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A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets
with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase
heat exchange between gas and inert solid particles is investigated. The objective of the study
is to examine the effects of interphase heat exchange between the gas and solid particles on
(i) ignition of reacting gas, (ii) accumulation of heat by the solid particles during combustion
process (iii) evaporation of the liquid fuel droplets, and (iv) consumption of reacting gas
concentration. The equations governing the physical model with realistic assumptions are
stated and nondimensionalised leading to an intractable system of first-order coupled nonlinear
differential equations, which is not amenable to exact methods of solution. Therefore, we present
numerical solutions as well as different qualitative effects of varying interphase heat exchange
parameter. Graphs and Table feature prominently to explain the results obtained.

1. Introduction

The concept of thermal explosion in combustible dusty gas containing fuel droplets is of
great importance in safety aspect of nuclear facilities, furnaces, gas turbines and internal
combustion engines, coal mine, and so forth. The essence of the inert solid particles in the
combustible gas is to delay the ignition or explosion which could cause catastrophe. The
phase of research on combustion and explosions that began at the end of the nineteenth
century and continues to this day is associated with the invention of the internal combustion
engine, with the development of explosive technology and of internal ballistics for artillery,
and, in recent decade, with the extensive introduction of jet and diesel engines. In many
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respects, these have stimulated the rapid development of combustion science [1]. The pro-
cedure for thermal explosion in gases, which contain fuel droplets, has been of much interest.
After Semenov [2] developed the basic theory of phenomenon of thermal explosion, models
that are more complicated have been suggested in [3, 4].

The focus of this research work is therefore on the long-standing problem of thermal
explosion and ignition in a combustible gas containing fuel droplets and its numerous
applications to furnaces, gas turbines, and internal combustion engines [3–7]. Over recent
years, the theoretical analysis of this problem has been performed mainly by the use of the
geometrical asymptotic method of integral manifolds [8–17]. An alternative approach to the
problem is to analyse the equations in some limiting cases. Klammer et al. [18] investigated
ignition, combustion, and detonation processes in dusty gases with combustion reaction. The
dusty gas was considered as a two-continuum medium taking into account transport effects
in the phases and nonequilibrium chemical reactions. Two-dimensional problems of ignition
and detonation were developed in a plane gallery caused by a supersonic inflow stream and
heating of the closed end of the gallery are studied with the analytical method of catastrophe
and two finite-difference numerical methods. Krainov and Shaurman [19] studied the limits
of flame propagation in a gas with suspended inert particles in the presence of external
heat removal. The mathematical model used was based on an unsteady heat-diffusion two-
temperature model of gas combustion in the presence of inert particles. The problem was
solved by a numerical method. A parametric analysis was performed, and critical values
of the parameter that characterizes external heat removal were obtained. Dispersed-phase
parameters were determined for which the two-temperature nature of the medium was
insignificant. Thus, the critical conditions of flame propagation in the gas with inert particles
were obtained. Comparison of the numerical and analytic solutions showed that they agreed
satisfactorily with small particles of the dispersed phase. Ben-Dor and Igra [20] considered
the relaxation zone behind normal shock waves in a reacting dusty gas. It was assumed
that the gas is monatomic. The conservation equations for a suspension composed of an
ionized gas and small solid dust particles were formulated and then solved numerically.
The solution revealed that the presence of the dust has a significant effect on the postshock
flow field. Because of the dust, the relaxation zone was longer than in the pure plasma case;
the equilibrium values for the suspension pressure and density were higher than in the
dust-free case, whereas the values obtained for the temperature, degree of ionization, and
velocity was lower. The numerical solution was executed for shock Mach numbers ranging
from 10 to 17. It was found that the thermal relaxation length for the plasma decreases
rapidly with increasing shock Mach number, whereas the thermal relaxation length for the
suspension increases slightly with increasing M. Gol’dshtein et al. [8] studied criteria for
thermal explosion with reactant consumption in a dusty gas. The dynamical regimes of the
system were classified as slow regimes, thermal explosion with delay, and thermal explosion
(without delay). The critical transition conditions for the different dynamical regimes were
analysed. They emphasized that the critical conditions for transition between slow regimes
and explosion with delay was a thermal explosion limit. The Thermal explosion limit was
described in the phase space by a so-called duck-trajectory. El-Sayed [21] investigated the
critical conditions of the adiabatic explosion problem of a gas-solid (dusty gas) mixture. The
definitions used for the homogeneous gas to determine criticality were used for the gas-solid
mixture. The analysis revealed that the classical definition of the critical point can be adopted
and modified to determine the critical condition in γ −η and γ − θ domains. It was also found
that using the definition of criticality as an inflection point in the critical trajectory in the θ−η
plane gives the same results as given by the classical definition of criticality. It was interesting
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to see that the critical and maximum points in the gas temperature-concentration domain
could coincide. It was found that the presence of a solid produces more than one critical
temperature. The limiting cases of the problem were also offered. The numerical solution
showed that the supercritical trajectory shows a thermal runaway for the gas over the solid
at the end of reaction.

In this paper, an attempt has been made to extend the problem of thermal explosion in
a combustible gas mixture with addition of inert solid particles and to generalise the problem
based on temperature dependence of the reaction rate (i.e., Arrhenius Power-law model
equation [22–24]) given as K(Tg) = A0(Tg/Tg0)

n exp(−E/RuTg) while taking into account
convective and radiative heat losses, temperature dependence of density, and thermal
conductivity of the gas. Therefore, a generalised physical model for thermal explosion in
combustible dusty gas mixture containing fuel droplets is developed in the present paper. The
main interest is focused on numerical solutions of the system of coupled nonlinear ordinary
differential equations governing the physical model. Parametric analysis is performed, and
the results show that the delay before ignition of the reacting gas, accumulation of heat by
dusty particles, evaporation of liquid fuel droplets, and consumption of reacting gas concen-
tration depend significantly on interphase heat exchange between the gas and solid particles.

2. Mathematical Model

In this study, we consider combustible dusty gas with addition of fuel droplets. Dusty gas is
a combustible gas with addition of solid particles. It is assumed that the solid phase is inert,
monosized, and uniformly heated, and the dusty gas is optically thick. The dependence of the
convective heat transfer coefficient on both gas temperature and droplet radii is taken into
account. Thermal conductivity of both monoatomic and polyatomic gases is proportional to√
Tg . Therefore, we assume λg(Tg) = λg0

√
Tg/Tg0. The rate of reaction is based on generalised

temperature-dependent Arrhenius’s equation. Temperature dependence of the gas density
and preexponential factor is given as ρg(Tg) = ρg0Tg0/Tg and A(Tg) = A0(Tg/Tg0)

n,
respectively. Following the realistic assumptions above, the system of governing equations
has the form:
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The system (2.1)–(2.4) includes energy equations for the reacting gas (2.1) and solid particles
(2.2), a mass equation for the liquid droplet (2.3) and a concentration equation for the reacting
gas mixture (2.4). Initial conditions for the system:

Tg(0) = Tg0, Ts(0) = Ts0, Rd(0) = Rd0, cf(0) = cf0. (2.5)

2.1. Nondimensional Analysis

In this study, we introduce the following dimensionless variables:

θg =

(
Tg − Tg0

)
E

RuT
2
g0

, θs =

(
Tg − Ts

)
E

RuT
2
s0

, r =
Rd

Rd0
, η =

cf

cf0
, τ =

t

t∗
. (2.6)

We assume that at initial stage the temperature of gas and solid particles are the same, that
is, Tg0 = Ts0. Therefore, using (2.6) in (2.1)–(2.5), the dimensionless system of governing
equations has the following form:

(
1 + βθg

)−1dθg

dτ
=δη

(
1 + βθg

)n exp

(
θg

1 + βθg

)
−r

{
α1θg

√(
1 + βθg

)
+α2r

[(
1 + βθd

)4 − 1
]}

− α3
(
θg − θs

)
,

(2.7)

dθs
dτ

= α3μ
(
θg − θs

)
, (2.8)

dr

dτ
= −μ

∗

r

{
α1θg

√(
1 + βθg

)
+ α2r

[(
1 + βθg

)4 − 1
]}
, (2.9)

dη

dτ
=−α4δη

(
1+βθg

)n exp

(
θg

1+βθg

)
+ψr

{
α1θg

√(
1 + βθg

)
+α2r

[(
1+βθg

)4−1
]}
,

(2.10)

with the initial conditions:

θg(0) = 0, θs(0) = 0, r(0) = 1, η(0) = 1. (2.11)
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In (2.7)–(2.11), the following dimensionless parameters have been introduced:

β =
RuTg0

E
, B =

L

Qf
, δ =

EQfmfcf0A0t∗
ρg0CpgRuT

2
g0

exp

(
− E

RuTg0

)
, α1 =

4πRd0ndλg0t∗
ρg0Cpgφg

,

α2 =
4πR2

d0ndσT
2
g0Et∗

ρg0CpgφgRu
, α3 =

4πRsnsλst∗
ρg0Cpgφg

, α4 = Bψ, μ∗ =
ρg0CpgφgRuT

2
g0

4πR3
d0ndρdEL

,

μ =
ρg0Cpgφg

ρsCps
, ψ =

ρg0CpgφgRuTg0

Emfcf0L
.

(2.12)

Some special cases of the system of coupled nonlinear ordinary differential equations (2.7)–
(2.10) with initial conditions (2.11) and related problems have been studied for n/= 0 and α3 =
0 (see, e.g., [22, 23, 25] and the references therein). In the events that n = 0 and parameters
α1, α2, and α3 are varied, analyses have been performed both analytically and numerically
in ([2, 8–17, 26, 27], and references cited therein). In this study, attention is focused on the
generalization of the problem and effect of the interphase heat exchange between the reacting
gas and solid particles on the ignition of reacting gas, accumulation of heat by dusty particles,
rate of evaporation of liquid fuel droplets, and depletion of reacting gas concentration.

3. Numerical Computation

In this section, we present numerical solutions of the system of governing equations (2.7)–
(2.10) with initial conditions (2.11). Meanwhile, before actual computation, we begin by
deriving the exact integral for the system of ordinary differential equations as follows:

Multiplying (2.7) by α4, we get
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Adding (3.1) and (2.10) together gives

α4
(
1 + βθg

)−1dθg

dτ
+
dη

dτ
= −α4r

{
α1θg

√(
1 + βθg

)
+ α2r

[(
1 + βθd

)4 − 1
]}

+ ψr
{
α1θg

√(
1 + βθg

)
+ α2r

[(
1 + βθd

)4 − 1
]}

− α3α4
(
θg − θs

)
.

(3.2)



6 Journal of Applied Mathematics

Rearranging, we get
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From (2.8) and (2.9), we obtain
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Substituting (3.4) into (3.3) yields
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Integrating (3.5) with respect to τ , we obtain

α4

β
ln
(
1 + βθg

)
+ η =

(
α4 − ψ

3μ∗

)
r3 − α4

μ
θs +N, (3.6)

where N is constant of integration.
Applying the initial condition (2.11) in (3.6), we get

N = 1 − ψ

3μ∗ (B − 1), since α4 = Bψ. (3.7)

Using (3.7) in (3.6) gives exact integral of the system of equations (2.7)–(2.10) as
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Now, by substituting η in (3.8) into (2.7), it is possible to obtain the following equation:
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The resulting systems of (2.8), (2.9), and (3.9) are coupled nonlinear differential equations
and do not possess closed form solutions. Therefore, a numerical technique based on finite
difference approximation is used to solve the problems. The effect of the interphase heat
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exchange parameter is adequately examined on the ignition time, combustible gas tempera-
ture, solid particle temperature, droplet radius, and combustible gas concentration as shown
in the figures.

4. Results

The general characteristic features of Figures 1–4 show time histories of dimensionless gas
temperature θg , solid particle temperature θs, gas concentration η and liquid-fuel droplet
radius r for typical practical rate of reactions with various values of heat exchange parameter
α3 when δ = 0.3, β = 0.05, B = 0.008, μ∗ = 5, ψ = 0.3, α1 = 3E − 04, α2 = 2E − 05, μ = 1. The
qualitative impacts of interphase heat exchange between gas and solid particles α3 in this
study are ascertained in the figures.

We notice in Figure 1 the occurrence of convectional thermal explosions in sensitized,
Arrhenius, and bimolecular rate of reactions, respectively. Meanwhile in bimolecular rate of
reaction, when α3 = 1.0, it is quite interesting to note that the problem has a quasi-steady
solution after explosion. In this case, the medium is no longer homogeneous and diffusion
term has to be taken into consideration. The medium could not be regarded as well stirred. Of
a particular interest is the notable delay in the ignition time as the interphase heat exchange
between gas and solid particles increases.

In Figure 2, it is observed that the heat exchange between the gas and solid particles
raises the temperature of the solid particles at different time for sensitized, Arrhenius, and
bimolecular rate of reactions. This implies that the solid particles accumulate heat over a
period of time from reacting gas, since the solid particles are inert.

Figure 3 shows that the size of the liquid-fuel droplet radius significantly reduces as
heat exchange between the gas and solid particles increases for sensitized, Arrhenius, and
bimolecular rate of reactions. This reveals that the rate of evaporation of the liquid-fuel
droplet substantially depends on heat exchange between the reacting gas and solid particles.
We note that when α3 = 0.5 and α3 = 1.0, the liquid-fuel droplet completely evaporated just
before ignition.

Figure 4 reveals a remarkable reduction in gas concentration as heat exchange between
the gas and solid particles increases for sensitized, Arrhenius, and bimolecular rate of
reactions. This depicts depletion of gas concentration during the combustion process.

In Figure 5, we present variation of θg , θs, r, and η with numeric exponent for various
values of α3 at ignition point. Important facts to note from these results are the following.

(i) As can be seen from Figures 5(a), 5(c), and 5(d), an increase in interphase heat
exchange between the gas and solid particles causes significant reduction in the
values of gas temperature, droplet radius, and gas concentration whereas in
Figure 5(b) it raises the value of solid particle temperature at ignition point for
sensitized, Arrhenius, and bimolecular reaction rates, respectively.

(ii) It is also obvious from Figures 5(a) and 5(b) that an increase in numeric exponent n
ascertains reduction in the values of gas and solid particles temperature at ignition
point, whereas in Figures 5(d) and 5(c) we observe increment in the values of gas
concentration and insignificant reduction in the values of droplet radius at ignition
point, respectively.

Table 1 shows the variation of dimensionless ignition times τig with interphase heat
exchange parameter α3 for typical sensitized, Arrhenius, and bimolecular rate of reactions at
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Figure 1: Variation of dimensionless combustible gas temperature with interphase heat exchange param-
eters when n = {−2, 0, 0.5}.

ignition point. It is significant to note from the table that increase in heat exchange between
the gas and solid particles causes a notable delay in the ignition time of the combustible
gas mixture for sensitized, Arrhenius, and bimolecular rate of reactions. The results also
reveal that responsiveness to delay in ignition time is characterized by numeric exponent,
which means that delay is more enunciate in sensitized reaction compared to Arrhenius and
bimolecular reactions, respectively.
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5. Conclusion

The problem of thermal explosion in combustible dusty gas mixtures containing fuel droplets
have been extended to permit a more general temperature dependent rate of reaction for
most typical practical reactions under physically reasonable assumptions. The mathematical
formulation involves a system of four highly nonlinear ordinary differential equations,
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which was solved numerically by finite difference approximation scheme. In multiple phase
processes, interphase heat exchange plays the role of heat losses in homogeneous com-
bustible gas mixtures. The model with heat losses provides more detailed information about
the effects of interphase heat exchange and numeric exponent characterising sensitized, Ar-
rhenius, and bimolecular rate of reactions. The study revealed that interphase heat exchange
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Table 1: Variation of ignition times with interphase heat exchange parameter at ignition point when n =
{−2, 0, 0.5}.

n
τig

α3 = 0 α3 = 0.1 α3 = 0.5 α3 = 1.0

−2.0 4.567872 4.938240 5.296256 7.160448
0.0 4.074048 4.444416 5.555520 6.296256
0.5 3.950592 4.320960 5.432064 6.049344

between gas and solid particles, and numeric exponent play important roles in determining
the following:

(1) occurrence of convectional thermal explosions and quasi-steady solution after ex-
plosion.

(2) significant delay in ignition time.

(3) reduction in inert solid particles temperature.

(4) remarkable reduction in the size of the liquid-fuel droplet leading to complete
evaporation.

(5) Depletion of gas concentration during the combustion process.
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The results highlighted above do guarantee safety in practical explosion and combus-
tion devices.

Nomenclature

English Symbols

A: Preexponential factor (1/s)
B: Dimensionless parameter expressing ratio of latent heat of evaporation and specific

combustion energy
cf : Molar concentration of combustible gaseous mixture (kmol/m3)
Cpg : Specific heat capacity of the gas phase at constant pressure (JK−1 kg−1)
Cps: Specific heat capacity of the solid phase at constant pressure (JK−1 kg−1)
E: Activation energy (J/kmol)
L: Latent heat of evaporation (J/kg)
mf : Molar mass (kg/kmol)
n: Numerical exponent
nd: Number of droplets per unit volume (m−3)
ns: Number of solid particles per unit volume (m−3)
Q: Specific combustion energy (J/kg)
Rd: Droplet radius (m)
Rs: Solid particle radius (m)
Ru: Universal gas constant Jkmol−1 K−1

t: Time (s)
Tg0: Combustible gas initial temperature (K)
Ts0: Dusty particle initial temperature (K)
Tg : Combustible gas temperature (K)
Ts: Dusty particle temperature (K).

Greek Symbols

ρ: Density of the combustible gaseous mixture (kg/m3)
λ: Thermal conductivity (Wm−1 K−1)
ϕ: Volumetric phase content (dimensionless)
σ: Stefan-Boltzmann’s constant
β: Dimensionless activation energy
τ : Dimensionless time
δ: Dimensionless parameter expressing reciprocal of the characteristic time for adiabatic

temperature rise
α1: Dimensionless parameter expressing heat loss via convection from gas phase
α2: Dimensionless parameter expressing heat loss via radiation from gas phase
α3: Dimensionless parameter expressing interphase heat exchange between gas and solid

particle
μ: Dimensionless parameter expressing energy needed to transfer heat from gas phase to

solid phase
μ∗: Dimensionless parameter expressing energy needed to evaporate all fuel droplets
ψ: Dimensionless parameter expressing energy needed to consume all gas concentration.
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Subscripts

0: Initial
g: Gas mixture
f : Combustible gas component of the mixture (fuel)
d: Liquid droplets
p: Constant pressure
ig: Ignition.
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