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A multi-degree-of-freedom dynamical system with local cubic nonlinearities subjected to
super/subharmonic excitation is considered in this paper. The purpose of this paper is to
approximate the nonlinear response of system at super/sub harmonic resonance. For many
situations, single resonance mode is often observed to be leading as system enters into super/sub
harmonic resonance. In this case, the single modal natural resonance theory can be applied to
reduce the systemmodel and a simplified model with only a single DOF is always obtained. Thus,
an approximate solution and the analytical expression of frequency response relation are then
derived using classical perturbation analysis. While the system is controlled by multiple modes,
modal analysis for linearized system is used to decide dominant modes. The reduced model
governed by these relevant modes is found and results in an approximate numerical solutions. An
illustrative example of the discrete mass-spring-damper nonlinear vibration systemwith ten DOFs
is examined. The approximation results are validated by comparing them with the calculations
from direct numerical integration of the equation of motion of the original nonlinear system.
Comparably good agreements are obtained.

1. Introduction

In engineering, many dynamical systems consisting of large complex components with local
physical nonlinearities are found everywhere. For example, in structural dynamics, finite
element analysis is often used to obtain accurate discrete models of continuous systems,
usually with hundreds of DOFs. If a nonlinear component, such as a joint or a crack, is added
to the finite element model, then the system is wholly nonlinear. Other examples of these
systems are a pipeline supported by stiffening springs and the exhaust of a road vehicle in
which dry friction hinges. A great class of nonlinearities in most of these systems is of cubic
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type. A typical cubic-type nonlinear system is known as Duffing system [1]. Duffing system
has many physical applications seen in the literature [2].

The super or subharmonic responses of a dynamical system have been received
much attentions. As examples, one can refer to the literature [3]. Other related studies are
found in [4–8]. In [4], Ji and Hansen used the averaging method to research a periodically
excited nonlinear oscillator with a piecewise nonlinear-linear characteristic and derived
an approximate solution for the superharmonic resonance. The validity of the developed
analysis was confirmed by comparing the approximate solutions with the results of direct
numerical integration of the original equation. Elnaggar and El-Bassyouny [5] studied
harmonic, subharmonic, superharmonic, and combination resonances of the additive type
of self-excited two coupled-second order systems subjected to multifrequency excitation. The
theoretical results were obtained by the multiple-scales method. The same method was used
by Eissa and El-Bassyouny [6] to research the nonlinear rolling response of a ship in regular
beam seas. The steady-state amplitude and phase of harmonic oscillations for primary and
superharmonic resonance were constructed in his work. The harmonic balance method was
used to analyze super or sub harmonic response of torsional system with two DOFs in the
literatures [7, 8].

The objective of this paper is to seek an approximate solution, especially analytic
solution, of a MDOFs’ system with local nonlinearities under super or sub harmonic
resonance conditions. Though the analytic methodsmentioned in [3–8], such as the averaging
method, the multiple scales method and the harmonic balance method can produce the
analytical solutions for the system and give a stability analysis about the solutions; they
are often applied to nonlinear systems with low DOFs [4–8]. For large systems, especially
large-scale systems, the use of analytic methods results in heavy algebraic manipulation
and high-dimensional nonlinear equations. Many challenging problems [9], for example,
ill-conditioned iterative matrix and serious stiffness problem, are in solving large nonlinear
equations, and special numerical algorithms [10] are required. Consequently, analytic
methods often lose their performances for high-dimensional dynamical system. Here, the
author attempts to provide with a way to give super/sub harmonic solutions of large
nonlinear dynamical systems in this paper. For this purpose, the model reduction method
based on the single natural modal resonance theory [11] is employed. The used method is
originated from the classical model reduction techniques [12, 13] but has great advantage in
reducing the total sizes of systemmodel. The reduced order model owing to the used method
of this paper has a smaller of DOFs, usually one or two DOFs in many applications.

The outline of this paper is as follows. The reduction method based on the single
natural mode resonance theory is briefly introduced in first section. Some applicable
conditions for the presented method are also involved in this section. An illustratable
example of mass-spring-damper system with ten DOFs is examined, and some important
results are obtained and discussed in the subsequent section. The results obtained from the
presented method will be verified with numerically solving the original system. Conclusions
are drawn in the last section.

2. Theoretical Fundamentals and Formulations

The motion equations of an n-DOFs dynamical system with local cubic nonlinearities can be
expressed in matrix form as:

[M]{ẍ} + [C]{ẋ} + [K]{x} + {FN(x)} = {Fd(t)}, (2.1)
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where {x} is the n-vector of physical coordinates, [M], [C], and [K] are n×nmass, damping,
and stiffness matrices, respectively, {FN(x)} is the n-vector of cubic nonlinear applied force,
and {Fd(t)} is the vector of time-dependent external excitations.

In this paper, the mass matrix [M] and the stiffness matrix [C] are assumed to be
symmetric, the external excitations {Fd(t)} are harmonic, and the damping matrix in (2.1) is
proportional to the mass and/or stiffness matrices for system, that is,

[C] = a[M] + b[K], (2.2)

where the parameters a and b are constants.
The homogeneous undamped equation

[M]{ẍ} + [K]{x} = 0 (2.3)

leads to eigenvalue or spectral matrix [Λ] and eigenvector matrix [Φ].
The spectral matrix [Λ] is given by

[Λ] = diag
([
ω1 ω2 · · · ωn

])
, (2.4)

and the eigenvector matrix [Φ] is expressed as

[Φ] =
[
φ1 φ2 · · · φn

]
. (2.5)

The eigenpairs (ωi, φi) denote the ith modal frequency and modal shape, i = 1, 2, . . . , n.
Introduce the transformation

{x} = [Φ]
{
q
}
, (2.6)

where {q} is the n-vector of normal mode coordinates.
Substituting (2.6) into (2.1) yields

[M][Φ]
{
q̈
}
+ [C][Φ]

{
q̇
}
+ [K][Φ]

{
q
}
+
{
FN

(
[Φ]
{
q
})}

= {Fd(t)}. (2.7)

Multiplying (2.7) by the transpose [ΦT ], one obtains

[
ΦT
]
[M][Φ]

{
q̈
}
+
[
ΦT
]
[C][Φ]

{
q̇
}
+
[
ΦT
]
[K][Φ]

{
q
}
+
[
ΦT
]{
FN

(
[Φ]
{
q
})}

=
[
ΦT
]
{Fd(t)}.

(2.8)

The eigenvector matrix satisfies the following orthogonality properties with respect to
the mass and stiffness matrix

[
ΦT
]
[M][Φ] = [I],

[
ΦT
]
[K][Φ] = [Λ], (2.9)

where [I] is unit matrix.
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In case of Rayleigh damping, the damping term [ΦT ][C][Φ] in (2.8) can be written to

[
C
]
=
[
ΦT
]
[C][Φ] = diag

([
2ξ1ω1 2ξ2ω2 · · · 2ξnωn

])
, (2.10)

where ξi is the ith modal damping coefficient.
Using (2.9) and (2.10), then (2.8) is transformed to

{
q̈
}
+
[
C
]{
q̇
}
+ [Λ]

{
q
}
+
[
ΦT
]{
FN

(
q
)}

=
[
ΦT
]
{Fd(t)} (2.11)

or

q̈i + 2ξiωiq̇i +ω2
i qi +

n∑

j=1

φjiFNj

(
q1 q2 · · · qn

)
=

n∑

j = 1

φjiFdj(t). (2.12)

Comparing (2.1) with (2.11) or (2.12), one can find that they are equivalent in
mathematics. Unlike (2.1), the terms in (2.11) or (2.12) expect the nonlinear force are
uncouple.

Equation (2.11) or (2.12) gives the modal response equations of system. For a MDOFs
system, the total response of system is a sum of the response of all natural modes. Generally,
higher modes contribute less toward the total response of system. Thus, an approximate
response can be determined by some lower modes, that is, (2.6) can be approximately written
in

{x} ≈
l∑

i= 1

φiqi, (2.13)

where the variable l denotes the number of lower modes and is always no more than the
number of degrees of freedom of the original system.

Obviously, (2.12) and (2.13) describe a reduced order model in the form of mode
coordinates with l-DOFs for the original model. Based on the above model, one can quickly
get some important results in quantity. It is the key of classical model reduction technique.

After observation and investigation on engineering problems for a long time, Prof.
Zheng discloses that actual engineering systems are always controlled by a few modes,
almost one or two modes in many situations. He further points out that only a single mode
(corresponding to the resonance mode) is maybe leading as system enters into resonance
state. His finding has a general significance. For many engineering problems, one cares
more for dynamics of system under resonance state. Undoubtedly, this finding powers and
strengthens traditional model reduction techniques. In this paper, we follow his studies and
apply his theory to investigate nonlinear dynamics of a nonlinear MDOFs system under
super/sub harmonic resonance conditions.

Suppose that only the jth mode of system is leading and the other modes are minor
as the super or sub harmonic resonance of the jth mode takes place. Thus, the total response
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of system is approximately determined by neglecting the contribution of the nonresonance
modes and only remaining the component owed to the resonance mode, that is, to let

{x} ≈ {φj

}
qj . (2.14)

Substituting (2.14) into (2.11) or (2.12), one can get the equations of reduced model in the
form of resonance modal coordinate

q̈j + 2ξjωj q̇j +ω2
j qj +

n∑

k = 1

φkjFNk

(
qj
)
=

n∑

k = 1

φkjFdk(t), (2.15)

and the equations in the form of non-resonance modal coordinates

q̈i + 2ξiωiq̇i +ω2
i qi +

n∑

k = 1

φkiFNk

(
qj
)
=

n∑

k = 1

φkiFdk(t). (2.16)

Considering cubic nonlinearities and harmonic excitation (e.g., cosine excitation) in system,
(2.15) can be compactly rewritten to

q̈j + 2εμq̇j +ω2
j qj + εαq3j = F0 cos(ωt), (2.17)

where ε is small parameter μ, and α, F0, ω, are constants. ω denotes the frequency of
excitation.

Obviously, (2.17) is a single DOF equation. One can easily get its solution by the
analytic methods or numerical methods. Then, one can obtaine the approximate response
of the system, associated with (2.14).

As described in the above text, the theory presented by Zheng [11] is powerful.
However, this theory is semiempirical and is not strictly formulated in mathematics. After
investigations, the author of this paper finds that the theory may be generally available under
the following conditions.

(i) The nature frequencies of system have sparsely in distribution. It means that only
the resonance mode is leading while the non-resonance modes contribute less
toward the total response of system at resonance.

(ii) The resonancemode should not interact with other non-resonancemodes. It implies
that internal resonance does not occur.

(iii) For multifrequency excitation, combination resonance may occur, but the response
of combination resonance is not preponderant compared with that of interested
resonance mode.

Now, we use the above theory to seek an approximate solution. In weak vibration, an
approximate steady solution of first order for (2.17) is supposed to be in the form

qj(t, ε) = qj0(T0, T1) + εqj1(T0, T1) + · · · . (2.18)



6 Journal of Applied Mathematics

Substituting (2.18) into (2.17) and equating the coefficients of the same power of small
parameter ε, one obtains

D2
0qj0 +ω2

j qj0 = F0 cos(ωT0), (2.19)

D2
0qj1 +ω2

j qj1 = −2D0D1qj0 − 2μD0qj0 − αq3j0. (2.20)

The general solution of (2.19) can be expressed in the form

qj0 = A(T1)eiωjT0 + ΛeiωT0 + cc, (2.21)

where Λ = F0/(2(ω2
j −ω2)), cc stands for the complex conjugate of the preceding terms.

Substituting (2.21) into (2.20) yields

D2
0qj1 +ω2

j qj1 = −
[
2iωj

(
D1A + μA

)
+ 6αAΛ2 + 3αA2A

]
eiωjT0

− α
[
A3e3iωjT0 + Λ3e3iωT0 + 3A2Λei(2ωj+ω)T0 + 3A

2
Λei(ω−2ωj )T0

]

− α
[
3AΛ2e3i(ωj+2ω)T0 + 3AΛ2ei(ωj−2ω)T0

]
−Λ
(
−2iμω + 3αΛ2 + 6αAA

)
eiωT0 .

(2.22)

Two cases of resonance are considered next: superharmonic and subharmonic.

2.1. Superharmonic Resonance

In this case, we put

3ω = ωj + εσ, (2.23)

where σ is turning parameter.
Inserting (2.23) into (2.22), the condition for the elimination of secular terms in (2.22)

is

2iωj

(
D1A + μA

)
+ 6αAΛ2 + 3αA2A + αΛ3eiσT1 = 0. (2.24)

To this order, A is considered to be a function of T1 only. Then, substituting the polar form

A =
(
1
2

)
a(T1)eiθT1 (2.25)
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into (2.24) and equating the real and imaginary parts, one gets

ȧ = −μa − αΛ3

ωj
sin(σT1 − θ),

aθ̇ =
α

ωj

[

3a

(

Λ2 +
a2

8

)

+ Λ3 cos(σT1 − θ)

]

.

(2.26)

Introduce γ = σT1 − θ, then (2.26) can be written to

ȧ = −μa − αΛ3

ωj
sin γ,

aθ̇ =
α

ωj

[

3a

(

Λ2 +
a2

8

)

+ Λ3 cos γ

]

.

(2.27)

Let ȧ = θ̇ = 0, the stable period solutions as and γs are satisfied with

μas = −αΛ
3

ωj
sin γs,

[

σ − 3α
ωj

(

Λ2 +
a2
s

8

)]

as =
αΛ3

ωj
cos γs.

(2.28)

Thus, the steady solution is

qj(t) = Λ cos(ωt) + εas cos
(
3ωt + γs

)
. (2.29)

Considering (2.28), the frequency response curve for superharmonic resonance is

⎡

⎣μ2 +

(

σ − 3αΛ2

ωj
− 3αa2

s

8ωj

)2
⎤

⎦a2
s =

α2Λ6

ω2
j

. (2.30)

With (2.29) and (2.14), one can get the stable superharmonic response of system (2.1).
Similarly, combinated using (2.30) and (2.14), the frequency response characteristic of
original system is obtained.

2.2. Sub Harmonic Resonance

In this case, we take

ω = 3ωj + εσ. (2.31)
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Figure 1: Schematic of a mass-damping-spring system.

Inserting (2.31) into (2.22), the condition for the elimination of secular terms is

2iωj

(
D1A + μA

)
+ 6αAΛ2 + 3αA2A + 3αA

2
ΛeiσT1 = 0. (2.32)

Reused the rule in the case of superharmonic resonance, the steady state solution is

qj(t) = Λ cos(ωt) + εas cos
(
ωt

3
+ γs

)
, (2.33)

where as and γs are governed by

μ = −3αΛ
4ωj

as sin γs,

σ − 9α
ωj

(

Λ2 +
a2
s

8

)

=
9αΛ
4ωj

as cos γs.

(2.34)

The frequency response curve is

9μ2 +

(

σ − 9αΛ2

ωj
− 9α
8ωj

a2
s

)2

=
81α2Λ2

16ω2
j

a2
s. (2.35)

With (2.33), (2.35), and (2.14), one can get steady state solution of system (2.1) and the
nonlinear frequency response characteristic.

3. Numerical Examples

In this section, the mechanical model for discrete mass-damping-spring system is shown in
Figure 1, which consists of ten mass blocks mi, supported by nonlinear springs and linear
dampers with coefficient ci. The excitation Fi on the ith mass block is assumed to be cosine,
with amplitude fi, frequencyΩ, and initial phase θi, i = 1, 2, . . . , n. The physical coordinate xi

donates absolute displacement of the ith mass block, which is measured from its equilibrium
position.

The restoring force of the ith spring is determined by

Fi(ui) = kiui + αiu
3
i , (3.1)

where ki and αi are linear and nonlinear coefficients, ui denotes the deformation of spring.
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Utilizing the Newton second law, the equations governing the motion of the system
are then, given in matrix form as

[M]
{
Ẍ
}
+ [C]

{
Ẋ
}
+ [K]{X} = {F(t)} + {FN(X)}, (3.2)

where the mass matrix [M] is

[M] = diag
([
m1 m2 · · · m10

])
, (3.3)

the stiffness matrix [K] is

[K] =

⎡

⎢
⎢
⎢
⎢⎢⎢
⎣

k1 + k2 −k2
−k2 k2 + k3 −k3

. . . . . . . . .
−k9 k9 + k10 −k10

−k10 k10

⎤

⎥
⎥
⎥
⎥⎥⎥
⎦

, (3.4)

the excitation force {F(t)} is

{F(t)} =

⎡

⎢⎢⎢
⎣

f1 cos(Ωt + θ1)
f2 cos(Ωt + θ2)

...
f10 cos(Ωt + θ10)

⎤

⎥⎥⎥
⎦
, (3.5)

the nonlinear component of the restoring force {FN(X)} is

{FN(X)} =

⎡

⎢⎢⎢⎢⎢⎢
⎣

α2(x2 − x1)3 − α1x
3
1

α3(x3 − x2)3 − α2(x2 − x1)3

...
α10(x10 − x9)3 − α9(x9 − x8)3

−α10(x10 − x9)3

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (3.6)

In case of Rayleigh damping, the damping matrix [C] is

[C] = a[M] + b[K]. (3.7)

The parameters used in this simulation are

k = 100000, mi = 1000 kg, αi = 25k2, i = 1, 2, . . . , n, fi = 0, i /= 10,

f10 = 50N, a = 0.018,

b = 0.002, k1 = k2 = 5kN/m, k3 = k4 = 4kN/m, k5 = k6 = 3kN/m,

k7 = k8 = 2k N/m, k9 = k10 = k N/m.

(3.8)
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Table 1: The first four natural frequencies.

Mode Freq. (rad/s)
1 2.7502
2 6.6523
3 10.8492
4 15.0825
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Figure 2: The time response of the first four modes for different excitation frequency Ω: black line, first
mode; red line, second mode; blue line, third mode; green line, fourth mode. (a) Ω = 0.9267, (b) and (c)
Ω = 0.9617, and (d) Ω = 0.9767 (rad/s).

3.1. The Vibration Characteristic Analysis

The eigenfrequency analysis for the dynamic system discovers the fundamental vibration
characteristic of the system, for example, resonance frequency and vibration shape. For this
purpose, we first perform the eigenfrequency analysis. This problem is equivalent to solve
eigenvalues of undamper, free vibration equations of (3.2). The QR method is used to find its
eigenvalues. The first four natural frequencies are reported in Table 1.
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Figure 3: Comparison between the response obtained from the reduced model for resonance mode q1 and
numerical integration of original model using full modes: —, single mode; ---, full modes, (a) Ω = 0.9267,
(b) and (c) Ω = 0.9617, (d) Ω = 0.9767 (rad/s).

In terms of nonlinear vibration theory, the system subjected to harmonic excitation
with its frequency Ω approaching one third of or three times of any of natural frequency of
the system may enters into resonance state: the superharmonic resonance or sub harmonic
resonance. The dynamic response of the system under superharmonic or sub harmonic
resonance condition is studied in the next section.

3.2. Super Harmonic Resonance

In this section, we use the presented method to investigate the super harmonic resonance.
Only the superharmonic resonance corresponding to the first two natural frequencies is
considered.

3.2.1. The Case for 3Ω ≈ ω

In the case of excitation frequency near one third of the first natural frequency, we first carry
out an analysis of the vibration response of all modes with a series of given frequencies.
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Figure 4: The frequency response curve for 3Ω ≈ ω1.

To perform it, (3.2) is transformed to the one in the form of mode coordinates. The
modes’ responses at different excitation frequencies are then obtained from the numerical
integration for the modal equation by using the fifth fourth order Runge-Kutta-Fehlberg
(RKF) method with adaptive step size. In simulation, the excitation frequency is taken to
be 0.9267 rad/s, 0.9617 rad/s, and 0.9767 rad/s, respectively. Numerical results are plotted
in Figure 2. Figure 2 illustrates the time response curve of the first four modes of system.
Figures 2(a), 2(b), and 2(d) are for the excitation frequency 0.9267 rad/s, 0.9617 rad/s, and
0.9767 rad/s, respectively. Figures 2(b) and 2(c) are for the same excitation frequency but
different integral initial conditions. Clearly shown in Figure 2, the response of the first mode
is leading, while the response of other modes is weak as the excitation frequency is around
one-third of the first natural frequency.

From the data curve plotted in Figure 2, one can infer the total response of system that
is governed by the first mode. Based on the presented method, the motion equation for the
first mode q1 can be approximately expressed as

q̈1 + 2ε1μ1q̇1 +ω2
1q1 + ε1β1q

3
1 = f1 cos(Ωt), (3.9)

where the parameters are ε1 = 0.01, μ1 = 1.656, β1 = 2230, and f1 = 0.829.
The numerical integration of (3.9) by RKF method yields the response of the first

mode. Considering the law given by (2.14), one may obtain the approximate response of
the original system (3.2). The approximate response is plotted by solid line in Figure 3. To
validate the approximate response, we compared it with the result obtained from directly
numerical integration of (3.2), seen in Figure 3. Figure 3 shows the steady response of
displacement of the tenth mass block of the system regard with time. The dashed line is for
the integration result of (3.2), and the solid line is for the approximate result generated by the
presented method. Figures 3(a), 3(b), and 3(d) are for the excitation frequency Ω equaling to
0.9267 rad/s, 0.9617 rad/s, and 0.9767 rad/s, respectively. The data in Figure 3 demonstrate
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Figure 5: Comparison of the time response of the first four modes for different excitation frequency in
rad/s (a) Ω = 2.175, (b) Ω = 2.275, (c) Ω = 2.375, and (d) Ω = 2.475.

that the dynamic response is surely mainly controlled by the first mode of the system at the
first superharmonic resonance state.

During the simulation, the system is shown to be sensitive to initial conditions, seen
in Figures 3(b) and 3(c). Figures 3(b) and 3(c) are for the same excitation frequency 0.9617
rad/s but different initial conditions. Obviously, Figures 3(b) and 3(c) are corresponding to
two different stable steady solution. The data curve in Figures 3(b) and 3(c) imply that there
are two steady period solutions in the region of frequency around 0.9617 rad/s.

In order to determine the frequency region for coexistence of multiple period solutions
for the system, the approximate frequency response characteristic equation is derived from
(3.9), seen in (2.30). The frequency response characteristic curve is plotted by the solid line in
Figure 4. Figure 4 shows that the displacement response amplitude of the tenth mass block
of system varies along with the excitation frequencyΩ. As shown in Figure 4, there exist two
steady period solutions in the region from 0.9608 rad/s to 0.9634 rad/s, and the jump in the
frequency response curve appeared at frequency 0.9608 rad/s and 0.9634 rad/s. These results
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Figure 6: The frequency response curve for 3Ω ≈ ω2.

give a qualitative prediction for the nonlinear dynamic behaviors of the system (3.2) under
superharmonic resonance of the first mode.

We calculate the integration of (3.2) numerically with frequency sweeping at a step
of 0.001 in either upward or downward direction. In terms of nonlinear oscillation theory,
the response not only includes the fundamental frequencyΩ, but also frequency components
at Ω, 3Ω, 5Ω, and so on. In weak vibration, only two frequency components are mainly
observed to be included in the response of the system, that is, the frequencies Ω and 3Ω. In
the response, the component of frequency Ω is forced, and the component of frequency 3Ω
originated from nonlinear resonance. We examine the response and separated the component
of frequency equaling to third time for the excitation frequency from the total response. The
results are plotted in Figure 4 by dotted points. Clearly in Figure 4, the prediction results
match well with the numerical results to large extent.

3.2.2. The case for 3Ω ≈ ω2

Similarly, we first study the mode response of the system around the superharmonic
resonance of the second mode. The comparison between the responses of the first four
modes is shown in Figure 5. Figures 5(a)–5(d) are for the excitation frequency 2.175 rad/s,
2.275 rad/s, 2.375 rad/s, and 2.475 rad/s, respectively. Results shown in Figure 5 indicate that
the response of the first mode is much stronger than that of other modes besides the nominal
resonance mode—the second mode. The phenomenon is caused by the primary resonance
of the first mode. In this case, the excitation frequency is near the first natural frequency.
The nonlinearities make an easy way for the occurrence of the first primary resonance other
than the second superharmonic resonance. Thus, the superharmonic resonance of the second
mode is quenched by the first mode’s primary resonance. The dynamic response of system is
actually determined by the first mode in this case. Using the presented method, one can get
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Figure 7: Comparison of the time response of the first six mode at different excitation frequencyΩ (rad/s):
(a) Ω = 8.16, (b) Ω = 8.26 (c) Ω = 8.86, (d) Ω = 9.16.

the motion equation governed by the first mode at the first primary resonance. Considering
the primary resonance is not the topic of this paper, the dynamic equation for the first mode
is not definitely given, and it will be further investigated in other studies. Figure 6 is the
frequency response curve for 3Ω ≈ ω2. The circles in Figure 6 denote the response amplitude
of the tenth mass block of system obtained from the numerical integration of (3.2). The solid
line and the dashed line in Figure 6 are plotted by the dynamic model for the first mode.

3.3. Sub Harmonic Resonance

In this section, the dynamic response of the system under sub harmonic resonance conditions
is examined. Two cases are just involved, Ω ≈ 3ω1 and Ω ≈ 3ω2.
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Figure 8: Comparison of the response of x10 obtained from the reduced model using different modes at
excitation frequency Ω = 8.26 rad/s: (a) transient response; (b) steady response.
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Figure 9: Comparison of the response of x10 obtained from the reduced model using different modes at
excitation frequency Ω = 8.86 rad/s: (a) transient response; (b) steady response.

3.3.1. The Case for Ω ≈ 3ω1

The system with multiple degrees of freedom always has multiple natural modes. As the
system forced by the excitation, multiple modes are sometimes excited, seen in Figure 7.
Figure 7 shows the first six modes’ steady response around the excitation frequency
near the three time of the first natural frequency. The values of excitation frequency for
Figures 7(a)–7(d) are 8.26, 8.56, 8.86, and 9.16, respectively. As shown in Figure 7, the
response of the second mode is the strongest. The contribution of the third mode to the total
response of the system cannot be ignored. The first mode nominally acts as the resonance
mode, but its response is not leading instead. In this case, one can approximate the response
of system by multiple modes which contribute larger toward the response of system. For
instance, we approximate the response of the system using the two modes: second mode
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Figure 10: Comparison of the response of the first eight modes at Ω = 20 rad/s.

15 15.5 16 16.5 17 17.5 18

0

0.1

0.2

0.3

0.4

Time (s)

Five modes
Seven modes
Full modes

−0.3

−0.2

−0.1R
es

po
ns

e 
of

x
10

(m
m
)

Figure 11: Comparison of the response of coordinate x10 from the different reduced models Ω = 20 rad/s.

and third mode. The numerical results are plotted by black line in Figures 8(a) and 8(b).
Figures 8(a) and 8(b) are for the transient and steady response of the tenth mass block in
system for given excitation frequency Ω = 8.26 rad/s, respectively. In this simulation, we
also examine the response of system by the combination of the first three modes and full
modes. The corresponding results are plotted in Figures 8(a) and 8(b) by red line and blue
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Figure 12: Time response of different physical coordinates for case A.

line, respectively. From Figures 8(a) and 8(b), we can conclude that the results determined
by the first three modes approximate well the results from the numerical integration of (3.2).

Similarly, we approximate the response of system by the different combination of
modes at frequency Ω = 8.86 rad/s. Results show the response is complex, and the
approximation is obtained by more modes. Take as the response of the tenth mass block for
example. Its transient and steady response are plotted in Figures 9(a) and 9(b). From the data
curve in Figures 9(a) and 9(b), the results determined by five modes are in good agreements
with the results obtained from the full modes. In this simulation, the used modes are the first
five modes.

3.3.2. The Case for Ω ≈ 3ω2

Now, we investigate the dynamic behavior of the system around the excitation frequency
equaling to three times of the second natural frequency. Results show that the dynamic
behavior is very complex in high frequency vibration. Figure 10 shows the first eight modes’
response for excitation frequency Ω = 20 rad/s. Clearly, multiple modes are excited at the
same time and contribute to the total response of system. We use the first five modes, the
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Figure 13: Analysis of error bars for case A.

first seven modes, and full modes to examine the dynamic response of system, respectively.
Results are plotted in Figure 11. Obviously in Figure 11, the results determined by the first
seven modes approximate well the results obtained from the original model. To approximate
the dynamical response of high frequency, more modes should be used.

3.4. Error Analysis

To quantitatively evaluate the approximate results, we carry out an error analysis. For a
general purpose, we consider the following three cases:

(A) f5 = 50, fi = 0, i /= 5, Ω = ω1/3 = 0.917;

(B) f3 = 20, f9 = 50, fi = 0, i /= 3,9, Ω = ω1/3 = 0.917;

(C) f8 = 50, fi= 0, i /= 8, Ω = 3ω1 = 8.2505.

3.4.1. Case A

Figure 12 shows the time response of different physical coordinates. The corresponding error
analysis between the approximate solutions and the referred solutions obtained from direct
integration of (3.2) is given in Figure 13. As shown in Figures 12 and 13, the approximate
solutions capture main dynamical behaviors of system (3.2), although local differences occur
as the vibration responses of system arrive at the peak or low amplitude.
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Figure 14: Time response of x10 for case B.
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Figure 15: Error analysis for case C.
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Table 2: Relative errors analysis for case B.

Time (s) 380 380.4 381.5 382.1 382.5 383 383.9 384.4 385 385.4
Rel. error 4.3% 5.4% 2.7% 1.0% 3.8% 1.1% 5.1% 1.7% 3.3% 5.6%

3.4.2. Case B

From Figures 12 and 13, we can conclude that high modes affect the local dynamical
properties of system. To correct it, we use multiple modes to approximate the system
solutions. Results are presented in Figure 14 and Table 2. In this case, the first two modes
are considered. Figure 14 depicts the time response of physical coordinate x10. In Figure 14,
red dashed line represents the solutions from the calculation of integration for (3.2), black
solid line denotes the approximate solutions with two modes. The relative errors between
the two results are accounted for in Table 2.

3.4.3. Case C

In this case, the response of physical coordinate x9 is examined. We employ the first three
modes and the first four modes to approximate its time response curve, respectively. Results
are plotted in Figure 15. The analysis of error further illuminates the vibration of high
frequency is very complex. To obtain the approximate solutions with enough accuracy, more
modes should be considered.

4. Conclusions

The response of a MDOFs’ system with local cubic nonlinearities under super- and
subharmonic resonance conditions is investigated in this paper. The responses of modes
of linearized system are first examined by numerical integration. By comparisons of the
responses of all modes, the leading modes are found, which control the whole response of
system. In the presence of a single leading mode, the single natural modal resonance theory
is used to generate a reduced dynamical model with only a single dof. The qualitative and
quantitative results are obtained. By comparing them with the numerical results from the
integration of the dynamic equations of system, the approximation results by the presented
method are, to large extent, in agreements with the numerical results. The nonlinear
frequency response characteristic is included in this paper. In weak vibration, the analytical
expression of frequency response equation is derived from the reduced model. The jump and
the region for coexistence of multiple steady state solutions are successfully predicted. In the
case of coaction of multiple modes, the approximate response of system is obtained by the
reduced models described by multiple different modes. Results show that the response of
higher frequency is very complex. To get good approximation, more modes are combinated
used. This paper provides us with a new way to get fast an approximate super-/sub-
harmonic solution of a MDOFs system with local nonlinearities at resonance state in both
quality and quantity.
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