing [3]. Application in MEG/EEG source imaging soon followed. A beamformer
represents a kind of linear spatial filter acting on spatial or spatiotemporal data within
sensor space. It allows a neural signal produced only at designated source point to pass,
filtering out signals originating from other source points. Therefore, even without a priori
information on source quantity, beamformers can effectively image brain activities within
a source space under the assumption that sources are uncorrelated [4–6]. Many varieties
of beamformers have been investigated [7–10] and are roughly categorized into 2 classes:
adaptive beamformers using measurement information, and nonadaptive beamformers
independent of measurement information [11]. Among the variety of options, the minimum-
variance (MV) beamformer has been most widely used and deeply investigated in regard to
MEG/EEG source localization problems [5, 12–17].

Recently, source imaging has been gaining more attention on continuous MEG/EEG
(unaveraged) and single-trial MEG/EEG data in understanding rapidly changing brain
dynamics [18, 19]. This understanding can better facilitate real-time brain activity monitor-
ing, neurofeedback, brain computer interface (BCI) [20–22], among others [23, 24]. Brain
signals can usually be measured by means of MEG or EEG systems and their real-time
interpretation can provide a variety of applications. Beamformer is a promising technique
easily dealing with spatiotemporal multi-dipole source problems as well as being robust
to noise. Regarding real-time source imaging, beamformer speed generally depends on the
quantity of scanned source points, that is, the number of scanning points of interesting brain
area. For this purpose, reducing beamformer scanning points (accelerating beamformer)
without sacrifice of spatial resolution (accuracy) is greatly beneficial in real-time source
imaging. In the present work, a procedure is proposed to accelerate beamformer as well as
to maintain effective spatial resolution. Sensor measurements are composed of a (composite)
linear combination of lead-field vectors (sensitivity of sensors to sources) at active points
as well as noise [15]. For that reason, sensor measurements may produce relatively higher
correlation values than correlation around inactive points. In the present paper, such
reasoning is further investigated culminating in a proposal for reducing scanning points
during beamformer source imaging.

This paper is an extended version of a short conference paper presented in BIOMAG
2010 [25] and is organized in sections. In Section 2, a conventional MV-beamformer is briefly
explained. In Section 3 we follow with a theoretical proposal for reducing scanning regions
and then discuss an effective strategy for computing the correlation distribution between
measurement data and lead-field vectors. Next, both simulated and empirical experimental
results are presented to verify the feasibility and efficacy of the proposed procedure. Lastly,
we discuss other efforts in achieving accelerated beamformer.

2. Minimum-Variance (MV) Beamformer

Beamformer techniques are categorized into two classes: one is adaptive and the other
is nonadaptive. A nonadaptive spatial filter is independent of the measurement, but an
adaptive spatial filter depends on the measurement. Among beamformers, the minimum-
variance (MV) beamformer is superior in accuracy to others [11] and has been widely
used in MEG/EEG source imaging [10]. MV beamformers can be scalar type and vector
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type. In the scalar type beamformers, the source orientation could be estimated to yield
maximum source power (for details, see [10, 15]) or may be predetermined accordingly. On
the contrary, the source orientation could be simultaneously estimated in the vector type
beamformer (uses a set of three weights and each weight detects one component in Cartesian
coordinate system) [4, 5, 26, 27]. Throughout this paper, MV vector type beamformer is
used.

A vector type beamformer enables to estimate simultaneously source orientation and
magnitude. A vector type spatial filter consists of a set of three weight vectors, wx(r), wy(r),
and wz(r) depending on x, y, and z components of the source vector, respectively. Denoting
theweight matrix byW(r) = [wx(r);wy(r);wz(r)], vector-type beamformer is derived solving
the following optimization:

W(r) = argminWTCW, subject to WT (r)L(r) = I, (2.1)

where C = 〈m(t)mT (t)〉t is measurement covariance matrix estimated by time average, L(r) =
[lx(r); ly(r); lz(r)] is the lead-fieldmatrix representing the sensitivity of the whole sensor array
to source activity at r, and I represents an identity matrix. lξ(r) is a lead-field vector of unit
source activity oriented to ξ-axis at r. The weight matrix and output power of this vector type
spatial filter are expressed as follows:

W(r) = C−1L(r)
[
LT (r)C−1L(r)

]−1
,

〈
Q̂(r, t)2

〉
t
=
[
LT (r)C−1L(r)

]−1
.

(2.2)

3. Scanning Reduction Strategy

3.1. Definitions and Principles

In this section, a new strategy of reducing scanning points, thereby accelerating beamformer
source imaging, is proposed without sacrificing accuracy. In beamformer source imaging,
full source space scanning is necessary; sources are located on the brain’s cortical area and
thus all scanning of the brain may be time intensive but achieves whole brain images. On
the other hand, partial scanning accelerates beamformer source imaging. Evidently, reducing
the number of scanning source points while keeping scanning resolution can accelerate the
source imaging process without losing spatial resolution significantly. Our proposed idea is
reducing the scanning region (eventually reduce the number of scanning points) by using the
correlation between measurement and lead-field vectors, defined as

p(r, t) =
m(t) · l(r)

‖m(t)‖‖l(r)‖ . (3.1)
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Here m(t) and l(r) represent the measurement vector at time t and the lead-field vector at
r, respectively. The inner product between m(t) and l(r) vector yields scalar value. At each
source point r, the root mean square (RMS) correlation is computed as follows:

prms(r) =

√√√√ 1
K

K∑
t=1

p(r, t)2, (3.2)

where K is the number of time points. In general, sensor measurements consist of a linear
combination of (composite) lead-field vectors [15] at active points and noise:

m(t) = Ls(t) + n(t)

=
Ns∑
i=1

l(ri)si(t) + n(t) ∼=
na∑
ia=1

l(ria)sia(t) + n(t), na � Ns.
(3.3)

Here s(t) = [s1(t), s2(t), . . . , sNs(t)]
T is a source vector representing a signed source

magnitude at each scanning point ri and time t. L = [l(r1), l(r2), . . . , l(rNs)] is a matrix
consisting of all lead-field vectors, and n(t) is noise at time t, being commonly colored
and independent of signal. Assuming that measurement is produced by a few significantly
strong source activations (such case is common in BCI or spontaneous activity, evoked
response activity, etc.), sources at most scanning points are inactive, yielding a negligibly
small magnitude of si(t), and only a few sources (na sources) are active, the corresponding
si(t) yields significant magnitudes. A correlation value between m(t) and lead-field l(r) at
scanning point r is expressed as

m(t) · l(r) =
na∑
ia=1

sia(t)l(ria) · l(r) + n(t) · l(r). (3.4)

Independence from noise on a signal yields that the 2nd term on the right side of
(3.4) is negligible and thus the correlation value is mainly affected by the 1st term. When a
scanning point is around an active source point, that is, r is very close or equal to ria , then
l(ria) · l(r) gives a significant value. However, when the scanning point is away from all active
points, l(ria) and l(r)may bemuch less correlated, and thus l(ria)·l(r)may yield a considerably
smaller value in magnitude. Due to such arguments, the correlation value p(r, t)may be more
significant at active points than others. Overall, RMS correlation values at active points are
likely to give more significant magnitude than inactive points. Furthermore, it was observed
in Section 4.1 that RMS correlations tended to have higher values around active than inactive
points. From such reasoning and observations, the following strategy is proposed.

(i) Correlation values p(r, t) for each scanning point r in source space and time point t
are computed using (3.1).

(ii) RMS correlation values prms(r) at each scanning source point r are eventually
computed using (3.2).

(iii) Scanning regions are reduced by selecting source points with higher RMS correla-
tion values than given correlation thresholds. Correlation thresholds are estimated
empirically for various SNRs via the Monte Carlo simulation, while corresponding
criteria are formulated in a least square sense (optimization) at a later time.

(iv) Beamformer is performed at such reduced source region.
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3.2. Correlation Computing Strategy

To reduce scanning points, RMS correlation should be computed at every point within the
source space. Computing RMS correlations across the entire source space, including a plenty
of corresponding time points, may be time intensive. For example, about 500 time samples (2
second-long duration for a 250Hz acquisition system) are naturally needed to update brain
dynamics or decode user intention in existing BCI systems. As shown in (3.1), correlation
value computation is necessary for all time points, thereby prolonging overall computation.
Downsampling is a possible strategy, but it risks losing important information. Instead, the
use of eigen temporal window (called ETWB) is proposed in this work.

By projecting a measurement matrix onto eigen-temporal space while ignoring negli-
gibly small eigenvalues and corresponding eigenvectors, the number of time points is dra-
matically reduced, thereby reducing correlation computation time. Such a procedure is for-
mulated as follows.

(i) Spatiotemporal measurement matrixM = [m(t1);m(t2); . . . ;m(tK)] of size S×K can
be decomposed by singular value decomposition (SVD) as follows:

M =

⎛
⎜⎜⎜⎜⎝

... · · · ...

u1 · · · uK

... · · · ...

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1 0 0

0
. . . 0

0 0 λS

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

· · · vT
1 · · ·

...
...

...

· · · vT
S · · ·

⎞
⎟⎟⎟⎠ = UΣVT,

λ1 ≥ λ2 ≥ · · · ≥ λS.

(3.5)

(ii) Projection matrix VETWB = [v1;v2; . . . ;vJ] is constructed using J significant tempo-
ral eigenvectors vj (determined by the significance of corresponding eigenvalues)
of measurement matrix M. Threshold of eigenvalues or the number of eigenvalues
J(� K) can be determined empirically.

(iii) Projected measurement matrixMETWB of size S×J is defined to compute as follows:

METWB := MVETWB. (3.6)

Reduction of the time dimensionality of the measurement matrix is thus ensured,
thereby significantly reducing correlation computation time. Computing time of about 3 sec-
onds is reduced to 0.7 seconds, which will be discussed later in this paper. The effectiveness
of this strategy is demonstrated in the following section.

4. Results

4.1. Observation on Correlation Distribution

Correlation distribution between active and inactive points was investigated through nu-
merical experiments in this section. A spherical homogeneous conductor head model with
an 8.5 cm radius, centered at origin, was used for forward computing [28], while sensor
geometry from a MEGVISION Yokogawa system with a 160-sensor gradiometer array was
adopted. Two sources were assumed to be located within a box-shaped region defined by
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Figure 1: Two source locations and head geometry description (a), time courses of dipole sources, first
with a solid and second with a dashed line (b), and over-plotted synthetic MEG measurement data (SNR
of 1) for 160 sensors (c).

−8.5 ≤ x ≤ 8.5, −8.5 ≤ y ≤ 8.5, and −2.0 ≤ z ≤ 8.5 (cm) with a total of 10,000 scanning
points comprising equally spaced lattices. Such sources were located at (−3.7, −3.6, 5.0)
and (3.3, 4.1, 4.3) cm, both directed to (1, 0, 0). Synthetic data was generated by adding
white Gaussian noise to calculated sensor values computed through a forward model. A
synthetic magnetic field with 500 time samples was generated with an SNR of 1. The SNR
was defined by ‖S‖F2/‖N‖F2, where S and N are signal and noise matrices, respectively, and
‖ · ‖F is a Frobenius norm. Time courses for dipoles were provided as damping sinusoidals
with different wavelengths; these sources were almost uncorrelated. A detailed configuration
description is shown in Figure 1. Numerical experiments were conducted on a workstation
(2x AMD Opteron CPU 2.3GHz, 64 bit OS, and 64GB RAM).

Correlation of full-source spacewith 10,000 scanning points was computed to illustrate
the distribution using (3.2). In Figure 2, three different views of correlation distribution
such as xy-, xz-, and yz-plane projections are depicted. This xy-plane projection map and
others were generated by prms(ix, iy) = maxiz prms(ix, iy, iz) for each pixel point (ix, iy).
Figure 2 shows that correlation values produced around active rather than inactive points
were relatively higher. Therefore, beamformer scanning within regions with relatively high
correlation values seemed to be adequate in reconstructing source information. It is obvious
from this observation that choosing a scanning region in the proposed manner can be a good
strategy in accelerating beamformer.

4.2. Correlation Threshold

In the previous section, correlation distribution was found to play a key role in getting a
priori information on source locations. Intuitively, use of such correlation distribution can
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Figure 2: Correlation distribution for two dipole source problems on the entire source region of the brain.
Darker color represents a higher correlation value.

accelerate beamformer source imaging when beamformer scanning is confined to regions
with relatively high correlation values. To apply such a concept, proper correlation thresholds
should be predetermined in a reasonable way. In general, correlation distribution may
influence various factors such as source locations, source magnitudes, SNR, and sensor
geometry. For simplicity, correlation threshold criterion is assumed to depend only on SNR;
estimation is thus possible with information easily obtainable or observable. Under such
consideration, the following formulation on correlation threshold corrthresh(SNR) is proposed:

corrthresh(SNR) := m + σ · a(SNR),

m := mean
{
prms(·)

}
, σ2 := var

{
prms(·)

}
.

(4.1)

Herem and σ are the first- (mean) and second- (standard deviation) order statistics of
RMS correlation values, which are easily estimated. Further, a(SNR) is a nonlinear function
depending on SNR and should be determinedwithmore caution. In order to estimate a(SNR)
effectively, a Monte Carlo simulation study was executed. For a great number of simulated
data with various SNRs (with real noise), proper a(SNR) values were computed and fitted
to the given model in a least square sense—assuming that correlation values at active source
points are higher than thresholds. From our experience, the following simple logarithmic
model was ideally adopted in the present work:

a(SNR) = max
{
α log

(
β · SNR

)
, 0
}
. (4.2)

Correlation threshold criterion corrthresh(SNR)was estimated through theMonte Carlo
simulation study. The Monte Carlo simulation was conducted with 200 randomly distributed
dipole sources at random orientations across the entire brain. For each dipole (fully correlated
source between lead-field vector l(r) and measurement m(t)), five different empirical noise
realizations and 15 different SNRs (between 0.01 and 8) were generated by noise power
control. Hence, a total of 15,000 single dipole problems were generated in estimating the
correlation threshold. Estimated optimal parameters (α and β) for such ETWB strategy are as
follows:

a(SNR) ≈ max
{
0.214 log(11.309 · SNR), 0

}
. (4.3)
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Figure 3: SNR = 1: beamformer source reconstruction results using the ETWB strategy. (a) Reduced
scanning region (darker shaded region)with a higher correlation value than the predetermined threshold
value in (4.1). (b) Beamformer source imaging in the region with reduced scanning.

Empirical MEG noise used in the Monte Carlo simulation study was acquired under
the following experimental paradigm.

Empirical MEG data was collected from a healthy male volunteer (24-year-
old) who participated after appropriate informed consent was acquired. During
spontaneous activity with eyes closed in a magnetically shielded room, an
acquisition period of 120 seconds was launched. Data was digitized at 2 kHz
with the online lowpass filter set at 500Hz, postprocessing digital filter applied
from 1 to 100Hz, excluding 50Hz due to electrical power conditions. Data was
collected from a whole-head gradiometer system with 160 channels (MEGVISON
Yokogawa system).

Our proposed threshold criterion was generated from a single dipole simulation
study; thus other possible source configurations are not sure to be perfectly accounted for.
Nevertheless, it was found that our proposal proved quite effective throughout the work.

4.3. Experimental Results: Simulated Data

In this section, investigation into the degree of acceleration and reduction of scanning points
resulting from our proposed ETWB strategy was studied. For this purpose, beamformer and
proposed scanning reduction strategy was integrated to apply to a simulated two dipole
problem, which was generated in Section 4.1. For effective inversion of data covariance and
higher output SNR [10], the inversion of data covariance matrix (C + εI)−1 in place of C−1

was used, where ε and I are a regularization factor and an identity matrix, respectively [29].
Regularization factor ε is estimated by ε = max{λ1, λ2, . . . , λS}·10−5, where λi, {i = 1, 2, . . . , S}
is the eigenvalue of the data covariance C. We tested beamformer using the ETWB strategy
addressed in Section 3.1. Reconstructed source imaging by this method is illustrated in
Figure 3. According to (4.1), the correlation threshold was properly chosen in reducing source
scanning regions. In the ETWB strategy, significant eigenvectors were chosen explaining the
amount of information, up to 70%, from measurement matrix M. Thus, approximately one
fifth of 500 total time samples were selected to create an eigen-temporal projection matrix
VETWB.

Figure 3 shows which particular region has higher correlation values than threshold,
and beamformer in the reduced region resulted in images being identical to the beamformer
source imaging with the entire source space scanning. In this experiment, the number of
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Figure 4: Reduced scanning regions (left) by our proposed beamformer and reconstructed images (right)
over simulated data with different SNRs. (a) SNR: 0.1. (b) SNR: 4.

scanning points was reduced to about 3,000, that is, about one third of the total original
scanning points of 10,000. Total elapsed time of beamformer was about 0.53 seconds, even
including correlation computation, while conventional beamformer time (full-brain scan)
was about 1.03 seconds.

Source Imaging Effect on SNR

Conventional full-scan beamformer was compared with reduced scanning beamformer using
the proposed strategy to determine howmuch scanning reduction was attained over different
SNRs (0.1 or 4). The reduced scanning regions by ETWB strategy are illustrated in Figure 4.
The same ETWB strategy as in previous experiments was used. For simulated data with SNR
0.1, Figure 4(a) shows the results from the reduced scanning region using the ETWB strategy
and the reconstructed image from beamformer. Computation time for the conventional
beamformer was about 1.03 seconds over the entire region of 10,000 points. Conversely, our
proposed strategy took about 0.6 seconds, and scanning points were reduced up to about
4,400 points.

With regards to high SNR 4, the same experiment was conducted. Figure 4(b) shows
the results from the reduced scanning region using the ETWB strategy for processing sim-
ulated data. In this case, computation time for beamformer using our proposed strategy
was about 0.37 seconds, and scanning points were reduced to about 2,300 points. Such
results show that our proposed strategy can accelerate beamformer while maintaining spatial
resolution of source images with respect to SNRs. As previously mentioned in the initial
simulation (SNR = 1), the number of significant eigenvectors needed for the ETWB strategy
was about one fifth of the total time points.

Source Imaging Effect on Source Correlation

In this section, the performance of our proposed beamformer was investigated over different
source correlations between two dipole sources. It is known that beamformer performance
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Figure 5: Reduced scanning regions (left) by our proposed strategy and reconstructed images (right).
All other configurations (source locations, time courses, and SNR (=1)) are the same as in Figure 1. (a)
Correlation: 0.1. (b) Correlation: 0.6. (c) Correlation: 0.9.

degrades for heavily correlated sources. To investigate how much our proposed method
relatively effects source correlation, simulated data was generated under the same config-
urations as in Section 4.1, except for different source correlations such as 0.1, 0.6, and 0.9.
To generate simulated data with different source correlations, the time course of the second
dipole source was made using the formula: ŵ2(t) = (1 − ξ)w1(t) + ξw2(t), where w1(t) and
w2(t) represent the first and second time courses of the sources, respectively. The parameter
ξ controls the degree of the correlation between w1(t) and w2(t). Figure 5 shows the reduced
scanning regions by our proposed strategy and reconstructed source imaging of beamformer.
As correlation increases, sources get more broadly reconstructed; thereby spatial resolution
is poorer. However, reduced scanning regions seem to be almost same; therefore, there is no
significant effect on scanning reduction of correlation between sources.

Source Imaging Effect on Source Depth and Extended Source Model

In general, as brain sources are activated far away from the sensor surface of the MEG/EEG
system, it is dramatically less sensitive to those sources and localization accuracy gets worse.
In this section, the performance of beamformer using our proposed strategy is investigated as
sources gradually move away from the sensor surface. For this investigation, the same source
configuration as in Figure 1 was used except for the depth of one source. Three source depths
(z-coordinate), 5.0, 2.9, and 0.8 cm, were considered. Figure 6 shows the reduced scanning
regions by our proposed strategy over varying source depths. Obviously, as the source is
located deeper, the source signal gets weaker; thus it is harder to reconstruct deep sources
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Figure 6: Reduced scanning regions by our proposed beamformer over varying source depths. Source
configuration is the same as in Figure 1, except for the depth (z-coordinate) of one source. (a) Depth:
z = 5.0 cm. (b) Depth: z = 2.9 cm. (c) Depth: z = 0.8 cm.

by our proposed beamformer. The reduced scanning region got slightly narrower since SNR
gets smaller, but it is not significantly noticeable.

Further, the performance of our proposed beamformer was tested on extended source
models. Extended sources were generated for three different source span diameters: 0, 2.0,
and 5.0 cm. Here the source with a 0 cm span diameter means a dipole source. Extended
sources were generated on the plane (z = 5.0 cm) parallel to the xy-plane. Each center of
the extended sources is located on (−3.7, −3.6, 5.0) cm. All dipole sources within extended



12 Journal of Applied Mathematics

source regions were oriented to the same direction. Expectedly, there was no big variation
on different span diameters, but extended sources with span diameter 5.0 cm seemed slightly
broad spread. However, reduction of scanning regions was almost unchanged (not shown).

Comparison on Computing Time

So far, many kinds of simulated data over different SNRs, different source depths, different
source correlations as well as different extended source spans have been tested to compare
reduced scanning beamformer using our proposed strategy to conventional full-scan beam-
former. Overall, our proposed beamformer shows its relative acceleration in time and yields
comparable in accuracy to the conventional beamformer. Figure 7 depicts comparative com-
putational time over numerous simulated problems, which were generated as follows.

(i) For single dipole problem, 1,000 dipoles were randomly distributed within the
spherical head model. For each dipole, 7 single dipole problems with different
SNRs (between 0.01 and 8) were generated by adding white Gaussian noise, thus
yielding 7,000 single dipole problems. Particularly, for different diameter of source
simulation, 6 different diameters of source (between 0 and 50mm) at each source
were considered. Thus 6,000 single source problems were generated with keeping
SNR of 1 in this case.

(ii) For two-dipole problem, 1,000 pairs of two dipoles were randomly chosen among
1000 dipoles generated in single dipole problems. For each pair, two-dipole
problems were generated with 7 different SNRs (between 0.01 and 8), 7 different
source correlation coefficients (between 0 and 1), and 6 different interdistance
between two sources (between 0 and 100mm). Hence, total 294,000 two-dipole
problems were generated to test.

For each problem, the number of scanning point and computational time were
estimated. Evidently, computational time is linearly proportional to the reduced scanning
points. In our proposed strategy, we found that averaged correlation computing time
including SVD computation was about 0.15 seconds, which was added to computational
time. The averaged computational time of the conventional beamformer was about 1.035
seconds. Each point in Figure 7 represents an averaged computing time with standard de-
viation over all corresponding simulated problems.

Figure 7(a) shows that our strategy speeds up as SNR gets higher. It means that
reduction rate of scanning points is higher as SNR goes higher. Further, computational time
has no noticeable difference as extent of source and source correlation vary (Figures 7(b)
and 7(c)). However, computational time over inter-source distance seems slight difference
(Figure 7(d)). As two sources get far, computational time increases slightly, but not sub-
stantial.

It is remarkable that correlation computation time did not change with respect to
SNRs; however, we found that computation time of SVD varied slightly over SNRs. We
guess that such small variation of SVD computing time may stem from different matrix
characteristics. Total original scanning points amounted to 10,000 and the temporal size of
the measurement matrix was 500. Figure 7(a) shows that beamformer utilizing our proposed
ETWB strategy computed significantly quicker than the conventional beamformer, yielding
about 30–60% improvement. These experiments demonstrate how the beamformer with our
strategy was effective in accelerating beamformer source imaging.
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Figure 7: Comparative computational time of our proposed strategy and conventional beamformer over
different problems varying SNR, source correlation, diameter of source, and distance between two sources.
Each problem requires a total of 10,000 scanning points and has temporal window of 500 time samples.
Each point is the averaged computational time with standard deviation.

4.4. Experimental Results: Empirical Data

In the present section, reduced scanning beamformer with our proposed strategywas applied
to empirical MEG data. Four kinds of empirical MEG datasets were acquired on awhole-head
gradiometer MEGVISION Yokogawa system with 160 channels—median nerve stimulations
(right hand/left hand) and auditory stimulations (left ear/right ear). Experimental paradigm
is detailed as follows.

A healthy male volunteer (24-year-old) participated in the MEG measurement
after appropriate informed consent. First, the somatosensory electrostimulation
median nerve of his right/left hand was stimulated and all measurements were
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done in a magnetically shielded room. During measurement, the subject was
instructed to keep his eyes closed.
A 2.9 (right)/3.5 (left)mA current and a 2Hz sampling were applied with 0.3-
millisecond current pulses. Interstimulus-interval (ISI)was randomizedwith 0.5 s
duration. Second, the auditory stimulation of his right/left ear was stimulated
with eyes closed. A 80dB sound pressure and a 2Hz sampling were applied
with 40ms plateau with 10ms rise and falls. Also, ISI was randomized with a
2 s duration (random 50%, 1–3 s). Data were digitized at 2 kHz, lowpass filtered
at 500Hz as well as postprocessed via a digital filter at 1–100Hz (median nerve
stimulation)/1–50Hz (auditory stimulation), excluding 50Hz due to electrical
power conditions. In the case of median nerve stimulation, a total 399 (right-
hand)/418 (left-hand) single trials were acquired. Total 73 (right-ear)/70 (left-
ear) single trials were obtained in the case of auditory simulations.

Each collected single trial data (unaveraged)with 0–250 millisecond (time-locked, 500
time samples) time window after stimulation onset were analyzed. Such analysis can better
facilitate real-time brain activity monitoring for neurofeedback and brain computer interface
(BCI) [23], among others. For single trial analysis, the reduced scanning beamformer with
our proposed strategy and the conventional full-scan beamformer were used. We used entire
the source region consisting of a total of 8,640 scanning points and a temporal window with
500 samples corresponding to a duration of 250 milliseconds. The correlation threshold was
accordingly determined through formula defined in (4.1). Eigen-temporal projection matrix
VETWB was estimated as having explained 70% of the measurement matrix information. To
compare source reconstruction performance, all of each single trial was reconstructed and
their source information (number of scanning points × number of time samples × number
of trials) was averaged over the trials. Also, total computing time elapsed for single trial
analysis wasmeasured over different datasets and two kinds of beamformers. Figure 8 shows
the averaged-over-trial-reconstructed source power maps of both conventional full-scan
beamformer and reduced scanning beamformer with our proposed strategy for median nerve
stimulation data (right and left). To verify the capability of our proposed reduced scanning
beamformer, we attempted single-trial analysis for empirical data. Both beamformers
were applied to compare and averaged source power maps over trial were generated by
considering zero power out of the reduced scanning region. Since each trial has different
reduced scanning region based on correlation threshold, averaged-over-trial source power
map was seen in the whole region.

Beamformer source imaging for averaged median nerve stimulation data yielded
focused source activity in the upper contralateral posterior central sulcus (not shown here),
which is relevant to existing literature (see [30] and therein). As illustrated in Figure 8,
strong source activity appeared in the upper contralateral area andmost mildly active sources
seemed scattered around strong source activity, which is relevant to beamformer results (not
shown) for averaged median nerve stimulation data. Evidently, both beamformers showed
almost identical results, thereby reduced scanning beamformer being comparable in accuracy
to the conventional one. However, significant improvement in computing time was achieved
in the reduced scanning beamformer with our proposed strategy, and comparative total
elapsed computing time for each experiment was tabulated in Table 1.

These results tell that overall improvement in computing time of reduced scanning
beamformer with our proposed strategy is over 40%. In conclusion, our proposed reduced
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Figure 8: Averaged-over-trial-reconstructed source power maps of both conventional beamformer (left)
and reduced scanning beamformer with our proposed strategy (right) for empirical median nerve
stimulation data. (a) Right-hand movement. (b) Left-hand movement.

Table 1: Comparative total computing time (in seconds) of single trial analysis for different empirical
data between conventional full-scan beamformer and reduced scanning beamformer with our proposed
strategy. Source region with a total of 8,640 scanning points and a temporal window of 500 time samples
were used. Experiments were conducted on a PC (Intel Core 2 Duo CPU 2.4GHz, 32 bit OS, and 4GB
RAM).

Experiment (No. of trials) Elapsed time of beamformer imaging (sec) Improvement (%)
Full-scan Reduced scanning

Median-right (399) 723.3 418.8 42.1
Median-left (418) 760.6 430.2 43.4
Auditory-right (73) 132.1 74.7 43.5
Auditory-left (70) 126.9 72.1 43.2

scanning beamformer is feasible and very applicable in accelerating the conventional beam-
former.

5. Discussion

5.1. Other Possible Accelerating Strategies

In this work, one beamformer using ETWB strategy was proposed to reduce the beamformer
scanning regions by computing correlation distribution, thereby accelerating beamformer.
Similar to the ETWB strategy, another strategy is possibly proposed by doing eigen-tem-
poral projection and in addition doing eigen-spatial projection. We call this strategy eigen-
spatiotemporal window-based method (we call it ESTWB). The discarding of relatively
insignificant sensor information via the ESTWB strategy seems more efficient in relation to
computation time while the ETWB strategy will inherently provide a more accurate correla-
tion distribution as well as yielding more reliable beamformer source imaging. In addition to
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ETWB and ESTWB strategies, temporal downsampling is another idea; however, it possibly
loses useful information.

Computing correlation in (3.1) and (3.2) amounts to a spatial matched filter when
normalization term of measurement vector m(t) in (3.1) is dropped. So, it is not surprising
that correlation behaves like another spatial filter, thereby yielding rough less accurate but
fast spatial imaging. This information is used for prescreening to determine final scanning
region of more elegant spatial filter, that is, MV beamformer. Such argument gives more
general perspective in developing speeding-up strategies of scanning methods. Any hybrid
between a fast scanning method and an accurate scanning method can be possible when they
can yield synergy effect due to reasonable combination strategies.

Furthermore, there exist other strategies to speed up scanning methods. One can
consider downsampling in spatial scanning to reduce computation effort. It is commonly
applicable in scanning methods like beamformer. When our strategy would be applied
together, scanning methods should be boosted easily. Another easy strategy is to increase
computational resources such as parallel computing to use many personal computers at
the same time. This provides powerful computing ability; thus tens to hundreds of times
improvement would be possible. Certainly, such a strategy demands a relatively high cost;
thus, it may be not easily affordable to most investigators. It is noted that our proposed
strategy of simple consideration of correlation distribution can be achieved on a single
personal computer.

5.2. Applicability of Our Proposed Strategy

As discussed in Section 4.1, simple description and observation of correlation distribution
around active and inactive sources motivated us to conduct this kind of investigation. For a
few strong brain sources being well separated, our strategy is favorably relevant. However,
for many sources, the correlation threshold may become lower due to more mixed source
intercorrelations; thus, scanning points will be slightly reduced and our proposed correlation
threshold criterion may not be effective in such cases. Nevertheless, real-time brain activity
monitoring systems (or BCI systems) are usually designed to find relatively rapidly changing
source information (or discriminative information among different conditions); thus, a few
strong sources may be accountable and helpful for providing such information.

In real-time monitoring or BCI systems, seamless monitoring or control decision is
of great importance. In reality, most systems have some delay coming from computation
implicitly required to do any defined action; however, such delay is reasonably small or one
may design the system to have delay constant or within an affordable bound; thus it looks
real-time system to user. Particularly, source imaging analysis introduced in these systems
may not avoid significant delay incurring from intense computation. However, well-desiged
system to hide such significant delay may be possible. For example, assuming that every 1-
second-long window data is collected to analyze and source imaging requires 1 second, such
systemmay be designed that data is analyzed to give final result to the system during system
being collected next 1 second-long data; then system continues to do the same procedure.
This system can achieve seamless procedure (it looks real-time system from user) with
constant delay of 1 second. From this perspective on real-time monitoring or BCI systems,
the faster source imaging can achieve the higher monitoring scan or decision rate. Therefore,
our proposed strategy yielding about 40% speed-up of source imaging is well applicable in
this reasoning.
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On the other hand, in BCI systems, one could define a region-of-interest (ROI)
manually [23, 24] or by elegant procedures [31, 32]. Source imaging on such ROI could
increase the spatial specificity or enhance SNR in source space [31]. Furthermore, it is possible
to achieve far more accelerated source imaging than whole brain source imaging. To achieve
real-time source activity monitoring or source information-based BCI [20, 22–24], naturally
higher spatial resoluted imaging within ROI is beneficial in such development. However, it
requires more computation time. Our proposed strategy can be still applicable on ROI in the
same manner. Furthermore, single-trial analysis using fast beamformer has been beneficial
in developing many applications [18, 19]. Accordingly, our proposed method was applied
to single-trial data, such as empirical median nerve stimulation and auditory stimulation, as
discussed in Section 4.4. It revealed several dynamic activation regions, usually not visible
during averaged data analysis (not shown here). Such single-trial analysis and online BCI
application will be investigated in more detail and reported in a subsequent paper.

5.3. Other Issues

Through the Monte Carlo simulation, our correlation threshold criterion, depending on SNR,
was formulated in a least square sense. This criterion was dependent on sensor configuration
(geometry); so it should be reestimated under other sensor configurations. Factors other than
SNR may have some effects on correlation thresholds. Accordingly, more thorough research
is currently under investigation.

Even though the conventional vector-type MV-beamformer among the beamformer
variants was adopted in this work, scalar-type or other nonadaptive beamformers are simi-
larly applicable. Furthermore, this strategy is very straightforward for EEG or simultaneous
MEG/EEG data application, and subsequent work on simultaneousMEG/EEG beamformers
[33] is currently under investigation.
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