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We are interested in the exponential stability of the descriptor system, which is composed
of the slow and fast subsystems with time-varying delay. In computing a kind of Lyapunov
functional, we employ a necessary number of slack matrices to render the balance and to yield
the convexity condition for reducing the conservatism and dealing with the case of time-varying
delay. Therefore, we can get the decay rate of the slow variables. Moreover, we characterize the
effect of the fast subsystem on the derived decay rate and then prove the fast variables to decay
exponentially through a perturbation approach. Finally, we provide an example to demonstrate
the effectiveness of the method.

1. Introduction

Descriptor systems are also referred to as singular systems, generalized systems, differential-
algebraic systems, and so on. This kind of systems turns out to be precise to describe some
practical systems that may undergo some extremal conditions, such as lossless transmission
lines. Therefore, it has received considerable attentions to characterize the dynamics of such
systems and develop the fundamental control theory in parallel with that of regular ones. In
this respect, it has been proven to be a useful approach to decompose a descriptor system into
slow and fast subsystems; see [1] and the references therein. Moreover, the existence of this
kind of decomposition can be implied by some Lyapunov equality or Lyapunov inequality.
Therefore, the Lyapunov method provides an efficient tool for both stability and stabilization
problems; see, for example, [2–4].

Meanwhile, there have been great efforts dedicated to the study of time-delay systems
since hysteresis is regarded as the important element in modeling many natural and artificial
systems and it can be the source of instability and poor performance; see [5] and the
references therein. In particular, in the presence of time-delay, the dynamics of a descriptor
system can become rather complex; for example, the decomposition according to slow and
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fast subsystems no longer guarantees the absence of impulsive behavior; see [6]. For the
stability problem of delayed descriptor systems, some sophisticated matrix transformation
techniques have been posed and even extended to robust control problems so as to apply
Lyapunov functional method and the associated convex optimization method under the con-
straint condition of reduced rank of matrix; see, for example, [6–13].

In this paper, we consider a class of descriptor systems with time-varying delay. The
starting point is that the system under consideration satisfies some mild conditions so that it
can be converted into the following differential-algebraic equations (see, e.g., [8, 11]):

ẋ1(t) = Ax1(t) + B11x1(t − h(t)) + B12x2(t − h(t)), (1.1)

0 = x2(t) + B21x1(x − h(t)) + B22x2(t − h(t)). (1.2)

This model is composed of the slow subsystem in (1.1) and the fast subsystem in (1.2). We
refer to x1(t) ∈ Rr and x2(t) ∈ Rn−r as the slow and fast variables, respectively. In addition,
h(t) ∈ [0, h] is the delaywith bounded varying rate |ḣ(t)| ≤ μ < 1. ThematricesA,B11, B12, B21,
and B22 are of appropriate dimensions. To simplify typography, let us rewrite the system in
(1.1) and (1.2) into the form of

Eẋ(t) = Ax(t) + Bx(t − h(t)), (1.3)

where x(t) =
[
x1(t)
x2(t)

]
, E = diag{Ir , 0}, A = diag{A, In−r}, and B =

[
B11 B12
B21 B22

]
. The goal of

this paper is to establish conditions guaranteeing the zero solution of such a system to be
exponentially stable.

Definition 1.1. System (1.3) is said to be exponentially stable if there exists an ε > 0 such that
lim supt→∞ ln |x(t;x0)|/t ≤ −ε.

The most of the existing results on the stability problem of descriptor systems with
delay only pertain to the case of constant delay. In short, as pointed out in [9], this is due
to that time-varying delay makes it become hardly possible to explicitly express the fast
variables. In [9], to tackle this problem, some terminologies have been borrowed from graph
theory to model the dependency of the fast variables on past instants and express them in
terms of the slow variables. This approach, however, is rather complicated for application
and further improvement.

In this paper, we will focus on the case of time-varying and address the stability
problem in such away that we first get the decay rate of the slow variables by using Lyapunov
functional approach and prove the stability of the fast subsystem through a perturbation
approach. More precisely, we drop out the idea of expressing the fast variables but use
them to perturb the derived decay rate and, therefore, get the conditions guaranteeing their
convergence. To this end, we present a necessary number of slack matrices to produce some
balance and convexity conditions, which can play a key role for reducing the conservatism
caused by delay itself.
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2. Main Results

In what follows we need the following fact; see [14].

Lemma 2.1. The following statements are equivalent: (i) there is a positive-definite matrix P such that
A′PA < γP , γ > 0; (ii) there are a symmetric matrix P and a matrix G such that

[
γP A′G′

� G+G′−P

]
> 0.

To study the stability of system (1.1), we construct the Lyapunov functional as follows:

V (xt) =
6∑
k=1

Vk(xt) (2.1)

with the terms defined as

V1(xt) = x′(t)E′PEx(t),

V2(xt) = 2x′(t)E′Q
∫ t

t−h
eα(θ−t)x(θ)dθ,

V3(xt) =
∫ t

t−h
eα(θ−t)x′(θ)dθR

∫ t

t−h
eα(θ−t)x(θ)dθ,

V4(xt) =
∫ t

t−h
eα(θ−t)x′(θ)Tx(θ)dθ,

V5(xt) =
∫ t

t−h(t)
eα(θ−t)x′(θ)Sx(θ)dθ,

V6(xt) =
∫0

−h
dθ

∫ t

t+θ
eα(σ−t)

[
x(σ)
Eẋ(σ)

]′[
X Y

� Z

][
x(σ)

Eẋ(σ)

]
dσ.

(2.2)

Therefore, we can have

V̇1(xt) = 2ẋ′(t)E′(UF1 + PE)x(t),

V̇2(xt) + αV2(xt) = 2ẋ′(t)E′(UF2 +Q)
∫ t

t−h
eα(θ−t)x(θ)dθ + 2x′(t)E′Q

[
x(t) − e−αhx(t − h)

]
,

V̇3(xt) + αV3(xt) = 2
[
x(t) − e−αhx(t − h)

]′
R

∫ t

t−h
eα(θ−t)x(θ)dθ

− α
∫ t

t−h
eα(θ−t)x′(θ)dθR

∫ t

t−h
eα(θ−t)x(θ)dθ,
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V̇4(xt) + αV4(xt) = x′(t)Tx(t) − e−αhx′(t − h)Tx(t − h),

V̇5(xt) + αV5(xt) = x′(t)Sx(t) − (
1 − ḣ(t))e−αh(t)x′(t − h(t))Sx(t − h(t)),

V̇6(xt) + αV6(xt) = h

[
x(t)

Eẋ(t)

]′[
X Y

� Z

][
x(t)

Eẋ(t)

]

−
∫ t

t−h
eα(θ−t)

[
x(θ)

Eẋ(θ)

]′[
X Y

� Z

][
x(θ)

Eẋ(θ)

]
dθ,

(2.3)

where U is any square matrix satisfying E′U = 0 and rankU = n − r, and, therefore, F1 and
F2 can be any square matrices.

Theorem 2.2. Let γ ∈ (0, 1) and α = − ln γ/h > 0. If there exist matrices P,Q,R with
[
P Q
� R

]
> 0,

S > 0, T > 0, X,Y,Z, and Lq(q = 1, . . . , 6), Hq(q = 1, . . . , 4), Gq(q = 1, . . . , 6), Fq(q = 1, 2), and
Mpq,Npq(p, q = 1, . . . , 4) such that the following matrix inequalities can be satisfied:

Ξ +
(
1 − γ)Γ1 ≤ 0, (2.4)

Ξ +
(
1 − γ)Γ2 ≤ 0, (2.5)

Υ1 =

[
αΩ1 Σ1

� Π

]
≥ 0, (2.6)

Υ2 =

[
αΩ2 Σ2

� Π

]
≥ 0, (2.7)

[
α
(
R + EL′

5 + E
′L5

)
L′
5 + αE

′L6

� L′
6 + L6

]
≥ 0, (2.8)

then the system in (1.3) is exponentially stable. Here, the matrices, the matrix blocks, and the matrix
elements presented in (2.4)–(2.8) are defined as follows:

Ξ =

⎡
⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14

� Ξ22 Ξ23 Ξ24

� � Ξ33 Ξ34

� � � Ξ44

⎤
⎥⎥⎥⎥⎥⎦
; Π =

[
X Y

� Z

]
;

Γ1 =

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13 + L′
1E M14

� M22 M23 + L′
2E M24

� � M33 + L′
3E + E′L3 +

(
1 − μ)S M34 + E′L4

� � � M44

⎤
⎥⎥⎥⎥⎥⎦
;
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Γ2 =

⎡
⎢⎢⎢⎢⎢⎣

N11 N12 N13 +H ′
1E N14

� N22 N23 +H ′
2E N24

� � N33 +H ′
3E + E′H3 N34 + E′H4

� � � N44

⎤
⎥⎥⎥⎥⎥⎦
;

Ω1 =

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14

� M22 M23 M24

� � M33 M34

� � � M44

⎤
⎥⎥⎥⎥⎥⎦
; Ω2 =

⎡
⎢⎢⎢⎢⎢⎣

N11 N12 N13 N14

� N22 N23 N24

� � N33 N34

� � � N44

⎤
⎥⎥⎥⎥⎥⎦
;

Σ1 = −

⎡
⎢⎢⎢⎢⎢⎢⎣

−A′
G5 + R + E′L5 − αL′

1E E′L6 − L′
1 −A

′
G6

−B′
G5 + (UF2 +Q) − αL′

2E −B′
G6 − L′

2

−αL′
3E − (

1 − γ)E′L5 −L′
3 −

(
1 − γ)E′L6

−γ(R + E′L5) − αL′
4E −γE′L6 − L′

4

⎤
⎥⎥⎥⎥⎥⎥⎦
;

Σ2 = −

⎡
⎢⎢⎢⎢⎢⎢⎣

−A′
G5 + R + E′L5 − αH ′

1E E′L6 −H ′
1 −A

′
G6

−B′
G5 + (UF2 +Q) − αH ′

2E −B′
G6 −H ′

2

−αH ′
3E − (

1 − γ)E′L5 −H ′
3 −

(
1 − γ)E′L6

−γ(R + E′L5) − αH ′
4E −γE′L6 −H ′

4

⎤
⎥⎥⎥⎥⎥⎥⎦
;

Ξ11 = −A′
G1 −G′

1A + αE′PE + L′
1E + E′L1 + EQ′ +QE′ + S + T + hX;

Ξ12 = E′L2 + (UF1 + PE)′ +G′
1 −A

′
G2 + hY ;

Ξ13 = γH ′
1E + E′L3 − E′L1 −G′

1B −A′
G3;

Ξ14 = E′L4 − γ
(
H ′

1E + E′Q
) −A′

G4;

Ξ22 = G′
2 +G2 + hZ;

Ξ23 = −L′
2E + γH ′

2E +G3 −G′
2B;

Ξ24 = −γH ′
2E +G4;

Ξ33 = γ
(
H ′

3E + E′H3
) − L′

3E − E′L3 −
(
1 − μ)S − B′G3 −G′

3B;

Ξ34 = −E′L4 + γE′H4 − γH ′
3E − B′

G4;

Ξ44 = −γ(T +H ′
4E + E′H4

)
.

(2.9)

Proof. The first thing we have to do is to note that
∑5

k=1Vk(xt) is positive-definite, and the
positiveness of V6(xt) is guaranteed simultaneously by (2.6) and (2.7). The subsequent proof
is rather long; so for the clarity we will proceed in two steps. The first one concentrates on
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getting the decay rate for the slow variables, while the second one turns the focus on proving
the fast variables eventually fallen into decay.

Step 1 (Present the decay rate of the slow variables). Combining (2.3) gives

V̇ (xt) + αV (xt)

≤ 2ẋ′(t)E′(UF1 + PE)x(t) + 2ẋ′(t)E′(UF2 +Q)
∫ t

t−h
eα(θ−t)x(θ)dθ

+ 2
[
x(t) − e−αhx(t − h)

]′[
Q′Ex(t) + R

∫ t

t−h
eα(θ−t)x(θ)dθ

]

+ x′(t)(S + T)x(t) − e−αhx′(t − h)Tx(t − h)

+
(
1 − μ)

(
1 − e−αh(t)

)
x′(t − h(t))Sx(t − h(t)) − (

1 − μ)x′(t − h(t))Sx(t − h(t))

+ h

[
x(t)

Eẋ(t)

]′[
X Y

� Z

][
x(t)

Eẋ(t)

]
−
∫ t

t−h
eα(θ−t)

[
x(θ)

Eẋ(θ)

]′[
X Y

� Z

][
x(θ)

Eẋ(θ)

]
dθ

+ αx′(t)E′PEx(t) − α
∫ t

t−h
eα(θ−t)x′(θ)dθR

∫ t

t−h
eα(θ−t)x(θ)dθ.

(2.10)

In addition, partitioning the interval [−h, 0] into the union of [−h,−h(t)] and [−h(t), 0], by
integrating by parts we therefore obtain that

E

[
x(t) − e−αh(t)x(t − h(t)) −

∫ t

t−h(t)
αeα(θ−t)x(θ)dθ −

∫ t

t−h(t)
eα(θ−t)ẋ(θ)dθ

]
= 0,

E
[
e−αh(t)x(t − h(t)) − e−αhx(t − h) − ∫ t−h(t)

t−h αeα(θ−t)x(θ)dθ − ∫ t−h(t)
t−h eα(θ−t)ẋ(θ)dθ

]
= 0.

(2.11)

It is known that inserting some slack matrices into computing the constructed Lyapunov
functional can produce some balance and convexity conditions. Doing this, we combine
(2.11) into the identity as follows:

0 ≡ 2

[
x(t) +

(
1 − e−αh(t)

)
x(t − h(t)) − x(t − h(t)) −

∫ t

t−h(t)
αeα(θ−t)x(θ)dθ

−
∫ t

t−h(t)
eα(θ−t)ẋ(θ)dθ

]′

× E′
[
L1x(t) + L2Eẋ(t) + L3x(t − h(t)) + L4x(t − h)

+L5

∫ t

t−h
eα(θ−t)x(θ)dθ + L6

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]
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+ 2

[(
e−αh(t) − e−αh

)
x(t − h(t)) + e−αhx(t − h(t)) − e−αhx(t − h) −

∫ t−h(t)

t−h
αeα(θ−t)x(θ)dθ

−
∫ t−h(t)

t−h
eα(θ−t)ẋ(θ)dθ

]′

× E′
[
H1x(t) +H2Eẋ(t) +H3x(t − h(t)) +H4x(t − h)

+L5

∫ t

t−h
eα(θ−t)x(θ)dθ + L6

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]

= 2

[
x(t) − x(t − h(t)) −

∫ t

t−h(t)
αeα(θ−t)x(θ)dθ −

∫ t

t−h(t)
eα(θ−t)ẋ(θ)dθ

]′

× E′[L1x(t) + L2Eẋ(t) + L3x(t − h(t)) + L4x(t − h)]

+ 2

[
e−αhx(t − h(t)) − e−αhx(t − h) −

∫ t−h(t)

t−h
αeα(θ−t)x(θ)dθ −

∫ t−h(t)

t−h
eα(θ−t)ẋ(θ)dθ

]′

× E′[H1x(t) +H2Eẋ(t) +H3x(t − h(t)) +H4x(t − h)]

+ 2
[
x(t) −

(
1 − e−αh

)
x(t − h(t)) − e−αhx(t − h)

]′
E′

×
[
L5

∫ t

t−h
eα(θ−t)x(θ)dθ + L6

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]

− 2

[
E

∫ t

t−h
αeα(θ−t)x(θ)dθ +

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]′

×
[
L5

∫ t

t−h
eα(θ−t)x(θ)dθ + L6

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]

+ 2
(
1 − e−αh(t)

)
x′(t − h(t))E′[L1x(t) + L2Eẋ(t) + L3x(t − h(t)) + L4x(t − h)]

+ 2
(
e−αh(t) − e−αh

)
x′(t − h(t))E′[H1x(t) +H2Eẋ(t) +H3x(t − h(t)) +H4x(t − h)].

(2.12)

Furthermore, we can have additional slack matrices through the following identity

0 ≡ 2
[
Eẋ(t) −Ax(t) − Bx(t − h(t))

]′

×
[
G1x(t) +G2Eẋ(t) +G3x(t − h(t)) +G4x(t − h) +G5

∫ t

t−h
eα(θ−t)x(θ)dθ

+G6

∫ t

t−h
eα(θ−t)Eẋ(θ)dθ

]
.

(2.13)
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Therefore, substituting (2.12) and (2.13) into the right-hand side of (2.10) and rear-
ranging the obtained terms according to the augmented system variables as

η(t) =
[
x′(t) Eẋ(t) x′(t − h(t)) x′(t − h)]′,

ζt(θ) =
[
η′(t) x′(t + θ) E′ẋ′(t + θ)

]′ (2.14)

yields

V̇ (xt) + αV (xt)

≤ η′(t)Ξη(t) + 2
(
1 − e−αh(t)

)
x′(t − h(t))E′[L1x(t) + L2Eẋ(t) + L3x(t − h(t)) + L4x(t − h)]

+ 2
(
e−αh(t) − e−αh

)
x′(t − h(t))E′[H1x(t) +H2Eẋ(t) +H3x(t − h(t)) +H4x(t − h)]

−
∫0

−h(t)
eαθζ′t(θ)

[
0 Σ1

� Π

]
ζt(θ)dθ −

∫−h(t)

−h
eαθζ′t(θ)

[
0 Σ2

� Π

]
ζt(θ)dθ

−
∫ t

t−h
eα(θ−t)

[
x(θ)

Eẋ(θ)

]′

dθ

[
α
(
R + EL′

5 + E
′L5

)
L′
5 + αE

′L6

� L′
6 + L6

]∫ t

t−h
eα(θ−t)

[
x(θ)

Eẋ(θ)

]
dθ

+

[(
1 − e−αh(t)

)
− α

∫ t

t−h(t)
eα(θ−t)dθ

]
η′(t)Ω1η(t)

+

[(
e−αh(t) − e−αh

)
− α

∫ t−h(t)

t−h
eα(θ−t)dθ

]
η′(t)Ω2η(t).

(2.15)

By using (2.8) to drop the sixth term and arranging the remaining terms on the right-hand
side, (2.15) becomes

V̇ (xt) + αV (xt) ≤ η′(t)
[
Ξ +

(
1 − e−αh(t)

)
Γ1 +

(
e−αh(t) − e−αh

)
Γ2
]
η(t)

−
∫0

−h(t)
eαθζ′t(θ)Υ1ζt(θ)dθ −

∫−h(t)

−h
eαθζ′t(θ)Υ2ζt(θ)dθ.

(2.16)

Thus, recalling (2.6) and (2.7), we have

V̇ (xt) + αV (xt) ≤ η′(t)
[
Ξ +

(
1 − e−αh(t)

)
Γ1 +

(
e−αh(t) − e−αh

)
Γ2
]
η(t). (2.17)

The right-hand side of (2.17) turns out to be convex in e−αh(t). It then can be eliminated
through the boundary conditions (2.4) and (2.5), which correspond to the cases of e−αh = γ
and e−α0 = 1, respectively. We then obtain

V̇ (xt) ≤ −αV (xt). (2.18)
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And hence,

x′
1(t)P11x1(t) ≤ V (x0)e−αt, t ≥ 0, (2.19)

where P11 is the first r × r order principle block of the matrix P . Therefore, it is proven that
the slow subsystem is exponentially stable.

Step 2 (Prove the fast variables fallen into decay exponentially). We proceed in such a way
that we first conclude the Schur stability of the difference equation x2(t) + B22x2(t − h(t)) = 0,
and, therefore, prove the fast variables eventually fallen into decay via evaluating their effect
on the decay rate derived as in (2.19) From (2.4) or (2.5), it is straightforward to see

Φ =

⎡
⎢⎢⎣
Φ11 Φ12 Φ13

� Φ22 Φ23

� � Φ33

⎤
⎥⎥⎦ ≤ 0, (2.20)

where Φ11 = −A′
G1 −G′

1A + αE′PE + L′
1E + E′L1 + EQ′ +QE′ + S, Φ12 = E′L2 + (UF1 + PE)

′ +

G′
1 − A

′
G2, Φ13 = γH ′

1E + E′L3 − E′L1 − G′
1B − A

′
G3 + (1 − γ)L′

1E, Φ22 = G′
2 + G2, Φ23 =

−L′
2E+γH

′
2E+G3−G′

2B+(1−γ)L′
2E, andΦ33 = γ(H ′

3E+E
′H3−L′

3E−E′L3−(1−μ)S)−B
′
G3−G′

3B.

Pre- and postmultiplying (2.20) by the matrix
[
I A

′
0

0 B
′
I

]
and its transpose, respectively,

we get that

Ψ =

[
Ψ11 Ψ12

� Ψ22

]
≤ 0, (2.21)

whereΨ11 = αE′PE+L′
1E+E

′L1+EQ′+QE′+S+A
′
L′
2E+E

′L2A+A
′
PE+E′PA+A

′
UF1+F ′

1U
′A,

Ψ12 = E′L2 +E′PB +F ′
1U

′B + γH ′
1E+E′L3 −E′L1 + (1− γ)L′

1E−A′
L2E+ γA

′
H ′

2E+ (1− γ)A′
L′
2E,

and Ψ22 = γ(H ′
3E + E′H3 − L′

3E − E′L3 + B
′
H ′

2E + E′H2B − B′
L′
2E − E′L2B − (1 − μ)S).

In fact, the family of slack matrices Gq (q = 1, . . . , 6) plays a key role in getting (2.21).
Furthermore, noting the special structures of the matrices E, U, and A, from (2.21) we can
deduce that

[
S22 + F ′

1,22 + F1,22 F ′
1,22B22

� −γ(1 − μ)S22

]
≤ 0, (2.22)

where S22 and F1,22 represent the last (n− r)× (n− r)-order principle blocks of of the matrices
S and F1, respectively. According to Lemma 2.1, we have

B′
22S22B22 ≤ γ

(
1 − μ)S22 ≤ γS22. (2.23)

This constraint condition does imply that if the varying rate of delay exceeds 1, the system in
(1.1) would no more be able to retain the stability.
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By the fact that |ξ1 + ξ2|2 ≤ |ξ1|2/δ + |ξ2|2/(1 − δ) holds for all vectors ξ1, ξ2 of same
dimension and number δ ∈ (0, 1), from (2.19) and (2.23) we can estimate that

x′
2(t)S22x2(t) ≤ 1

1 − δx
′
1(t − h(t))B′

21S22B21x1(t − h(t)) + 1
δ
x′
2(t − h(t))B′

22S22B22x2(t − h(t))

≤ χV (x0)
1 − δ e−α(t−h(t)) +

γ

δ
sup

t−h≤θ≤t
x′
2(t + θ)S22x2(t + θ)

≤ χV (x0)
γ(1 − δ)e

−αt +
γ

δ
sup

t−h≤θ≤t
x′
2(t + θ)S22x2(t + θ), t ≥ 0,

(2.24)

where χ is sufficiently large so that B′
21S22B21 ≤ χP11 and δ is specified within (γ, 1). Let

ψk = sup(k−1)h≤θ≤kh{x′
2(t + θ)S22x2(t + θ)}, k = 0, 1, 2, . . .. Then, from (2.24) it follows that

ψk ≤ χV (x0)
γ(1 − δ)e

−α(k−1)h +
γ

δ

(
ψk−1 ∨ ψk

)
, k ≥ 1. (2.25)

Therefore,

eεkhψk ≤ χV (x0)
γ(1 − δ)e

αh−(α−ε)kh +
γ

δ
eεh

(
eε(k−1)hψk−1 ∨ eεkhψk

)
, k ≥ 1, (2.26)

where the positive number ε is sufficiently small for γeεh < δ.
Noting ε < (ln δ − ln γ)/h < α, we deduce that

max
1≤i≤k

(
eεihψi

)
≤ χV (x0)
γ(1 − δ)e

αh +
γ

δ
eεh

[
ψ0 +max

1≤i≤k

(
eεihψi

)]
. (2.27)

Hence,

max
1≤i≤k

(
eεihψi

)
≤ σ :=

(
χV (x0)/(1 − δ) +

(
γ/δ

)
eεhψ0

)
(
1 − (

γ/δ
)
eεh

) . (2.28)

Thus,

ψk ≤ σe−εkh, k ≥ 1. (2.29)

But this implies that

lim sup
k→∞

lnψk
kh

≤ −ε. (2.30)
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Table 1: Calculated upper bound of size of delay for various varying rates.

μ 0.0 0.5 0.9
h 2.130 1.741 1.336

Table 2: Calculated upper bound of size of delay for various specified γ .

γ 0.6 0.7 0.8 0.9 0.99
h 1.786 1.895 1.990 2.071 2.137

And it follows that

lim sup
t→∞

ln |x2(t)|2
t

≤ −ε. (2.31)

This together with (2.19) then completes the proof.

In arranging the augmented system variables, we insert a necessary number of
slack matrices to render some balance and flexibility. Also, with the aid of slack matrices,
the interval [−h, 0] is decomposed into the union of [−h,−h(t)] and [−h(t), 0] and, more-
over, the terms factored by e−αh(t) are reformulated into a form of convex combination. In
this way, the Lyapunov functional in (2.1) is computed almost without loss of its general-
ity.

In the derived stability conditions, there only is a parameter to be specified, namely,
γ , which deserves a brief discussion. In fact, as shown in (2.23), it is introduced to guarantee
the difference equation x2(t) + B22x2(t − h(t)) = 0 to be Schur stable. Therefore, we use γ to
characterize the effect of the fast subsystem on the decay rate of the slow variables, α. Indeed,
this turns out to be a typical perturbation approach to prove stability. Besides, γ is one of
boundary conditions of the convex combination on the right-hand side of (2.17).

3. An Example

In this section, we use a numerical example to demonstrate the theoretical results.

Example 3.1. Consider a system in the form of (1.3) with the following parameters:

E =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦, A =

⎡
⎢⎢⎣
0.5 0 0

0 0.3 0

0 0 1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
−1 0 0.2

−1 −1 −0.4
1 0 0.3

⎤
⎥⎥⎦. (3.1)

Specified γ = 0.98, the calculated stability margins for various varying-rate of delay are
presented in Table 1. On the other hand, we compute the upper bound of size of delay for
various specified γ with fixing μ = 0, which is shown in Table 2. In the light of the discussion
on the parameter γ , it would become clear that there is a mutually constraint relation between
the difference operator x2(t) + B22x2(t − h(t)) and the size of delay in guaranteeing stability.
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4. Conclusion

We considered a class of descriptor systems with time-varying delay. We developed a
Lyapunov technique to investigate the exponential stability of such a system, which combines
a necessary number of slack matrices, convexity condition, and matrix transformation.
Therefore, after getting the decay rate for the slow variables, through a perturbation approach
we came to the conclusion that the fast variables eventually fall into decay exponentially. A
numerical example was given to illustrate the theoretical results.
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