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The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets
are derived. Block pulse functions and collocation method are employed to derive a general
procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then
numerical methods based on wavelet expansion and these operational matrices are proposed. In
this proposed method, by a change of variables, the multiorder fractional differential equations
(MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with
homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical
examples are provided to demonstrate the applicability and simplicity of the numerical scheme
based on the Legendre and Chebyshev wavelets.

1. Introduction

Fractional-order differential equations (FODEs), as generalizations of classical integer-order
differential equations, are increasingly used tomodel some problems in fluid flow,mechanics,
viscoelasticity, biology, physics, engineering, and other applications. Fractional derivatives
provide an excellent instrument for the description of memory and hereditary properties of
various materials and processes [1–6]. Fractional differentiation and integration operators are
also used for extensions of the diffusion and wave equations [7]. The solutions of FODEs are
much involved, because in general, there exists no method that yields an exact solution for
FODEs, and only approximate solutions can be derived using linearization or perturbation
methods. Several methods have been suggested to solve fractional differential equations
(see [8] and references therein). Also there are different methods for solving MOFDEs as
a special kind of FODEs [9–17]. However, few papers have reported applications of wavelets
in solving fractional differential equations [8, 18–21]. In view of successful application of
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wavelet operational matrices in numerical solution of integral and differential equations [22–
27], together with the characteristics of wavelet functions, we believe that they should be
applicable in solving MOFDEs.

In this paper, the operational matrices of fractional-order integrations are derived and
a general procedure based on collocation method and block pulse functions for forming
these matrices is presented. Then, by application of these matrices, a numerical method for
solving MOFDEs with nonhomogeneous conditions is presented. In the proposed method
by a change of variables the MOFDEs with nonhomogeneous conditions transforms to the
MOFDEs with homogeneous conditions. This way, we are able to obtain the exact solutions
for such problems. In the proposedmethod, the Legendre andChebyshevwavelet expansions
along with operational matrices of fractional-order integrations are employed to reduce
the MOFDE to systems of nonlinear algebraic equations. Illustrative examples of nonlinear
types are given to demonstrate the efficiency and applicability of the proposed method. As
numerical results show, the proposed method is efficient and simple in implementation for
both the Legendre and the Chebyshev wavelets. Moreover, for both these kinds of wavelets,
numerical results have a good agreement with the exact solutions and the numerical results
presented in other works.

The paper is organized as follows. In Section 2, we review some necessary definitions
and mathematical preliminaries of fractional calculus and wavelets that are required for
establishing our results. In Section 3 the Legendre and Chebyshev operational matrices
of integration are derived. In Section 4 an application of the Legendre and Chebyshev
operational matrices for solving the MOFDEs is presented. In Section 5 the proposed method
is applied to several numerical examples. Finally, a conclusion is given in Section 6.

2. Basic Definitions

2.1. Fractional Calculus

We give some basic definitions and properties of the fractional calculus theory which are used
further in this paper.

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cμ, μ ∈ R if there exists a
real number p(> μ) such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞], and it is said to be in the
space Cn

μ if f
(n) ∈ Cμ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integration operator of order α ≥ 0, of a
function f ∈ Cμ, μ ≥ −1, is defined as follows [4]:

Iαf(t) =
1

Γ(α)

∫ t
0
(t − τ)α−1f(τ)dτ,

I0f(t) = f(t),
(2.1)

and according to [4], we have
IαIβf(t) = Iα+βf(t),

IαIβf(t) = IβIαf(t),

Iαtϑ =
Γ(ϑ + 1)

Γ(α + ϑ + 1)
tα+ϑ,

(2.2)

where α, β ≥ 0, t > 0 and ϑ > −1.
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Definition 2.3. The fractional derivative of order α > 0 in the Riemann-Liouville sense is
defined as [4]

Dαf(t) =
(
d

dt

)n
In−αf(t), (n − 1 < α ≤ n), (2.3)

where n is an integer and f ∈ Cn
1 .

The Riemann-Liouville derivatives have certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we will now intro-
duce a modified fractional differential operator Dα

∗ proposed by Caputo [5].

Definition 2.4. The fractional derivative of order α > 0 in the Caputo sense is defined as [5]

Dα
∗f(t) =

1
Γ(n − α)

∫ t
0
(t − τ)n−α−1f (n)(τ)dτ, (n − 1 < α ≤ n), (2.4)

where n is an integer t > 0 and f ∈ Cn
1 . Caputos integral operator has a useful property:

IαDα
∗f(t) = f(t) −

n−1∑
k=0

f (k)(0+)
tk

k!
, (n − 1 < α ≤ n), (2.5)

where n is an integer t > 0 and f ∈ Cn
1 .

2.2. Wavelets

Wavelets constitute a family of functions constructed from dilations and translations of a
single function called the mother wavelet ψ(t). When the dilation parameter a and the
translation parameter b vary continuously, we have the following family of continuous
wavelets [24]:

ψa,b(t) = |a|−1/2ψ
(
t − b
a

)
, a, b ∈ R, a /= 0. (2.6)

If we restrict the parameters a and b to discrete values as a = a−k0 , b = nb0a
−k
0 , a0 > 1,

b0 > 0, for n and k positive integers, we have the following family of discrete wavelets:

ψk,n(t) = |a0|k/2ψ
(
ak0 t − nb0

)
, (2.7)

where ψk,n(t) forms a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1, ψk,n(t)
forms an orthonormal basis. That is (ψk,n(t), ψl,m(t)) = δklδnm.
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2.2.1. The Legendre Wavelets

The Legendre wavelets ψn,m(t) = ψ(k, n̂,m, t) have four arguments; k ∈ N, n = 1, 2, . . . , 2k−1,
and n̂ = 2n− 1; moreover,m is the order of the Legendre polynomials and t is the normalized
time, and they are defined on the interval [0, 1) as

ψn,m(t) =

⎧⎪⎨
⎪⎩

√
m +

1
2
2k/2pm

(
2kt − n̂), n̂ − 1

2k
≤ t < n̂

2k
,

0, otherwise,
(2.8)

where m = 0, 1, . . . ,M − 1 and M is a fixed positive integer. The coefficient
√
m + 1/2 in

(2.8) is for orthonormality, the dilation parameter is a = 2−k, and the translation parameter
is b = n̂2−k. Here, Pm(t) are the well-known Legendre polynomials of order m which are
orthogonal with respect to the weight functionw(t) = 1 on the interval [−1, 1] and satisfy the
following recursive formula:

p0(t) = 1, p1(t) = t, pm+1(t) =
(
2m + 1
m + 1

)
tpm(t) −

(
m

m + 1

)
pm−1(t), m = 1, 2, 3, . . . .

(2.9)

2.2.2. The Chebyshev Wavelets

The Chebyshev wavelets ψn,m(t) = ψ(k, n̂,m, t) have four arguments; k ∈ N, n = 1, 2, . . . , 2k−1,
and n̂ = 2n − 1; moreover,m is the order of the Chebyshev polynomials of the first kind and t
is the normalized time, and they are defined on the interval [0, 1) as

ψn,m(t) =

⎧⎪⎨
⎪⎩
2k/2T̃m

(
2kt − n̂), n̂ − 1

2k
≤ t < n̂

2k
,

0, otherwise,
(2.10)

where

T̃m(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
π
, m = 0,

√
2
π
Tm(t), m > 0,

(2.11)

where m = 0, 1, . . . ,M − 1 and M is a fixed positive integer. The coefficients in (2.11) are
used for orthonormality. Here, Tm(t) are the well-known Chebyshev polynomials of order m
which are orthogonal with respect to the weight function w(t) = 1/

√
1 − t2 on the interval

[−1, 1] and satisfy the following recursive formula:

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t) − Tm−1, m = 1, 2, 3 . . . . (2.12)
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We should note that in dealing with the Chebyshev polynomials the weight function w̃ =
w(2t − 1) has to be dilated and translated as follows:

wn(t) = w
(
2kt − n̂

)
, (2.13)

to get orthogonal wavelets.

2.2.3. Function Approximation

A function f(t) defined over [0, 1) may be expanded as follows:

f(t) =
∞∑
n=1

∞∑
m=0

cn,mψn,m(t), (2.14)

by the Legendre or Chebyshev wavelets, where cn,m = (f(t), ψn,m(t)) in which (, ) denotes the
inner product.

If the infinite series in (2.14) is truncated, then (2.14) can be written as

f(t) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) = CTΨ(t), (2.15)

where C and Ψ(t) are 2k−1M × 1 matrices given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1]
T ,

Ψ =
[
ψ10(t), ψ11(t), . . . , ψ1M−1(t), ψ20(t), . . . , ψ2M−1(t), . . . , ψ2k−10(t), . . . , ψ2k−1M−1(t)

]T
.

(2.16)

Taking the collocation points

ti =
(2i − 1)
2kM

, i = 1, 2, . . . , m, (2.17)

wherem = 2k−1M, we define the wavelet matrix Φm×m as

Φm×m =
[
Ψ
(

1
2m

)
,Ψ
(

3
2m

)
, . . . ,Ψ

(
2m − 1
2m

)]
. (2.18)

Indeed Φm×m has the following form:

Φm×m =

⎡
⎢⎢⎢⎢⎢⎢⎣

A 0 · · · 0 0
0 A 0 · · · 0
0 0 A · · · 0
...

...
. . . . . .

...
0 0 · · · 0 A

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.19)
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where A is aM ×M matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ10

(
1
2m

)
ψ10

(
3
2m

)
· · · ψ10

(
2M − 1
2m

)

ψ11

(
1
2m

)
ψ11

(
3
2m

)
· · · ψ11

(
2M − 1
2m

)

...
...

...
...

ψ1M−1

(
1
2m

)
ψ1M−1

(
3
2m

)
· · · ψ1M−1

(
2M − 1
2m

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.20)

For example, for M = 4 and k = 2, the Legendre and Chebyshev matrices can be
expressed as

Φ8 × 8 =
[
A 0
0 A

]
, (2.21)

where for the Legendre matrix we have

A =

⎡
⎢⎢⎣

1.41421 1.41421 1.41421 1.41421
−1.83712 −.612372 0.612372 1.83712
1.08703 −1.28468 −1.28468 1.08703
0.263085 1.25697 −1.25697 −.263085

⎤
⎥⎥⎦, (2.22)

and for the Chebyshev matrix we have

A =

⎡
⎢⎢⎣

1.12838 1.12838 1.12838 1.12838
−1.19683 −.398942 −.398942 1.19683
0.199471 −1.39630 −1.39630 0.199471
0.897621 1.09709 −1.09709 −.897621

⎤
⎥⎥⎦. (2.23)

3. Operational Matrix of Fractional Integration

The integration of the vector Ψ(t) defined in (2.16) can be obtained by

∫ t
0
Ψ(τ)dτ ≈ PΨ(t), (3.1)

where P is them ×m operational matrix for integration [24].
Now, we derive the wavelet operational matrix of fractional integration. For this

purpose, we rewrite the Riemann-Liouville fractional integration as

(
Iαf
)
(t) =

1
Γ(α)

∫ t
0
(t − τ)α−1f(τ)dτ =

1
Γ(α)

tα−1 ∗ f(t), (3.2)
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where α ∈ R is the order of the integration and tα−1 ∗ f(t) denotes the convolution product of
tα−1 and f(t). Now if f(t) is expanded by the Legendre and Chebyshev wavelets, as shown
in (2.15), the Riemann-Liouville fractional integration becomes

(
Iαf
)
(t) =

1
Γ(α)

tα−1 ∗ f(t) ≈ CT 1
Γ(α)

{
tα−1 ∗Ψ(t)

}
. (3.3)

So that, if tα−1 ∗ f(t) can be integrated, then by expanding f(t) in the Legendre and
Chebyshev wavelets, the Riemann-Liouville fractional integration can be solved via the
Legendre and Chebyshev wavelets.

Also, we define anm-set of block pulse functions (BPFs) as

bi(t) =

⎧⎪⎨
⎪⎩
1,

i

m
≤ t < (i + 1)

m
,

0, otherwise,
(3.4)

where i = 0, 1, 2, . . . , (m − 1).
The functions bi(t) are disjoint and orthogonal, that is,

bi(t)bl(t) =

{
0, i /= l,
bi(t), i = l,

∫1
0
bi(τ)bl(τ)dτ =

⎧⎪⎨
⎪⎩
0, i /= l,
1
m
, i = l.

(3.5)

Similarly, the Legendre and Chebyshev wavelets may be expanded intom-term block
pulse functions (BPFs) as follows:

Ψm(t) = Φm×mBm(t), (3.6)

where Bm(t) = [b0(t), b1(t), . . . , bi(t), . . . , bm−1(t)]
T .

In [28], Kilicman and Al Zhour have given the block pulse operational matrix of the
fractional integration Fα as follows:

(IαBm)(t) ≈ FαBm(t), (3.7)

where

Fα =
1
mα

1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 · · · ξm−1

0 1 ξ1 · · · ξm−2

0 0 1 · · · ξm−3

0 0 0
. . .

...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)
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and ξi = (i + 1)α+1 − 2iα+1 + (i − 1)α+1. Next, we derive the Legendre and Chebyshev wavelet
operational matrices of the fractional integration. Let

(IαΨm)(t) ≈ Pαm×mΨm(t), (3.9)

where the matrix Pαm×m is called the wavelet operational matrix of the fractional integration.
Using (3.6) and (3.7), we have

(IαΨm)(t) ≈ (IαΦm×mBm×m)(t) = Φm×m(IαBm)(t) ≈ Φm×mFαBm(t), (3.10)

and from (3.9) and (3.10), we get

Pαm×mΨm(t) ≈ Pαm×mΦm×mBm(t) ≈ Φm×mFαBm(t). (3.11)

Thus, the Legendre and Chebyshev wavelet operational matrices of the fractional inte-
gration Pαm×m can be approximately expressed by

Pαm×m = Φm×mFαΦ−1
m×m. (3.12)

Also, from (3.3) and (3.12), we obtain

(
Iαf
)
(t) ≈ CTΦm×mFαBm(t). (3.13)

Here, for the Legendre and Chebyshev wavelets, we can obtain Φm×mFα as follows:

Φm×mFα =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 B2 B3 · · · Bk̂
0 B1 B2 · · · Bk̂−1
0 0 B1 · · · Bk̂−2
0 0 0

. . .
...

0 0 0 0 B1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.14)

where Br , r = 1, 2, . . . , k̂(k̂ = 2k−1), areM ×Mmatrices given by

Br =
(
b
(r)
ij

)
M×M

, (3.15)

such that for r = 1,

b
(1)
ij =

j∑
l=1

ailξ
′
j−l, ξ′0 = 1, (3.16)
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and for r = 2, 3, . . . ,M,

Br =
(
b
(r)
ij

)
M×M

, l = 2, 3, . . . , k̂,

b
(r)
ij =

M∑
l=1

ailξ
′
(r−1)M−l+j ,

(3.17)

where

aij = Ψ1(i−1)

(
2j − 1
2m

)
, (3.18)

and ξ′j = (1/mαΓ(α + 2))ξj , j = 0, 1, . . . m − 1.
Now from (3.12) and (3.14), we have

Pαm×m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 D2 D3 · · · Dk̂

0 D1 D2 · · · Dk̂−1
0 0 D1 · · · Dk̂−2

0 0 0
. . .

...

0 0 0 0 D1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.19)

where Di = BiA−1, i = 1, 2, . . . k̂.

4. Applications and Results

In this section, the Legendre and Chebyshev wavelet expansions together with their
operational matrices of fractional-order integration are used to obtain numerical solution of
MOFDEs.

Consider the following nonlinear MOFDE:

β0(t)Dα
∗y(t) +

s1∑
i=1

βi(t)D
αi∗ y(t) +

s2∑
i=1

γi(t)yi(t) = f(t), y(j)(0) = cj , j = 0, 1, . . . n − 1,

(4.1)

where 0 ≤ t < 1, n − 1 < α ≤ n, 0 < α1 < α2 < · · · < αs1 < α, n, s1 and s2 are fixed positive
integers, Dα

∗ denotes the Caputo fractional derivative of order α, f is a known function of t,
cj , j = 0, 1, . . . , n − 1, are arbitrary constants, and y is an unknown function to be determined
later. To solve this problem, we apply the following scheme.

Suppose

y(t) =
n−1∑
j=0

cj
tj

j!
+ Y (t). (4.2)
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Under this change of variable, we have

yi(t) =

⎛
⎝n−1∑

j=0

cj
tj

j!
+ Y (t)

⎞
⎠

i

=
i∑

s=0

(
i
s

)⎛⎝n−1∑
j=0

cj
tj

j!

⎞
⎠

s

Y (t)i−s,

Dα
∗y(t) = D

α
∗Y (t),

Dαi∗ y(t) = D
αi∗ Y (t), n − 1 < αi < α,

Dαi∗ y(t) = D
αi∗ Y (t) + hi(t), αi ≤ n − 1,

(4.3)

where

hi(t) = D
αi∗

⎛
⎝n−1∑

j=0

cj
tj

j!

⎞
⎠. (4.4)

Now, by substituting (4.3) into (4.1), we transform the nonlinear MOFDE (4.1) with
nonhomogeneous conditions to a nonlinear MOFDE with homogeneous conditions as fol-
lows:

β̂0(t)Dα
∗Y (t)+

s1∑
i=1

β̂i(t)D
αi∗ Y (t)+

s2∑
i=1

i∑
s=0

γ̂i,s(t)Y i−s(t) = f̂(t), Y (j)(0) = 0, j = 0, 1, . . . n − 1,

(4.5)

where

β̂0(t) = β0(t),

β̂i(t) = βi(t), n − 1 < αi < α,

β̂i(t) = βi(t)hi(t), αi ≤ n − 1,

γ̂i,s(t) = γi(t)
(
i
s

)⎛⎝n−1∑
j=0

cj
tj

j!

⎞
⎠

s

,

(4.6)

and f̂(t) is a known function.
We assume that Dα

∗Y (t) is given by

Dα
∗Y (t) = K

T
mΨm(t), (4.7)

where KT
m is an unknown vector and Ψm(t) is the vector which is defined in (3.6). By using

initial conditions and (2.4), we have

Dαi∗ Y (t) = KT
mP

α−αi
m×mΨm(t), i = 1, 2, . . . , s1, (4.8)

Y (t) = KT
mP

α
m×mΨm(t). (4.9)
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Since Ψm = Φm×mBm(t), (4.9) can be rewritten as follows:

Y (t) = KT
mP

α
m×mΦm×mBm(t) = [a1, a2, . . . , am]Bm(t). (4.10)

Now by using (3.4), we obtain

[Y (t)]i−s =
[
ai−s1 , ai−s2 , . . . , ai−sm

]
Bm(t), i = 1, 2, . . . , s2, s = 0, 1, . . . , i. (4.11)

Moreover, we expand functions β̂i(t), γ̂i,s(t), and f̂(t) by wavelets as follows:

β̂i(t) = Ψm(t)T β̃i,m, i = 0, 1, . . . , s1,

γ̂i,s(t) = Ψm(t)T γ̃i,s,m, i = 1, 2, . . . , s2, s = 0, 1, . . . , i,

f̂(t) = fTmΨm(t),

(4.12)

where β̃i,m, γ̃i,m, and fTm are known vectors. By substituting (4.7), (4.8), and (4.11)-(4.12) into
(4.5), we obtain

Ψm(t)T β̃0,mKT
mΨm(t)+

s1∑
i=1

Ψm(t)T β̃i,mKT
mP

α−αi
m×mΨm(t)+

s2∑
i=1

i∑
s=0

Ψm(t)T γ̃i,s,m
[
ai−s1 , ai−s2 , . . . , ai−sm

]
Bm(t)

= Bm(t)T [1, 1, . . . , 1]TfTmΨm(t).
(4.13)

Now, from (3.12), (4.10), and (4.13), we have

Bm(t)T
[
ΦT
m×mβ̃0,m[a1, a2, . . . , am]F

α−1 +
s1∑
i=1

ΦT
m×mβ̃i,m[a1, a2, . . . , am]F

α−1Fα
α−αi

+
s2∑
i=1

i∑
s=0

ΦT
m×mγ̃i,s,m

[
ai−s1 , ai−s2 , . . . , ai−sm

]]
Bm(t) = Bm(t)T [1, 1, . . . , 1]TfTmΦm×mBm(t).

(4.14)

This is a nonlinear algebraic equation for unknown vector [a1, a2, . . . , am]. Here, by
taking collocation points, expressed in (2.17), we transform (4.14) into a nonlinear system of
algebraic equations. This nonlinear system can be solved by the Newton iteration method for
unknown vector [a1, a2, . . . , am]. Therefore, Y (t) as the solution of (4.5) is

Y (t) = [a1, a2, . . . , am]Bm(t), (4.15)

and finally, y(t) as the solution of (4.1)will be

y(t) =
n−1∑
j=0

cj
tj

j!
+ [a1, a2, . . . , am]Bm(t). (4.16)
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In cases where all of coefficients β̂i(t) and γ̂i,s(t), are constants, that is, β̂i(t) = β̂i and
γ̂i,s(t) = γ̂i,s we can reduce (4.13) and (4.14), respectively, as follows:

β̂0K
T
mΨm(t) +

s1∑
i=1

β̂iK
T
mP

α−αi
m×mΨm(t) +

s2∑
i=1

i∑
s=0

γ̂i,s
[
ai−s1 , ai−s2 , . . . , ai−sm

]
Bm(t) = fTmΨm(t),

[
[a1, a2, . . . , am]

[
β̂0F

α−1+Fα
−1

s1∑
i=1

β̂iF
α−αi
]
+

s2∑
i=1

i∑
s=0

γ̂i,s
[
ai−s1 , ai−s2 , . . . , ai−sm

]]
Bm(t) = fTmΦm×mBm(t).

(4.17)

This is a nonlinear system of algebraic equations for unknown vector [a1, a2, . . . , am]
and can be solved directly without use of collocation points by the Newton iteration method.
Here, as before we obtain

Y (t) = [a1, a2, . . . , am]Bm(t), (4.18)

as the solution of (4.5), and finally, y(t) as the solution of (4.1) will be

y(t) =
n−1∑
j=0

cj
tj

j!
+ [a1, a2, . . . , am]Bm(t). (4.19)

5. Numerical Examples

In this section we demonstrate the efficiency of the proposed wavelet collocation method
for the numerical solution of MOFDEs. These examples are considered because either closed
form solutions are available for them, or they have also been solved using other numerical
schemes, by other authors.

Example 5.1. Consider the homogeneous Bagley-Torvik equation [13, 16]:

D2
∗y(t) +D

0.5
∗ y(t) + y(t) = 0, (5.1)

subject to the following initial conditions:

y(0) = 1, y′(0) = 0. (5.2)

Here, we apply the method of Section 4 for solving this problem. By setting

y(t) = 1 + Y (t). (5.3)

Equation (5.1) can be rewritten as

D2
∗Y (t) +D

0.5
∗ Y (t) + Y (t) + 1 = 0, (5.4)
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subject to the initial condition

Y (0) = Y ′(0) = 0. (5.5)

By using the proposed method, we get a system of algebraic equations for both the Legendre
and the Chebyshev wavelets for (5.4) as follows:

[a1, a2, . . . , am]
[
F2−1 + F2−1F1.5

]
+ [a1, a2, . . . , am] + [1, 1, . . . , 1] = 0. (5.6)

Since the linear system of algebraic equations (5.6) is the same for both kinds of wavelets, we
have the same numerical solution for the Legendre and Chebyshev wavelets. By solving this
linear system, we get numerical solutions for (5.4) as follows:

Y (t) = [a1, a2, . . . , am]Bm(t). (5.7)

Finally the solution of the original problem (5.1) is

y(t) = 1 + [a1, a2, . . . , am]Bm(t). (5.8)

Figure 1 shows the behavior of the numerical solution form = 160 (M = 5, k = 6). As Figure 1
shows, this method is very efficient for numerical solution of this problem and the solution
can be derived in a large interval [0, 40].

Example 5.2. Consider the nonhomogeneous Bagley-Torvik equation [10, 13–15, 17, 20]:

aD2
∗y(t) + bD

1.5
∗ y(t) + cy(t) = f(t), (5.9)

where

f(t) = c(1 + t), (5.10)

subject to the initial condition

y(0) = y′(0) = 1, (5.11)

which has the exact solution

y(t) = 1 + t. (5.12)

Here, we solve this problem by applying the method of Section 4. By setting

y(t) = 1 + t + Y (t). (5.13)
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Figure 1: Numerical solution by the Legendre and Chebyshev wavelets.

Equation (5.9) can be rewritten as

aD2
∗Y (t) + bD

1.5
∗ Y (t) + cY (t) = 0, (5.14)

subject to the following initial conditions:

Y (0) = Y ′(0) = 0. (5.15)

The system of algebraic equations for both the Legendre and the Chebyshev wavelets for
(5.14) has the following form:

[a1, a2, . . . , am]
[
aF2−1 + bF2−1F0.5 + cIm×m

]
= 0. (5.16)

Here, the linear system of algebraic equations (5.16) is nonsingular and so has only the trivial
solution, that is, Y (t) = 0. Then the solution of the original problem (5.9) is

y(t) = 1 + t, (5.17)

which is the exact solution. It is mentionable that this equation has been solved by Diethelm
and Luchko [10] (for a = b = c = 1) with error 1.60E − 4, Diethelm and Ford [17] (for a = 1,
b = c = 0.5) with error 5.62E − 3, while in [20] Li and Zhao obtained approximation solution
by the Haar wavelet.

Example 5.3. Consider the following nonhomogenous MOFDE [13]:

aDα
∗y(t) + bD

α2∗ y(t) + cD
α1∗ y(t) + ey(t) = f(t), 0 < α1 ≤ 1, 1 < α2 ≤ 2, 3 < α < 4, (5.18)
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where

f(t) =
2b

Γ(3 − α2) t
2−α2 +

2c
Γ(3 − α1) t

2−α1 + e
(
t2 − t
)
, (5.19)

subject to the following initial conditions:

y(0) = 0, y′(0) = −1, y′′(0) = 2, y′′′(0) = 0, (5.20)

which has the exact solution

y(t) = t2 − t. (5.21)

Here, we apply the method of Section 4 for solving this problem. By setting

y(t) = −t + t2 + Y (t). (5.22)

Equation (5.18)can be rewritten as follows:

aDα
∗Y (t) + bD

α2∗ Y (t) + cD
α1∗ Y (t) + eY (t) = 0, 0 < α1 ≤ 1, 1 < α2 ≤ 2, 3 < α < 4, (5.23)

subject to the initial conditions

Y (0) = 0, Y ′(0) = 0, Y ′′(0) = 0, Y ′′′(0) = 0. (5.24)

The system of algebraic equations corresponding to the Legendre and Chebyshev wavelets
for (5.23) has the following form:

[a1, a2, . . . , am]
[
aFα

−1
+ bFα

−1
Fα−α2 + cFα

−1
Fα−α1 + eIm×m

]
= 0. (5.25)

Here, the linear system of algebraic (5.25) is nonsingular and so has only the trivial solution,
that is, Y (t) = 0. Then the solution of the original problem (5.18) is

y(t) = t2 − t, (5.26)

which is the exact solution. This equation has been solved by El-Sayed et al. [13] (for a = b =
c = e = 1, α1 = 0.77, α2 = 1.44, and α = 0.91) with error 9.53E − 4.

Example 5.4. Consider the following nonlinear MOFDE [15]:

D3
∗y(t) +D

2.5
∗ y(t) +

[
y(t)
]2 = t4, (5.27)
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subject to the initial conditions

y(0) = y′(0) = 0, y′′(0) = 2, (5.28)

which has the exact solution

y(t) = t2. (5.29)

Here, we apply the method of Section 4 for solving this problem. By setting

y(t) = t2 + Y (t). (5.30)

Equation (5.27) can be rewritten as follows:

D3
∗Y (t) +D

2.5
∗ Y (t) + [Y (t)]2 + 2t2Y (t) = 0, (5.31)

subject to the following initial conditions:

Y (0) = 0, Y ′(0) = 0, Y ′′(0) = 0. (5.32)

The nonlinear algebraic equation corresponding to the Legendre and Chebyshev wavelets for
(5.31) has the following form:

Bm(t)T
[
[1, 1, . . . , 1]T [a1, a2, . . . , am]

[
F3−1 + F3−1F0.5

]
+ [1, 1, . . . , 1]T

[
a21, a

2
2, . . . , a

2
m

]

+ΦT
m×mγ̃m[a1, a2, . . . , am]

]
Bm(t) = 0,

(5.33)

where γ̃m is a known constant vector corresponding to the kind of wavelet expansions and
Φm×m is the wavelet matrix. By taking collocation points expressed in (2.17), we transform
(5.33) into a nonlinear system of algebraic equations. Then applying Newton iteration
method for solving this nonlinear system, we obtain only trivial solution, that is, Y (t) = 0.
Then the solution of the original problem (5.27) is

y(t) = t2, (5.34)

which is the exact solution.

Example 5.5. Consider the following nonlinear MOFDE [14]:

aD3
∗y(t) + bD

α2∗ y(t) + cD
α1∗ y(t) + e

[
y(t)
]2 = f(t), 0 < α1 ≤ 1, 1 < α2 < 2, (5.35)

where

f(t) =
ct1−α1

Γ(2 − α1) + et
2, (5.36)
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subject to the initial conditions

y(0) = 0, y′(0) = 1, y′′(0) = 0, (5.37)

which has the exact solution

y(t) = t. (5.38)

Here, we apply the method of Section 4 for solving this problem. By setting

y(t) = t + Y (t). (5.39)

Equation (5.35) can be rewritten as follows:

aD3
∗Y (t) + bD

α2∗ Y (t) + cD
α1∗ Y (t) + e[Y (t)]

2 + 2etY (t) = 0, (5.40)

subject to the initial conditions

Y (0) = 0, Y ′(0) = 0, Y ′′(0) = 0. (5.41)

The nonlinear algebraic equation corresponding to the Legendre and Chebyshev wavelets for
(5.40) has the following form:

Bm(t)T
[
[1, 1, . . . , 1]T [a1, a2, . . . , am]

[
aF3−1 + bF3−1F3−α2 + cF3−1F3−α1

]

+[1, 1, . . . , 1]T
[
a21, a

2
2, . . . , a

2
m

]
+ ΦT

m×mγ̃m[a1, a2, . . . , am]
]
Bm(t) = 0,

(5.42)

where γ̃m is a known constant vector corresponding to the kind of wavelet expansion and
Φm×m is the wavelet matrix. By taking collocation points expressed in (2.17), we transform
(5.42) into a nonlinear system of algebraic equations. By applying the Newton iteration
method for solving this nonlinear system, we obtain only trivial solution, that is, Y (t) = 0.
Then the solution of the original problem (5.35) is

y(t) = t, (5.43)

which is the exact solution.

6. Conclusion

In this paper a general formulation for the Legendre and Chebyshev wavelet operational
matrices of fractional-order integration has been derived. Then a numerical method based on
Legendre and Chebyshev wavelets expansions together with these matrices are proposed
to obtain the numerical solutions of MOFDEs. In this proposed method, by a change of
variables, the MOFDEs with nonhomogeneous conditions are transformed to the MOFDEs
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with homogeneous conditions. The exact solutions for some MOFDEs are obtained by our
method. The proposed method is very simple in implementation for both the Legendre and
the Chebyshev wavelets. As the numerical results show, the method is very efficient for
the numerical solution of MOFDEs and only a few number of wavelet expansion terms are
needed to obtain a good approximate solution for these problems.
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