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We study curves of AW(k)-type in the Lie groupGwith a bi-invariant metric. Also, we characterize
general helices in terms of AW(k)-type curve in the Lie group G.

1. Introduction

The geometry of curves and surfaces in a 3-dimensional Euclidean space R
3 represented for

many years a popular topic in the field of classical differential geometry. One of the important
problems of the curve theory is that of Bertrand-Lancret-de Saint Venant saying that a curve in
R

3 is of constant slop; namely, its tangent makes a constant angle with a fixed direction if and
only if the ratio of torsion τ and curvature κ is a constant. These curves are said to be general
helices. If both τ and κ are nonzero constants, the curve is called cylindrical helix. Helix is one
of the most fascinating curves in science and nature. Scientists have long held a fascinating,
sometimes bordering on mystical obsession for helical structures in nature. Helices arise in
nanosprings, carbon nanotubes, α-helices, DNA double and collagen triple helix, the double
helix shape is commonly associated with DNA, since the double helix is structure of DNA.

The problem of Bertrand-Lancret-de Saint Venant was generalized for curves in other
3-dimensional manifolds—in particular space forms or Sasakian manifolds. Such a curve
has the property that its tangent makes a constant angle with a parallel vector field on the
manifold or with a Killing vector field, respectively. For example, a curve α(s) in a 3-dimen-
sional space form is called a general helix if there exists a Killing vector field V (s) with
constant length along α and such that the angle between V and α′ is a non-zero constant
(see [1]). A general helix defined by a parallel vector field was studied in [2]. Moreover, in
[3] it is shown that general helices in a 3-dimensional space form are extremal curvatures
of a functional involving a linear combination of the curvature, the torsion, and a constant.
General helices also called the Lancret curves are used in many applications (e.g., [4–7]).
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The notion of AW(k)-type submanifolds was introduced by Arslan and West in [8]. In
particular, many works related to curves of AW(k)-type have been done by several authors.
For example, in [9, 10] the authors gave curvature conditions and charaterizations related to
these curves in R

n. Also, in [11] they investigated curves of AW(k) type in a 3-dimensional
null cone and gave curvature conditions of these kinds of curves. However, to the author’s
knowledge, there is no article dedicated to studying the notion of AW(k)-type curves
immersed in Lie group.

In this paper, we investigate curvature conditions of curves of AW(k)-type in the Lie
group Gwith a bi-invariant metric. Moreover, we characterize general helices of AW(k)-type
in the Lie group G.

2. Preliminaries

Let G be a Lie group with a bi-invariant metric 〈, 〉 and D the Levi-Civita connection of the
Lie group G. If g denotes the Lie algebra of G, then we know that g is isomorphic to TeG,
where e is identity of G. If 〈, 〉 is a bi-invariant metric on G, then we have

〈X, [Y,Z]〉 = 〈[X,Y ], Z〉,

DXY =
1
2
[X,Y ]

(2.1)

for all X, Y , Z ∈ g.
Let α : I ⊂ R → G be a unit speed curve with parameter s and {V1, V2, . . . , Vn} an

orthonrmal basis of g. In this case, we write that any vector fieldsW and Z along the curve α
as W =

∑n
i=1 wiVi and Z =

∑n
i=1 ziVi, where wi : I → R and zi : I → R are smooth functions.

Furthermore, the Lie bracket of two vector fields W and Z is given by

[W,Z] =
n∑

i=1

wizj
[
Vi, Vj

]
. (2.2)

Let Dα′W be the covariant derivative of W along the curve α, V1 = α′, and W ′ =
∑n

i=1 w
′
iVi,

where w′
i = dwi/ds. Then we have

Dα′W = W ′ +
1
2
[V1,W]. (2.3)

A curve α is called a Frenet curve of osculating order d if its derivatives α′(s), α′′(s),
α′′′(s),. . .,α(d)(s) are linearly dependent and α′(s), α′′(s), α′′′(s), . . . , α(d+1)(s) are no longer lin-
early independent for all s. To each Frenet curve of order d one can associate an orthonormal
d-frame V1(s), V2(s), V3(s), . . . , Vd(s) along α (such that α′(s) = V1(s)) called the Frenet frame
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and the functions k1, k2, . . . , kd−1 : I → R said to be the Frenet curvatures, such that the Frenet
formulas are defined in the usual way:

DV1V1(s) = k1(s)V2(s),

DV1V2(s) = −k1(s)V1(s) + k2(s)V3(s),

...

DV1Vi(s) = −ki−1(s)Vi−1(s) + ki(s)Vi+1(s),

DV1Vi+1(s) = −ki(s)Vi(s).

(2.4)

If α : I → G is a Frenet curve of osculating order 3 in G, then we define

k2(s) =
1
2
〈[V1, V2], V3〉. (2.5)

Proposition 2.1. Let α be a Frenet curve of osculating order 3 in G. Then one has

[V1, V2] = 〈[V1, V2], V3〉V3 = 2k2V3,

[V1, V3] = 〈[V1, V3], V2〉V2 = −2k2V2,

[V2, V3] = 〈[V2, V3], V1〉V1 = 2k2V1.

(2.6)

Proof. Let α be a Frenet curve of osculating order 3 with the Frenet frame {V1, V2, V3}. Since
[V1, V2] = a1V1 + a2V2 + a3V3, taking the inner product with V1, V2, and V3, respectively, we
have a1 = a2 = 0 and 〈[V1, V2], V3〉 = a3. Thus, we find

[V1, V2] = 〈[V1, V2], V3〉V3. (2.7)

From (2.5), we get

[V1, V2] = 2k2V3. (2.8)

By using the above similar method, we can obtain [V1, V3] = −2k2V2 and [V2, V3] = 2k2V1.

Remark 2.2. Let G be a 3-dimensional Lie group with a bi-invariant metric. Then it is one of
the Lie groups SO(3), S3 or a commutative group, and the following statements hold (see
[6, 12]).

(i) If G is SO(3), then k2(s) = 1/2.

(ii) If G is S3 ∼= SU(2), then k2(s) = 1.

(iii) If G is a commutative group, then k2(s) = 0.
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Proposition 2.3. Let α be a Frenet curve of osculating order 3 in G. Then one has

α′(s) = V1(s),

α′′(s) = k1(s)V2(s),

α′′′(s) = −k2
1(s)V1(s) + k′

1(s)V2(s) + k1(s)τ1(s)V3(s),

α′′′′(s) = −3k1(s)k′
1(s)V1(s) +

[

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s)

−k1(s)k2
2
(s)

]

V2(s) +
(
2k′

1(s)τ1(s) + k1(s)τ ′1(s)
)
V3(s),

(2.9)

where τ1(s) = k2(s) − k2(s).

Proof. Let α be a Frenet curve of osculating order 3 in G. Then we have

α′′(s) =
d2α

ds2
= V ′

1(s) = DV1V1(s) − 1
2
[V1(s), V1(s)] = k1(s)V2(s). (2.10)

This implies that

α′′′(s) = k′
1(s)V2(s) + k1(s)V ′

2(s)

= k′
1(s)V2(s) + k1(s)

(

DV1V2(s) − 1
2
[V1(s), V2(s)]

)

= k′
1(s)V2(s) + k1(s)

(
−k1(s)V1(s) + k3(s) − k2(s)V3(s)

)

= −k2
1(s)V1(s) + k′

1(s)V2(s) + k1(s)
(
k2(s) − k2(s)

)
V3(s).

(2.11)

Also, we have the following:

α′′′′(s) = −2k1(s)k′
1(s)V1(s) + k′′

1(s)V2(s) +
(
k1(s)k2(s) − k1(s)k2(s)

)′
V3(s)

− k2
1(s)V

′
1(s) + k′

1(s)V
′
2(s) + k1(s)

(
k2(s) − k2(s)

)
V ′
3(s)

= −2k1(s)k′
1(s)V1(s) + k′′

1(s)V2(s) +
(
k1(s)k2(s) − k1(s)k2(s)

)′
V3(s)

− k2
1(s)

(

DV1V1(s) − 1
2
[V1(s), V1(s)]

)

+ k′
1(s)

(

DV1V2(s) − 1
2
[V1(s), V2(s)]

)

+ k1(s)
(
k2(s) − k2(s)

)(

DV1V3(s) − 1
2
[V1(s), V3(s)]

)
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= −3k1(s)k′
1(s)V1(s) +

[

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s)

−k1(s)k2
2
(s)

]

V2(s) +
(
2k′

1(s)τ1(s) + k1(s)τ ′1(s)
)
V3(s).

(2.12)

Notation. Let we put

N1(s) = k(s)V2(s),

N2(s) = k′
1(s)V2(s) + k1(s)τ1(s)V3(s),

N3(s) =
[

k′′
1(s) − k3

1 − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s)

]

V2(s)

+
(
2k′

1(s)τ1(s) + k1(s)τ ′1(s)
)
V3(s).

(2.13)

3. Curves of AW(k)-Type

In this section, we consider the properties of curves of AW(k)-type in the Lie group G.

Definition 3.1 (see, cf. [13]). The Frenet curves of osculating order 3 are

(i) of type weak AW(2) if they satisfy

N3(s) =
〈
N3(s),N∗

2(s)
〉
N∗

2(s), (3.1)

(ii) of type weak AW(3) if they satisfy

N3(s) =
〈
N3(s),N∗

1(s)
〉
N∗

1(s), (3.2)

where

N∗
1(s) =

N1(s)
‖N1(s)‖ ,

N∗
2(s) =

N2(s) −
〈
N2(s),N∗

1(s)
〉
N∗

1(s)∥
∥
〈
N2(s),N∗

1(s)
〉
N∗

1(s)
∥
∥

.

(3.3)

Definition 3.2 (see [8]). The Frenet curves of osculating order 3 are

(i) of type AW(1) if they satisfy N3(s) = 0,

(ii) of type AW(2) if they satisfy

‖N2(s)‖2N3(s) = 〈N3(s),N2(s)〉N2(s), (3.4)
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(iii) of type AW(3) if they satisfy

‖N1(s)‖2N3(s) = 〈N3(s),N1(s)〉N1(s). (3.5)

From the definitions of type AW(k), we can obtain the following propositions.

Proposition 3.3. Let α be a Frenet curve of osculating order 3. Then α is of weak AW(2)-type if and
only if

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s) = 0. (3.6)

Proposition 3.4. Let α be a Frenet curve of osculating order 3. Then α is of weak AW(3)-type if and
only if

2k′
1(s)τ1(s) + k1(s)τ ′1(s) = 0. (3.7)

Proposition 3.5. Let α be a Frenet curve of osculating order 3. Then α is of AW(1)-type if and only if

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s) = 0,

k2
1(s)τ1(s) = c,

(3.8)

where c is a constant.

Proposition 3.6. Let α be a Frenet curve of osculating order 3. Then α is of type AW(2) if and only if

k′
1(s)

(
2k′

1(s)τ1(s) + k1(s)τ ′1(s)
)

= k1(s)τ1(s)
(

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s)

)

= 0.
(3.9)

Proposition 3.7. Let α be a Frenet curve of osculating order 3. Then α is of type AW(3) if and only if

k2
1(s)τ1(s) = c, (3.10)

where c is a constant.

4. General Helices of AW(k)-Type

In this section, we study general helices of AW(k)-type in the Lie group Gwith a bi-invariant
metric and characterize these curves.

Definition 4.1 (see [6]). Let α : I → G be a parameterized curve. Then α is called a general
helix if it makes a constant angle with a left-invariant vector field.
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Note that in the definition the left-invariant vector field may be assumed to be with
unit length, and if the curve α is parametrized by arc-length s, then we have

〈
α′(s), X

〉
= cos θ, (4.1)

for X ∈ g, where θ is a constant.
If G is a commutative group R

3, then Definition 4.1 reduces to the classical definition
(see [14]). Since a left-invariant vector field in G is a Killing vector field, Definition 4.1 is
similar to the definition given in [1].

Theorem 4.2 (see [6]). A curve of osculating order 3 in G is a general helix if and only if

τ1 = ck1, (4.2)

where c is a constant.

From (4.2), a curve with k1 /= 0 is a general helix if and only if (τ1/k1)(s) = constant.
As a Euclidean sense, if both k1(s)/= 0 and τ1(s) are constants, it is a cylindrical helix. We call
such a curve a circular helix.

Theorem 4.3. Let α be a Frenet curve of osculating order 3. Then α′′(s), α′′′(s), and α′′′′(s) are linearly
dependent if and only if α(s) is general helix.

Proof. If α′′(s), α′′′(s), and α′′′′(s) are linearly dependent, then the following equation holds:

∣
∣
∣
∣
∣
∣
∣

0 k1 0
−k2

1 k′
1 k1τ1

−3k1k′
1 k′′

1 − k3
1 − k1k

2
2 + 2k1k2k2 − k1k2

2
2k′

1τ1 + k1τ
′
1

∣
∣
∣
∣
∣
∣
∣
= 0. (4.3)

By a direct computation, we have

k1τ
′
1 − k′

1τ1 = 0; (4.4)

it follows that

d

ds

(
τ1
k1

)

= 0. (4.5)

Thus, τ1/k1 = constant; that is, α is general helix. The converse statement is trivial.

Theorem 4.4. Let α be a general helix of osculating order 3. Then α is of weak AW(3)-type if and only
if α is a circular helix.

Proof. From (3.7) and (4.2), we can obtain that k1 = constant; it follows that τ1 = constant.
Thus, α is a circular helix. The converse statement is trivial.
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Theorem 4.5. A general helix of type AW(2) has Frenet curvatures

k1(s) =
1

√
−(1 + c2)s2 + d1s + d2

, τ1(s) = ck1(s), (4.6)

where c, d1, and d2 are constants.

Proof. If α is a general helix of type AW(2), then from (3.9) and (4.2) we have

k′
1(s)

(
2k′

1(s)τ1(s) + k1(s)τ ′1(s)
)

= k1(s)τ1(s)
(

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s)

)

= 0,
(4.7)

τ1(s)
k1(s)

= c; (4.8)

where c is a constant.
Combining (4.7) and (4.8), we have

k1(s)k′′
1(s) − 3

(
k′
1(s)

)2 −
(
1 + c2

)
k4
1(s) = 0. (4.9)

To solve this differential equation, we take

k1(s) = x. (4.10)

Then, (4.9) can be rewritten as the form

x
d2x

ds2
− 3

(
dx

ds

)2

=
(
1 + c2

)
x4. (4.11)

Let us put

x = yp. (4.12)

Then (4.11) becomes

py2p−1d
2y

ds2
− p

(
2p + 1

)
y2p−2

(
dy

ds

)2

=
(
1 + c2

)
y4p. (4.13)

If we choose p = −1/2, then the above equation is

d2y

ds2
= −2

(
1 + c2

)
, (4.14)
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its general solution is given by

y = −
(
1 + c2

)
s2 + d1s + d2, (4.15)

where d1 and d2 are constants.
Thus, we have

k1(s) =
1

√
−(1 + c2)s2 + d1s + d2

, (4.16)

so, the theorem is proved.

Corollary 4.6. There exists no a circular helix of osculating order 3 of type AW(2) in G.

Theorem 4.7. Let α be a general helix of osculating order 3. Then α is of type AW(3) if and only if α
is a circular helix.

Proof. Suppose that α is a general helix of type AW(3). Combining (3.10) and (4.2) we find
k3
1(s) = 1, that is, k1(s) = 1. From this τ1(s) = c. Thus, α is a circular helix.

Theorem 4.8. Let α be a curve of osculating order 3. There exists no a general helix of type AW(1).

Proof. We assume that α is a general helix of type AW(1). Then from (3.8) and (4.2) we have

k′′
1(s) − k3

1(s) − k1(s)k2
2(s) + 2k1(s)k2(s)k2(s) − k1(s)k2

2
(s) = 0, (4.17)

k2
1(s)τ1(s) = c, (4.18)

τ1(s) = ck1(s). (4.19)

From (4.18) and (4.19), we have

k1(s) = 1. (4.20)

Thus, (4.17) becomes

k2
2(s) − 2k2(s)k2(s) + k2

2
(s) = −1, (4.21)

equivalently to

(
k2(s) − k2(s)

)2
= −1. (4.22)

It is impossible, so the theorem is proved.
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