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This paper presents a diagnosis scheme based on a linear matrix inequality (LMI) algorithm for
incipient faults in a nonlinear system class with unknown input disturbances. First, the nonlinear
system is transformed into two subsystems, one of which is unrelated to the disturbances. Second,
for the subsystem that is free from disturbances, a Luenberger observer is constructed; a sliding
mode observer is then constructed for the subsystem which is subjected to disturbances, so that
the effect of the unknown input disturbances is eliminated. Together, the entire system achieves
both robustness to disturbances and sensitivity to incipient faults. Finally, the effectiveness and
feasibility of the proposed method are verified through a numerical example using a single-link
robotic arm.

1. Introduction

An electronic system is structurally complex, involving a number of electronic components.
It is therefore difficult to accurately analyze the relationship between the input and output
for each component and the cause of any faults within, as each fault may exhibit diverse
manifestations. Incipient faults are important in electronic systems, and some common
manifestations include zero drift, reduced precision, delayed response, and equipment aging.
If these potential incipient faults cannot be detected in time, the long-term stable operation
of the devices will be affected and, more importantly, they will cause a decline in production
capacity and an increase in the cost of production, or even accidents. Therefore, the study of
incipient faults in electronic devices has practical significance.
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The slidingmode variable structure control algorithm has the advantages of simplicity,
high robustness, and high reliability and is extensively used in motion control. The sliding
mode observer has attracted attention for fault diagnosis since the sliding mode variable
structure control enables the system to be robust against unknown input disturbances,
especially against external disturbances [1, 2]. Observer technology is one of the most
important methods for fault diagnosis and detection, estimation and fault-tolerant control
[3–5]. A robust fault diagnosis method for the sliding mode observer has been proposed [6].
This scheme adopts the Walcoot-Zak sliding mode observer, which makes system state error
robust against disturbances, and is maintained on the sliding mode surface. Much progress
has been made in measuring the deviation in the trajectory of the motion of the system
by using a sliding mode surface [5, 7, 8]. However, the current fault diagnosis based on
sliding mode observers is mostly used for mutant or intermittent faults that have significant
numerical changes. There have been few reports on slow faults with a small initial value. This
is because the sliding mode control is essentially a type of continuous nonlinear control, and
buffeting is inevitable for the system output, which causes the incipient fault signals to be
submerged in the buffeting signals for a long period of time after their generation, thus they
cannot be detected.

Chen and Chowdhury [9] have proposed a fault detection scheme for actuator’s
incipient faults in linear systems. Building on the work of Chen and Chowdhury [9], this
paper presents an LMI-based fault diagnosis scheme, which is designed for incipient fault
detection in nonlinear systems with unknown input disturbances. The adoption of the LMI
algorithm relaxes the selection criteria for key parameters in the design, making it easier to
obtain these parameters.

2. System Descriptions

For a nonlinear systems with disturbances,

ẋ(t) = Ax(t) + Bu(t) + f(x, u, t) +Dd(x, u, t),

y(t) = Cx(t),
(2.1)

where x(t) ∈ Rn is unmeasurable state vector; u(t) ∈ Rm is measurable input vector; y(t) ∈ Rp

is the measurable output vector; f(x, u, t) ∈ Rn is the known nonlinear function; d(x, u, t) ∈
Rq is unknown bounded nonlinear function, representing the unknown input disturbances
and modeling errors, which are collectively referred to as input disturbances; D ∈ Rn×q is
known disturbance distributionmatrix.A, B, andC are knownmatrices, whereA ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n, n > p > q.

Assumption 2.1. (A,C) is observable.

Assumption 2.2. D is full column rank and rank(CD) = rank(D).

Assumption 2.3. d is a bounded disturbance such that ‖d‖ ≤ γ1, where γ1 is a known function
greater than 0.
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3. Design of Fault Diagnosis Scheme

3.1. Coordinate Transformation

Coordinate transformation is used, under certain geometric conditions, to decouple the
unknown input disturbance and faults [10]. Assumption 2.2 implies that there are two
transformation matrixes, T and S [9]. The system (2.1) can be decomposed into the following
two subsystems (the details of the transformation process are given elsewhere [9]):

ż1 = A11z1 +A12z2 + B1u + f1,

v1 = C11z1,
(3.1)

ż2 = A21z1 +A22z2 + B2u + f2 +D2d,

v2 = C22z2,
(3.2)

where z1 ∈ Rn−q, z2 ∈ Rq, A11 ∈ R(n−q)×(n−q), A12 ∈ R(n−q)×q, A21 ∈ Rq×(n−q), A22 ∈ Rq×q,
v1 ∈ Rp−q, v2 ∈ Rq, C11 ∈ R(p−q)×(n−q), C22 ∈ Rq×q.

The matrix transformation and definition in systems (3.1) and (3.2) are as follows:

TAT−1 = A =

[
A11 A12

A21 A22

]
, TB = B =

[
B1

B2

]
, Tf = f =

[
f1

f2

]
,

TD = D =

[
0
D2

]
, SCT−1 =

[
C11 0
0 C22

]
,

(3.3)

where C22 is an invertible matrix.
The transformation matrix T is

T =
[
In−q −D1D

−1
2

0 Iq

]
. (3.4)

3.2. Observer Design

The following assumptions are made for transformed systems (3.1) and (3.2).

Assumption 3.1. (A11, C11) and (A22, C22) are observable.
Assumption 3.1 implies that there are matrixes L1 and L2, which enable A01 and A02

to be stable matrices:

A01 = A11 − L1C11, A02 = A22 − L2C22. (3.5)

There are also two Lyapunov equations:

AT
01P1 + P1A01 = −Q1, AT

02P2 + P2A02 = −Q2, (3.6)

where P1, Q1, P2, and Q2 are all symmetric positive definite (SPD)matrices.
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(c) ẽv2 at 29.5–30.5 s

Figure 1: Output estimation error in case 1 using a high frequency disturbance.

Assumption 3.2. The function f satisfies the Lipschitz condition:

∥∥∥f(x, u, t) − f(x̂, u, t)
∥∥∥ ≤ γ‖x − x̂‖, (3.7)

where γ‖x − x̂‖ = γ‖T−1‖‖z − ẑ‖ = γ‖z − ẑ‖, and γ is the Lipschitz constant.

A Luenberger observer is constructed for subsystem (3.1):

˙̂z1 = A11ẑ1 +A12ẑ2 + B1u + f1

(
T−1ẑ, u, t

)
+ L1(v1 − v̂1),

v̂1 = C11ẑ1,

(3.8)

where superscript “Λ” indicates estimate value.
A sliding mode variable structure observer is constructed for subsystem (3.2):

˙̂z2 = A21ẑ1 +A22ẑ2 + B2u + f2

(
T−1ẑ, u, t

)
+D2w + L2(v2 − v̂2),

v̂2 = C22ẑ2,

(3.9)
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(c) ẽv2 at 29.5–30.5 s

Figure 2: Output estimation error in case 1 using a low frequency disturbance.

where w is the input signal of sliding mode variable structure, expressed as

w =

⎧⎪⎨
⎪⎩
−ρ F(v̂2 − v2)

‖F(v̂2 − v2)‖ + δ
if v̂2 − v2 /= 0

0 if v̂2 − v2 = 0,
(3.10)

where F ∈ Rq×q is the matrix to be designed; ρ is the scalar function to be designed, ρ ≥ γ1; δ
is a positive constant of small value.

Assumption 3.3. The matrices P2 and F have to be chosen such that P2D2 = C
T
22F

T.
Define e1 = z1−ẑ1, e2 = z2−ẑ2, e = [ e1

e2 ] as the state estimation errors and ev1 = v1−v̂1 =
C11e1, ev2 = v2 − v̂2 = C22e2 as the output estimation errors.

Based on (3.1), (3.2), (3.8), and (3.9), the corresponding observation-error dynamic
equations are given by:

ė1 =
(
A11 − L1C11

)
e1 +A12e2 + f1

(
T−1z, u, t

)
− f1

(
T−1ẑ, u, t

)
,

ė2 =
(
A22 − L2C22

)
e2 +A21e1 + f2

(
T−1z, u, t

)
− f2

(
T−1ẑ, u, t

)
+D2(d −w2).

(3.11)
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Figure 3: Output estimation error in case 2 using a high frequency disturbance.

Lemma 3.4 (see [11]). If g(x, u, t) satisfies the Lipschitz condition, then there will be an SPDmatrix
P that satisfies the following equation:

2εTP
(
g(x1, u, t) − g(x2, u, t)

) ≤ k2εTPPε + εTε, (3.12)

where ε = x1 − x2 and k is the Lipschitz constant.

Lemma 3.5 (Schur Complement [12]). For a given symmetric matrix S =
[
S11 S12
S21 S22

]
, where S11 ∈

Rr×r . The following three conditions are equivalent:

(1) S < 0;

(2) S11 < 0, S22 − ST
12S

−1
11S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22S

T
12 < 0.

Theorem 3.6. Under Assumptions 2.1–2.3 and 3.1–3.3, if the following LMI holds,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1 A
T

21P2 + P1A12 P1 0

A
T

12P1 + P2A21 H2 0 P2

P1 0 − 1
γ2

I 0

0 P2 0 − 1
γ2

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.13)

where H1 = A
T
11P1 + P1A11 − YT

1 − Y1 + I, H2 = A
T
22P2 + P2A22 − YT

2 − Y2 + I, Y1 = P1L1C11 and
Y2 = P2L2C22, then e1 and e2 will converge to the zero point.
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Proof. Consider the following Lyapunov function:

V = eT1P1e1 + eT2P2e2. (3.14)

The derivative of the Lyapunov function with respect to time is

V̇ = eT1

(
AT

01P1 + P1A01

)
e1 + 2eT1P1

(
A12e2 + f1(z, u, t) − f1(ẑ, u, t)

)

+ eT2

(
AT

02P2 + P2A02

)
e2 + 2eT2P2

(
A21e1 + f2(z, u, t) − f2(ẑ, u, t) +D2(d −w)

)
.

(3.15)

Let

Ã =

[
A11 − L1C11 A12

A21 A22 − L2C22

]
. (3.16)

then

V̇ = eT
(
ÃTP + PÃ

)
e + 2eTP

(
f(z, u, t) − f(ẑ, u, t)

)
+ 2eT2C

T
22F

T
(
d − ρ

Fev2
‖Fev2‖

)

≤ eT
(
ÃTP + PÃ

)
e + 2eTP

(
f(z, u, t) − f(ẑ, u, t)

)
− 2‖Fev2‖

(
ρ − γ1

)
.

(3.17)

From Lemma 3.4 we find that

V̇ ≤ eT
(
ÃTP + PÃ + γ2PP + I

)
e. (3.18)

According to Lemma 3.5, when the following inequality is satisfied,

⎡
⎣ÃTP + PÃ + I P

P − 1
γ2

I

⎤
⎦ < 0 (3.19)

then V̇ < 0.
Since Ã =

[
A11−L1C11 A12

A21 A22−L2C22

]
, P =

[
P1 0
0 P2

]
, L =

[
L1 0
0 L2

]
, the above LMI (3.19) can be

transform into inequality (3.13), which is listed in Theorem 3.6.
This completes the proof.

The main advantage of the method presented in this paper is that the complex
equations for obtaining parameters given by Chen and Chowdhury [9] are transformed into
inequality (3.13), a standard LMI. Then the solution becomes much easier when the LMI
toolbox is used in MATLAB.
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3.3. Fault Diagnosis

When a fault occurs, the systems (3.1) and (3.2) are transformed into the following equations:

ż1 = A11z1 +A12z2 + B1u + f1 + E1fa(t)

v1 = C11z1

ż2 = A21z1 +A22z2 + B2u + f2 +D2d + E2fa(t),

v2 = C22z2,

(3.20)

where E1 is a nonzero matrix, E1 ∈ Rn−q, TE =
[
E1

E2

]
, E ∈ Rn×r is a known fault distribution

matrix. fa(t) ∈ Rr is an unknown bounded nonlinear function, which represents incipient
faults of the system.

The dynamic equations of e1 and e2 of observer can be obtained from (3.8), (3.9),
and(3.20), thus errors ev1, ev2 are written in the following forms:

˙̃e1 =
(
A11 − L1C11

)
e1 +A12e2 + f1

(
T−1z, u, t

)
− f1

(
T−1ẑ, u, t

)
+ E1fa(t),

ẽv1 = C11ẽ1,

(3.21)

˙̃e2 =
(
A22 − L2C22

)
e2 +A21e1 + f2

(
T−1z, u, t

)
− f2

(
T−1ẑ, u, t

)
+D2(d −w2) + E2fa(t),

ẽv2 = C11ẽ2.

(3.22)

It can be concluded from Theorem 3.6 that, in spite of the unknown input disturbance,
ev1 and ev2 still converge to zero field when there is no fault, or deviate from zero when the
faults occur. In (3.22), which is an explicit of both faults and the unknown input disturbance,
a slidingmode observer is designed for weakening the impact resulting from the disturbance.
However, the inherent chattering phenomenon of slide mode variable structure control
makes it difficult to distinguish the early incipient faults signals from the chattering signals
until the faults develop to be serious enough. Thus, R2(t) = ẽv2 is unsuitable to be the faults
detecting residual. By contrast, the ẽv1 in (3.21) is designed with no sliding mode observer
in order to avoid the impact from chattering; therefore, R1(t) can be used as the residual for
incipient fault detecting. The simulation results in Section 4 will verify the above statements.

4. Simulation Study

Consider a nonlinear system, a single-link robotic arm with a revolute elastic joint rotating in
a vertical plane whose motion equations are [13]

Jlq̈1 + Flq̇1 + k
(
q1 − q2

)
+mgl sin q1 = 0,

Jmq̈2 + Fmq̇2 − k
(
q1 − q2

)
= u,

(4.1)



Journal of Applied Mathematics 9

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Time (s)

O
ut

pu
t e

st
im

at
io

n 
er

ro
r

Figure 4: Output estimation error in case 2 using a low frequency disturbance.
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Figure 5: Output estimation error in case 3 using a high frequency disturbance.

where q1 and q2 are the link displacement and the rotor displacement, respectively. The link
inertia Jl, the motor rotor inertia Jm, the elastic constant k, the link mass m, the gravity
constant g, the center of mass l, and the viscous friction coefficients Fl, Fm are all positive
constant parameters. The control u is the torque delivered by the motor.

The state variables are chosen as x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2.
When handling different objects, the load was carried by the manipulator changes. In

addition, the friction coefficient of the joint and other parameters also varies over time. All
these factors are uniformly classified as unknown input disturbances, denoted by d. Suppose
a fault fa occurs to the manipulator, then the single-link robotic arm model with unknown
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Figure 6: Output estimation error in case 3 using a low frequency disturbance.

input disturbances and faults can be expressed as the following fourth-order nonlinear state
equation:

⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−k
Jl

−Fl

Jl

k

Jl
0

0 0 0 1

k

Jm
0

−k
Jm

−Fm

Jm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0
−mgl

Jl
sinx1

0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0
0
0
1
Jm

⎤
⎥⎥⎥⎥⎦u + Efa +Dd,

y = C
[
x1 x2 x3 x4

]T
.

(4.2)

The selected manipulator parameters are k = 2Nm/rad, Fm = 1, Fl = 0.5Nm/(rad/s),
Jm = 1Nm2, Jl = 2Nm2, m = 0.15 kg, g = 9.8, l = 0.3m.

Corresponding to system (2.1), the parameter matrices for each equation are,
respectively,

A =

⎡
⎢⎢⎣

0 1 0 0
−1 −0.25 1 0
0 0 0 1
2 0 −2 −1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦, C =

⎡
⎣1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎦,

f(x, u, t) =

⎡
⎢⎢⎣

0
−0.2205 sinx1

0
0

⎤
⎥⎥⎦, D =

[
0 1 0 0.5

]T
, E =

[
2.929 3.814 4 1

]T
.

(4.3)
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The selected transformation matrices T and S are, respectively,

T =
[
In−q −D1D

−1
2

0 Iq

]
=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 −2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦,

S =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦.

(4.4)

Using the transformation matrices described above, system (4.2) is decomposed into
the following two subsystems:

ż1 =

⎡
⎣ż11ż12
ż13

⎤
⎦ =

⎡
⎣ 0 1 0
−5 −0.25 5
0 0 0

⎤
⎦
⎡
⎣z11z12
z13

⎤
⎦ +

⎡
⎣ 2
1.5
1

⎤
⎦z2 +

⎡
⎣ 0
−0.2205 sin(z11)

0

⎤
⎦ +

⎡
⎣2.9291.814

4

⎤
⎦fa +

⎡
⎣ 0
−2
0

⎤
⎦u,

v1 =
[
1 0 0
0 0 1

]⎡⎣z11z12
z13

⎤
⎦,

(4.5)

ż2 =
[
2 0 −2]

⎡
⎣z11z12
z13

⎤
⎦ − z2 + 0 + fa + 0.5d + u,

v2 = z2.

(4.6)

After the coordinate transformation, a reduced-order subsystem, as shown in (4.5),
is decomposed from the system (4.2). The subsystem only contains fault fa; it does not
contain the unknown input disturbances d. The impact of d on subsystem (4.5) is delivered
by the state variables z1 and z2. Using the above observer, the impact of d on the system is
eliminated, and the unknown input disturbance and the fault are decoupled.

The LMI toolbox inMATLAB is used to solve the inequalities. L1, L2, and F are selected
to satisfy Assumptions 3.1 and 3.3.

L1 =

⎡
⎣6.6074 0.5546
0.3804 2.6950
0.0483 1.4015

⎤
⎦, L2 = [2.7052], F = [0.3428]. (4.7)

It is assumed that the incipient fault fa(t) begins at time instant 30 s, and fa(t) = 0,
when t < 30 s. The input signal is u = sin(t/3) and the simulation parameters are ρ = 220,
δ = 0.01.

With the above simulation parameters, we use three kinds of faults to verify the
effectiveness of the proposed method. In the first case, an incipient fault is selected as
fa(t) = 0.002 exp(0.0667t), and a high frequency disturbance d(t) = sin(200t) is used. As
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shown in Figure 1, the output estimation error from the sliding mode observer ẽv2 vibrates
at a high frequency after the fault occurs, though its amplitude is small. This indicates that
it is insensitive to the fault. However, the output estimation error ẽv1 increases rapidly after
the fault occurs. Thus, the error ẽv1 is defined as the fault diagnosis residual R1(t), and a fault
alarm can be sent immediately after a time of 30 s.

Another low frequency disturbance d(t) = sin(0.1t) is used to verify the proposed
method. The simulation results are shown in Figure 2. It can be seen that output estimation
error from the Luenberger observer is sensitive to the fault, but that from the sliding mode
observer is still insensitive.

In the second case, a low-frequency sinusoidal signal is selected to illustrate that
the fault detection is sensitive to incipient faults, that is, fa(t) = sin(t). A high frequency
disturbance d(t) = sin(200t) and a low frequency disturbance d(t) = sin(0.1t) are used,
respectively. The associated simulation results in Figures 3 and 4 verify that the proposed
approach can be applied to detect incipient fault rapidly.

In the third case, fa(t) = tanh(t). A high frequency disturbance d(t) = sin(200t) and a
low frequency disturbance d(t) = sin(0.1t) are used, respectively. The associated simulations
are shown in Figures 5 and 6. Through the above verifications, we can see that the proposed
method can effectively detect incipient faults.

5. Conclusion

This paper has introduced a fault diagnosis scheme which combines a sliding mode observer
and a Luenberger observer for nonlinear systems. The proposed method makes full use
of the complementarity between the sliding mode observer and the Luenberger observer
and transforms the system, using a coordinate transformation, into two subsystems. The
input estimation error from the Luenberger observer, which is constructed for the unrelated
subsystem with unknown input disturbances, is defined as the fault detection residual in
incipient fault diagnosis. A sliding mode observer is constructed to eliminate the impact
of faults and disturbances in the other subsystem. An LMI-based approach is employed to
design the observer, which makes it easy to obtain its parameters. The simulation results
verify the validity of the proposed method.
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