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We study a new system of nonlinear set-valued variational inclusions involving a finite family of
H(·, ·)-accretive operators in Banach spaces. By using the resolvent operator technique associated
with a finite family of H(·, ·)-accretive operators, we prove the existence of the solution for the
system of nonlinear set-valued variational inclusions. Moreover, we introduce a new iterative
scheme and prove a strong convergence theorem for finding solutions for this system.

1. Introduction

Variational inequality theory has become a very effective and powerful tool for studying
a wide range of problems arising in pure and applied sciences which include work
on differential equations, control problems, mechanics, general equilibrium problems in
transportation and economics. In 1994, Hassouni and Moudafi [1] introduced and studied a
class of variational inclusions and developed a perturbed algorithm for finding approximate
solutions of the variational inclusions. In 1996, Adly [2] obtained some important extensions
and generalizations of the results in [1] for nonlinear variational inclusions. Recently, Ding
[3] introduced and studied a class of generalized quasivariational inclusions and Kazmi
[4] introduced and studied another class of quasivariational inclusions in the same year.
In [5, 6], Ansari et al. introduced the system of vector equilibrium problems and they
proved the existence of solutions for such problems (see also in [7–9]). In 2004, Verma [10]
studied nonlinear variational inclusion problems based on the generalized resolvent operator
technique involving A-monotone mapping. For existence result and approximating solution
of the system of set-valued variational inclusions and the class of nonlinear relaxed cocoercive
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variational inclusions, we refer the reader to Yan et al. [11], Plubtieng and Sriprad [12], Verma
[13] and Cho et al. [14].

Very recently, Verma [15] introduced and studied approximation solvability of a
general class of nonlinear variational inclusion problems based on (A, η)-resolvent operator
technique in a Hilbert space. On the other hand, Zou and Huang [16] studied the Lipschitz
continuity of resolvent operator for theH(·, ·)-accretive operator in Banach spaces. Moreover,
they also applied these new concepts to solve a variational-like inclusion problem. One year
later, Zou and Huang [17] introduced and studied a new class of system of variational
inclusions involving H(·, ·)-accretive operator in Banach spaces. By using the resolvent
operator technique associated withH(·, ·)-accretive operator, they proved the existence of the
solution for the system of inclusions. Moreover, they also develop a step-controlled iterative
algorithm to approach the unique solution.

In this paper, we introduce a new system of nonlinear set-valued variational inclusions
involving a finite family ofH(·, ·)-accretive operators in Banach spaces. By using the resolvent
operators technique associated with a finite family of H(·, ·)-accretive operator, we prove
the existence of the solution for the system of nonlinear set-valued variational inclusions.
Moreover, we introduce a new iterative scheme and prove a strong convergence theorem for
finding solutions of this system.

2. Preliminaries

Let X be a real Banach space with dual space X∗, 〈·, ·〉 the dual pair between X and X∗ and
2X and C(X) denote the family of all the nonempty subsets of X and the family of all closed
subsets of X, respectively. The generalized duality mapping Jq : X → 2X

∗
is defined by

Jq(X) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖q,

∥∥f∗∥∥ = ‖x‖q−1
}
, ∀x ∈ X, (2.1)

where q > 1 is a constant. It is known that, in general, Jq(x) = ‖x‖q−1J2(x) for all x /= 0 and
Jq is single-valued if X∗ is strictly convex. In the sequel, we always assume that X is a real
Banach space such that Jq is single-valued.

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ ≤ 1,

∥∥y∥∥ ≤ t

}
. (2.2)

A Banach space X is called uniformly smooth if

lim
t→ 0

ρX(t)
t

= 0. (2.3)

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, q > 1. (2.4)
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Note that Jq is single valued if X is uniformly smooth. In the study of characteristic
inequalities in q-uniformly smooth Banach spaces, Xu [18] proved the following result.

Definition 2.1. Let H,η : X × X → X be two single-valued mappings and A,B : X → X two
single-valued mappings.

(i) A is said to be accretive if

〈
Ax −Ay, Jq

(
x − y

)〉
≥ 0, ∀x, y ∈ X, (2.5)

(ii) A is said to be strictly accretive if A is accretive and

〈
Ax −Ay, Jq

(
x − y

)〉
= 0, ∀x, y ∈ X, (2.6)

if and only if x = y;

(iii) H(A, ·) is said to be α-strongly accretive with respect to A if there exists a constant
α > 0 such that

〈
H(Ax, u) −H

(
Ay, u

)
, Jq

(
x − y

)〉
≥ α

∥∥x − y
∥∥q

, ∀x, y, u ∈ X; (2.7)

(iv) H(·, B) is said to be β-relaxed accretive with respect to B if there exists a constant
β > 0 such that

〈
H(u, Bx) −H

(
u, By

)
, Jq

(
x − y

)〉
≥ −β

∥∥x − y
∥∥q

, ∀x, y, u ∈ X; (2.8)

(v) H(·, ·) is said to be γ-Lipschitz continuous with respect toA if there exists a constant
γ > 0 such that

∥∥H(Ax, u) −H
(
Ay, u

)∥∥ ≤ γ
∥∥x − y

∥∥q
, ∀x, y, u ∈ X; (2.9)

(vi) A is said to be θ-Lipschitz continuous if there exists a constant θ > 0 such that

∥∥Ax −Ay
∥∥ ≤ θ

∥∥x − y
∥∥q

, ∀x, y ∈ X; (2.10)
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(vii) η(·, ·) is said to be strongly accretive with respect toH(A,B) if there exists a constant
ρ > 0 such that

〈
η(x, u) − η

(
y, u

)
, Jq

(
H(Ax,Bx) −H

(
Ay,By

))〉
≥ ρ

∥∥x − y
∥∥q

, ∀x, y, u ∈ X. (2.11)

Definition 2.2. Let η : X×X → X be single-valued mapping. LetM : X → 2X be a set-valued
mapping.

(i) η is said to be T-Lipschitz continuous if there exists a constant T > 0 such that

∥∥η(x, y)∥∥ ≤ T
∥∥x − y

∥∥, ∀x, y ∈ X; (2.12)

(ii) M is said to be accretive if

〈
u − v, Jq

(
x − y

)〉
≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M

(
y
)
; (2.13)

(iii) M is said to be η-accretive if

〈
u − v, Jq

(
η
(
x, y

))〉
≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M

(
y
)
; (2.14)

(iv) M is said to be strictly η-accretive ifM is η-accretive and equality holds if and only
if x = y;

(v) M is said to be γ-strongly η-accretive if there exists a positive constant γ > 0 such
that

〈
u − v, Jq

(
η
(
x, y

))〉
≥ γ

∥∥x − y
∥∥q

, ∀x, y ∈ X, u ∈ M(x), v ∈ M
(
y
)
; (2.15)

(vi) M is said to be α-relaxed η-accretive if there exists a positive constant α > 0 such
that

〈
u − v, Jq

(
η
(
x, y

))〉
≥ −α

∥∥x − y
∥∥q

, ∀x, y ∈ X, u ∈ M(x), v ∈ M
(
y
)
. (2.16)
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Definition 2.3. Let A,B : X → X, H : X × X → X be three single-valued mappings. Let
M : X → 2X be a set-valued mapping.M is said to beH(·, ·)-accretive with respect to A and
B (or simplyH(·, ·)-accretive in the sequel), ifM is accretive and (H(A,B) +λM)(X) = X for
every λ > 0.

Lemma 2.4. Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and
only if there exists a constant cq > 0 such that for all x, y ∈ X

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ cq

∥∥y∥∥q
. (2.17)

Lemma 2.5 (see[16]). Let H(A,B) be α-strongly accretive with respect to A, β-relaxed accretive
with respect to B, and α > β. Let M be an H(·, ·)-accretive operator with respect to A and B. Then,
the operator H((A,B) + λM)−1 is single valued. Based on Lemma 2.4, one can define the resolvent
operator RH(·,·)

M,λ as follows.

Definition 2.6. Let H,A,B,M be defined as in Definition 2.3. Let H(A,B) be α-strongly
accretive with respect to A, β-relaxed accretive with respect to B, and α > β. Let M be an
H(·, ·)-accretive operator with respect to A and B. The resolvent operator RH(·,·)

M,λ : X → X is
defined by

R
H(·,·)
M,λ (z) = (H(A,B) + λM)−1(z), ∀z ∈ X, (2.18)

where λ > 0 is a constant.

Lemma 2.7 (see [16]). Let H,A,B,M be defined as in Definition 2.3. Let H(A,B) be α-strongly
accretive with respect to A, β-relaxed accretive with respect to B, and α > β. Suppose that M : X →
2X is an H(·, ·)-accretive operator. Then resolvent operator R

H(·,·)
M,λ

defined by (2.18) is 1/(α − β)
Lipschitz continuous. That is,

∥∥∥RH(·,·)
M,λ (x) − R

H(·,·)
M,λ

(
y
)∥∥∥ ≤ 1

α − β

∥∥x − y
∥∥, ∀x, y ∈ X. (2.19)

We define a Hausdorff pseudometric D : 2X × 2X → [0,+∞] by

D(U,V ) = max

{
sup
u∈U

inf
v∈V

‖u − v‖, sup
u∈V

inf
v∈U

‖u − v‖
}

(2.20)

for any givenU,V ∈ 2X . Note that if the domain ofD is restricted to closed bounded subsets,
then D is the Hausdorff metric.

Lemma 2.8 (see [19]). Let {cn} and {kn} be two real sequences of nonnegative numbers that satisfy
the following conditions:

(i) 0 < kn < 1 for n = 0, 1, 2, . . ., and lim supnkn < 1;

(ii) cn+1 ≤ kncn for n = 0, 1, 2, . . ..

Then, cn converges to 0 as n → ∞.
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3. Main Result

Let X be q-uniformly smooth real Banach space and C(X) a nonempty closed convex set. Let
Si,Hi : X × X → X, Ai, Bi : X → X be single-valued operators, for all i = 1, 2, . . . ,N. For
any fix i ∈ {1, 2, . . . ,N}, we let Mi : X → 2X , Hi(Ai, Bi)-accretive set-valued operator and
Ui : X → 2X a set-valued mapping which nonempty values. The system of nonlinear set-
valued variational inclusions is to find a1, . . . , aN ∈ X, u1 ∈ U1(aN), . . . , uN ∈ UN(a1) such
that

0 ∈ Si(ai, ui) +Mi(ai), ∀i = 1, 2, . . . ,N. (3.1)

If N = 2, then system of nonlinear set-valued variational inclusions (3.1) becomes
following system of variational inclusions: finding a1, a2 ∈ X, u1 ∈ U1(a2) and u2 ∈ U2(a1)
such that

0 ∈ S1(a1, u1) +M1(a1),

0 ∈ S2(a2, u2) +M2(a2).
(3.2)

If N = 1, then system of nonlinear set-valued variational inclusions (3.1) becomes
the following class of nonlinear set-valued variational inclusions see [15]: finding a ∈ X,
u ∈ U(a) such that

0 ∈ S(a, u) +M(a). (3.3)

For solving the system of nonlinear set-valued variational inclusions involving a finite
family ofH(·, ·)-accretive operators in Banach spaces, let us give the following assumptions.

For any i ∈ {1, 2, . . . ,N}, we suppose that

(A1) H(Ai, Bi) is αi-strongly accretive with respect to Ai, βi-relaxed accretive with
respect to Bi and αi > βi,

(A2) Mi : X → 2X is an Hi(·, ·)-accretive single-valued mapping,

(A3) Ui : X → C(X) is a contraction set-valued mapping with 0 ≤ Li < 1 and nonempty
values,

(A4) Hi(Ai, Bi) is ri-Lipschitz continuous with respect to Ai and ti-Lipschitz continuous
with respect to Bi,

(A5) Si : X × X → X is li-Lipschitz continuous with respect to its first argument and
mi-Lipschitz continuous with respect to its second argument,

(A6) Si(·, u) is si-strongly accretive with respect to Hi(Ai, Bi).

Theorem 3.1. For given a1, . . . , aN ∈ X, u1 ∈ U1(aN), . . . , uN ∈ UN(a1), it is a solution of problem
(3.1) if and only if

ai = R
Hi(·,·)
Mi,λi

[Hi(Ai(ai), Bi(ai)) − λiSi(ai, ui)], (3.4)

where λi > 0 are constants.
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Proof. We note from the Definition 2.6 that a1, . . . , aN ∈ X, u1 ∈ U1(aN), . . . , uN ∈ UN(a1) is a
solution of (3.1) if and only if, for each i ∈ {1, 2, . . . ,N}, we have

ai = R
Hi(·,·)
Mi,λi

[Hi(Ai(ai), Bi(ai)) − λiSi(ai, ui)]

⇐⇒ ai = [Hi(Ai, Bi) + λiMi]
−1[Hi(Ai(ai), Bi(ai)) − λiSi(ai, ui)]

⇐⇒ [Hi(Ai(ai), Bi(ai)) − λiSi(ai, ui)] ∈ [Hi(Ai, Bi) + λiMi](ai)

⇐⇒ −λiSi(ai, ui) ∈ λiMi(ai)

⇐⇒ 0 ∈ Si(ai, ui) +Mi(ai).

(3.5)

Algorithm 3.2. For given a1
0, . . . , a

N
0 ∈ X, u1

0 ∈ U1(aN
0 ), . . . , uN

0 ∈ UN(a1
0), we let

ai
1 = σ0a

i
0 + (1 − σ0)R

Hi(·,·)
Mi,λi

[
Hi

(
Ai

(
ai
0

)
, Bi

(
ai
0

))
− λiSi

(
ai
0, u

i
0

)]
, (3.6)

for all i = 1, 2, . . . ,N, where 0 < σ0 ≤ 1. By Nadler theorem [20], there exists u1
1 ∈ U1

(aN
1 ), . . . , uN

1 ∈ UN(a1
1) such that

∥∥∥ui
1 − ui

0

∥∥∥ ≤ (1 + 1)D
(
Ui

(
a
N−(i−1)
1

)
, Ui

(
a
N−(i−1)
0

))
, ∀i = 1, 2, . . . ,N, (3.7)

whereD(·, ·) is the Hausdorff pseudometric on 2X . Continuing the above process inductively,
we can obtain the sequences {ai

n} and {ui
n} such that

ai
n+1 = σna

i
n + (1 − σn)R

Hi(·,·)
Mi,λi

[
Hi

(
Ai

(
ai
n

)
, Bi

(
ai
n

))
− λiSi

(
ai
n, u

i
n

)]
, (3.8)

for all n = 1, 2, 3, . . . , i = 1, 2, . . . ,N, where 0 < σn ≤ 1 with lim supn→∞σn < 1. Therefore, by
Nadler theorem [20], there exists u1

n+1 ∈ U1(aN
n+1), . . . , u

N
n+1 ∈ UN(a1

n+1) such that

∥∥∥ui
n+1 − ui

n

∥∥∥ ≤
(
1 + (1 + n)−1

)
D
(
Ui

(
a
N−(i−1)
n+1

)
,

Ui

(
a
N−(i−1)
n

))
, ∀n = 1, 2, 3, . . . , i = 1, 2, . . . ,N.

(3.9)

The idea of the proof of the next theorem is contained in the paper of Verma [15] and
Zou and Huang [17].
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Theorem 3.3. Let X be q-uniformly smooth real Banach space. Let Ai, Bi : X → X be single-valued
operators,Hi : X ×X → X a single-valued operator satisfy (A1) andMi,Ui,Hi(Ai, Bi), Si, Si(·, u)
satisfy conditions (A2)–(A6), respectively. If there exists a constant cq,i such that

q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi
+

λimi

αi − βi
< 1 (3.10)

for all i = 1, 2, . . . ,N, then problem (3.1) has a solution a1, . . . , aN , u1 ∈ U1(aN), . . . , uN ∈ UN(a1).

Proof. For any i ∈ {1, 2, . . . ,N} and λi > 0, we define Fi : X ×X → X by

Fi(u, v) = R
Hi(·,·)
Mi,λi

[Hi(Ai(u), Bi(u)) − λiSi(u, v)], (3.11)

for all u, v ∈ X. Let Ji(x, y) = Hi(Ai(x), Bi(y)). For any (u1, v1), (u2, v2) ∈ X × X, we note by
(3.11) and Lemma 2.7 that

‖Fi(u1, v1) − Fi(u2, v2)‖ =
∥∥∥RHi(·,·)

Mi,λi
[Hi(Ai(u1), Bi(u1)) − λiSi(u1, v1)]

−RHi(·,·)
Mi,λi

[Hi(Ai(u2), Bi(u2)) − λiSi(u2, v2)]
∥∥∥

=
∥∥∥RHi(·,·)

Mi,λi
[Ji(u1, u1) − λiSi(u1, v1)] − R

Hi(·,·)
Mi,λi

[Ji(u2, u2) − λiSi(u2, v2)]
∥∥∥

≤ 1
αi − βi

‖[Ji(u1, u1) − λiSi(u1, v1)] − [Ji(u2, u2) − λiSi(u2, v2)]‖

=
1

αi − βi
‖[Ji(u1, u1) − Ji(u2, u2)] − λi[Si(u1, v1) − Si(u2, v2)]‖

≤ 1
αi − βi

‖[Ji(u1, u1) − Ji(u2, u2)] − λi[Si(u1, v1) − Si(u2, v1)]‖

+
λi

αi − βi
‖[Si(u2, v1) − Si(u2, v2)]‖.

(3.12)

By Lemma 2.4, we have

‖Ji(u1, u1) − Ji(u2, u2) − λi[Si(u1, v1) − Si(u2, v1)]‖q

≤ ‖Ji(u1, u1) − Ji(u2, u2)‖q

− qλi
〈
Si(u1, v1) − Si(u2, v1), Jq(Ji(u1, u1) − Ji(u2, u2))

〉

+ cq,iλ
q

i ‖Si(u1, v1) − Si(u2, v1)‖q.

(3.13)
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Moreover, by (A4), we obtain

‖Ji(u1, u1) − Ji(u2, u2)‖ ≤ ‖Ji(u1, u1) − Ji(u2, u1)‖ + ‖Ji(u2, u1) − Ji(u2, u2)‖
≤ ri‖u1 − u2‖ + ti‖u1 − u2‖
≤ (ri + ti)‖u1 − u2‖.

(3.14)

From (A6), we have

−qλi
〈
Si(u1, v1) − Si(u2, v1), Jq(Ji(u1, u1) − Ji(u2, u2))

〉
≤ −qλisi‖u1 − u2‖q.

(3.15)

Moreover, from (A5), we obtain

‖Si(u1, v1) − Si(u2, v1)‖ ≤ li‖u1 − u2‖, (3.16)

‖Si(u2, v1) − Si(u2, v2)‖ ≤ mi‖v1 − v2‖. (3.17)

From (3.13)–(3.16), we have

‖Ji(u1, u1) − Ji(u2, u2) − λi[Si(u1, v1) − Si(u2, v1)]‖q ≤ q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i ‖u1 − u2‖.

(3.18)

It follows from (3.12), (3.17), and (3.18) that

‖Fi(u1, v1) − Fi(u2, v2)‖ ≤
q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi
‖u1 − u2‖ +

λimi

αi − βi
‖v1 − v2‖. (3.19)

Put

θi
1 =

q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi
, θi

2 =
λimi

αi − βi
. (3.20)

Define ‖·‖ onX × · · · ×X︸ ︷︷ ︸
N−times

by ‖(x1, . . . , xN)‖ = ‖x1‖+· · · ‖xN‖ for all (x1, . . . , xN) ∈ X × · · · ×X︸ ︷︷ ︸
N−times

. It

is easy to see that (X × · · · ×X︸ ︷︷ ︸
N−times

, ‖·‖) is a Banach space. For any given x1, . . . , xN ∈ X, we choose

a finite sequence w1 ∈ U1(xN), . . . , wN ∈ UN(x1). Define Q : X × · · · ×X︸ ︷︷ ︸
N−times

→ X × · · · ×X︸ ︷︷ ︸
N−times

by Q(x1, . . . , xN) = (F1(x1, w1), . . . , FN(xN,wN)). Set k = max{(θ1
1 + θN

2 LN), . . . , (θ1
2L1 +

θN
1 )}, where L1, . . . , LN are contraction constants of U1, . . . , UN , respectively. We note that

θi
1 + θi

2Li < θi
1 + θi

2 < 1, for all i = 1, 2, . . . ,N, and so k < 1. Let x1, . . . , xN ∈ X,
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w1 ∈ U1(xN), . . . , wN ∈ UN(x1) and y1, . . . , yN ∈ X, z1 ∈ U1(yN), . . . , zN ∈ UN(y1). By
(A3), we get

∥∥Q(x1, . . . , xN) −Q
(
y1, . . . , yN

)∥∥ = ‖(F1(x1, w1), . . . , FN(xN,wN))

−
(
F1

(
y1, z1

)
, . . . , FN

(
yN, zN

))∥∥

=
∥∥F1(x1, w1) − F1

(
y1, z1

)∥∥
+ · · · +

∥∥FN(xN,wN) − FN

(
yN, zN

)∥∥

≤
(
θ1
1

∥∥x1 − y1
∥∥ + θ1

2‖w1 − z1‖
)

+ · · · +
(
θN
1

∥∥xN − yN

∥∥ + θN
2 ‖wN − zN‖

)

≤
(
θ1
1

∥∥x1 − y1
∥∥ + θ1

2L1
∥∥xN − yN

∥∥)

+ · · · +
(
θN
1

∥∥xN − yN

∥∥ + θN
2 LN

∥∥x1 − y1
∥∥)

=
(
θ1
1 + θN

2 LN

)∥∥x1 − y1
∥∥

+ · · · +
(
θN
1 + θ1

2L1

)∥∥xN − yN

∥∥

≤ k
∥∥x1 − y1

∥∥ + · · · + k
∥∥xN − yN

∥∥

= k
(∥∥x1 − y1

∥∥ + · · · +
∥∥xN − yN

∥∥)

= k
∥∥(x1, . . . , xN) −

(
y1, . . . , yN

)∥∥,

(3.21)

and so Q is a contraction on X × · · · ×X︸ ︷︷ ︸
N−times

. Hence there exists a1, . . . , aN ∈ X, u1 ∈ U1

(aN), . . . , uN ∈ UN(a1) such that a1 = F1(a1, u1), . . . , aN = FN(aN, uN). From Theorem 3.1,
a1, . . . , aN ∈ X, u1 ∈ U1(aN), . . . , uN ∈ UN(a1) is the solution of the problem (3.1).

Theorem 3.4. Let X be q-uniformly smooth real Banach space. For i = 1, 2, . . . ,N. Let Ai, Bi :
X → X be single-valued operators, Hi : X × X → X single-valued operator satisfy (A1) and
suppose thatMi,Ui,Hi(Ai, Bi), Si, Si(·, u) satisfy conditions (A2)–(A6), respectively. Then, for any
i ∈ {1, 2, . . . ,N}, the sequences {ai

n}
∞
n=1 and {ui

n}
∞
n=1 generated by Algorithm 3.2 converge strongly

to ai, ui ∈ Ui(aN−(i−1)), respectively.

Proof. By Theorem 3.3, the problem (3.1) has a solution a1, . . . , aN ∈ X, u1 ∈ U1(aN), . . . , uN ∈
UN(a1). From Theorem 3.1, we note that

ai = σnai + (1 − σn)R
Hi(·,·)
Mi,λi

[Hi(Ai(ai), Bi(ai) − λiSi(ai, ui))], (3.22)
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for all i = 1, 2, . . . ,N. Hence, by (3.8) and (3.22), we have

∥∥∥ai
n+1 − ai

n

∥∥∥ =
∥∥∥ σna

i
n + (1 − σn)R

Hi(·,·)
Mi,λi

[
Hi

(
Ai

(
ai
n

)
, Bi

(
ai
n

))
− λiSi

(
ai
n, u

i
n

)]

−
[
σna

i
n−1 + (1 − σn)R

Hi(·,·)
Mi,λi

[
Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n−1

))
− λiSi

(
ai
n−1, u

i
n−1

)]]∥∥∥

≤ σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
∥∥∥RHi(·,·)

Mi,λi

[
Hi

(
Ai

(
ai
n

)
, Bi

(
ai
n

))
− λiSi

(
ai
n, u

i
n

)]

− R
Hi(·,·)
Mi,λi

[
Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n−1

))

−λiSi

(
ai
n−1, u

i
n−1

)]∥∥∥

= σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
∥∥∥RHi(·,·)

Mi,λi

[
Ji
(
ai
n, a

i
n

)
− λiSi

(
ai
n, u

i
n

)]

−RHi(·,·)
Mi,λi

[
Ji
(
ai
n−1, a

i
n−1

)
− λiSi

(
ai
n−1, u

i
n−1

)]∥∥∥

≤ σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
1

αi − βi

∥∥∥
[
Ji
(
ai
n, a

i
n

)
− λiSi

(
ai
n, u

i
n

)]

−
[
Ji
(
ai
n−1, a

i
n−1

)
− λiSi

(
ai
n−1, u

i
n−1

)]∥∥∥

= σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
1

αi − βi

∥∥∥
[
Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)]

−λi
[
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n−1

)]∥∥∥

≤ σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
1

αi − βi

∥∥∥
[
Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)]

−λi
[
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)]∥∥∥

+ (1 − σn)
1

αi − βi

∥∥∥Si

(
ai
n−1, u

i
n

)
− Si

(
ai
n−1, u

i
n−1

)∥∥∥.
(3.23)

By Lemma 2.4, we obtain

∥∥∥Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)
− λi

[
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)]∥∥∥
q

≤
∥∥∥Ji

(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)∥∥∥
q

− qλi
〈
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)
, Jq,i

(
Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

))〉

+ cq,iλ
q

i

∥∥∥Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)∥∥∥
q
.

(3.24)
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From (A4), we note that

∥∥∥Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)∥∥∥ =
∥∥∥Hi

(
Ai

(
ai
n

)
, Bi

(
ai
n

))
−Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n−1

))∥∥∥
≤
∥∥∥Hi

(
Ai

(
ai
n

)
, Bi

(
ai
n

))
−Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n

))∥∥∥
+
∥∥∥Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n

))
−Hi

(
Ai

(
ai
n−1

)
, Bi

(
ai
n−1

))∥∥∥
≤ (ri + ti)

∥∥∥ai
n − ai

n−1

∥∥∥.
(3.25)

From (3.24) and (A6), it follows that

−qλi
〈
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)
, Jq,1

(
Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

))〉
≤ −qλisi

∥∥∥ai
n − ai

n−1

∥∥∥
q
.

(3.26)

By (3.23), (3.24), and (A5), we have

∥∥∥Si

(
ai
n−1, u

i
n

)
− Si

(
ai
n−1, u

i
n−1

)∥∥∥ ≤ mi

∥∥∥ui
n − ui

n−1

∥∥∥
≤ midi

(
1 + n−1

)∥∥∥ai
n − ai

n−1

∥∥∥,
(3.27)

∥∥∥Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)∥∥∥ ≤ li
∥∥∥ai

n − ai
n−1

∥∥∥. (3.28)

From (3.23)–(3.28), we obtain

∥∥∥Ji
(
ai
n, a

i
n

)
− Ji

(
ai
n−1, a

i
n−1

)
− λi

[
Si

(
ai
n, u

i
n

)
− Si

(
ai
n−1, u

i
n

)]∥∥∥
q

≤
q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi

∥∥∥ai
n − ai

n−1

∥∥∥

+
λimi

αi − βi
di

(
1 + n−1

)∥∥∥ai
n − ai

n−1

∥∥∥.

(3.29)

Hence, by (3.23), (3.28) and (3.29), we have

∥∥∥ai
n+1 − ai

n

∥∥∥ ≤ σn

∥∥∥ai
n − ai

n−1

∥∥∥ + (1 − σn)
q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi

∥∥∥ai
n − ai

n−1

∥∥∥

+ (1 − σn)
λimi

αi − βi
di

(
1 + n−1

)∥∥∥ai
n − ai

n−1

∥∥∥.
(3.30)

Put k = max{π1 . . . , πN}, where

πi =
q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi
+
λimidi

(
1 + n−1)

αi − βi
. (3.31)
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It follows from (3.30) that

∥∥∥a1
n+1 − a1

n

∥∥∥ + · · · +
∥∥∥aN

n+1 − aN
n

∥∥∥ ≤ σn

∥∥∥a1
n − a1

n−1

∥∥∥ + (1 − σn)k
∥∥∥a1

n − a1
n−1

∥∥∥
+ · · · + σn

∥∥∥aN
n − aN

n−1

∥∥∥ + (1 − σn)k
∥∥∥aN

n − aN
n−1

∥∥∥.
(3.32)

Set cn = ‖a1
n − a1

n−1‖ + · · · + ‖aN
n − aN

n−1‖ and kn = k + (1 − k)σn. From (3.32), we obtain

cn+1 ≤ kncn, ∀n = 0, 1, 2, . . . . (3.33)

Since lim supn→∞σn < 1, we have lim supn→∞kn < 1. Thus, it follows from Lemma 2.8 that
cn+1 → 0 and hence limn→∞‖ai

n+1 − ai
n‖ = 0. Therefore, {ai

n} is a Cauchy sequence and hence
there exists ai ∈ X such that ai

n → ai as n → ∞, for all i = 1, 2, . . . ,N. Next, we will show
that u1

n → u1 ∈ U1(aN) as n → ∞. Hence, it follows from (3.9) that {u1
n} is also a Cauchy

sequence. Thus there exists u1 ∈ X such that u1
n → u1 as n → ∞. Consider

d(u1, U1(aN)) = inf
{∥∥u1 − q

∥∥ : q ∈ U1(aN)
}

≤
∥∥∥u1 − u1

n

∥∥∥ + d
(
u1
n,U1(aN)

)

≤
∥∥∥u1 − u1

n

∥∥∥ +D
(
U1

(
aN
n

)
, U1(aN)

)

≤
∥∥∥u1 − u1

n

∥∥∥ + d1

∥∥∥aN
n − aN

∥∥∥ −→ 0

(3.34)

as n → ∞. Since U1(aN) is a closed set and d(u1, U1(aN)) = 0, we have u1 ∈ U1(aN). By
continuing the above process, there exist u2 ∈ U2(aN−1), . . . , uN ∈ UN(a1) such that u2

n →
u2, . . . , u

N
n → uN as n → ∞. Hence, by (3.8), we obtain

ai = R
Hi(·,·)
Mi,λi

[Hi(Ai(ai), Bi(ai)) − λiSi(ai, ui)]. (3.35)

Therefore, it follows from Theorem 3.1 that a1, . . . , aN is a solution of problem (3.1).
Setting N = 2 in Theorem 3.3, we have the following result.

Corollary 3.5. Let X be q-uniformly smooth real Banach spaces. Let Ai, Bi : X → X be singled
valued operators, Hi : X × X → X a single-valued operator such that H(Ai, Bi) is αi-strongly
accretive with respect to Ai, βi-relaxed accretive with respect to Bi and αi > βi and suppose that Mi :
X → 2X is an Hi(·, ·)-accretive set-valued mapping and Ui : X → C(X) contraction set-valued
mapping with 0 ≤ Li < 1 and nonempty values, for all i = 1, 2. Assume thatHi(Ai, Bi) is ri-Lipschitz
continuous with respect to Ai and ti-Lipschitz continuous with respect to Bi, Si : X × X → X is
li-Lipschitz continuous with respect to its first argument and mi-Lipschitz continuous with respect
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to its second argument, S1(·, y) is s1-strongly accretive with respect to H1(A1, B1), and S2(x, ·) is
s2-strongly accretive with respect toH2(A2, B2), for all i = 1, 2. If

q

√
(ri + ti)q − qλisi + cq,iλ

q

i l
q

i

αi − βi
+

λimi

αi − βi
< 1, (3.36)

for all i ∈ {1, 2}, then problem (3.2) has a solution a1, a2 ∈ X, u1 ∈ U1(a2), u2 ∈ U2(a1).

Setting N = 1 in Theorem 3.3, we have the following result.

Corollary 3.6. Let X be q-uniformly smooth real Banach spaces. Let A,B : X → X be two singled
valued operators,H : X×X → X a single-valued operator such thatH(A,B) is α-strongly accretive
with respect to A, β-relaxed accretive with respect to B, and α > β and suppose that M : X → 2X

is an H(·, ·)-accretive set-valued mapping, U : X → C(X) is contraction set-valued mapping with
0 ≤ L < 1 and nonempty values. Assume that H(A,B) is r-Lipschitz continuous with respect to
A and t-Lipschitz continuous with respect to B, S : X × X → X is l-Lipschitz continuous with
respect to its first argument and m-Lipschitz continuous with respect to its second argument, S(·, y)
is s-strongly accretive with respect toH(A,B). If

q

√
(r + t)q − qλs + cq, λqlq

α − β
+

λm

α − β
< 1, (3.37)

then problem (3.3) has a solution a ∈ X and u ∈ U(a).

Acknowledgments

The first author would like to thank the Office of the Higher Education Commission, Thai-
land, financial support under Grant CHE-Ph.D-THA-SUP/191/2551, Thailand. Moreover,
the second author would like to thank the Thailand Research Fund for financial support
under Grant BRG5280016.

References

[1] A. Hassouni and A. Moudafi, “A perturbed algorithm for variational inclusions,” Journal of
Mathematical Analysis and Applications, vol. 185, no. 3, pp. 706–712, 1994.

[2] S. Adly, “Perturbed algorithms and sensitivity analysis for a general class of variational inclusions,”
Journal of Mathematical Analysis and Applications, vol. 201, no. 2, pp. 609–630, 1996.

[3] X. P. Ding, “Perturbed proximal point algorithms for generalized quasivariational inclusions,” Journal
of Mathematical Analysis and Applications, vol. 210, no. 1, pp. 88–101, 1997.

[4] K. R. Kazmi, “Mann and Ishikawa type perturbed iterative algorithms for generalized quasivaria-
tional inclusions,” Journal of Mathematical Analysis and Applications, vol. 209, no. 2, pp. 572–584, 1997.

[5] Q. H. Ansari and J.-C. Yao, “A fixed point theorem and its applications to a system of variational
inequalities,” Bulletin of the Australian Mathematical Society, vol. 59, no. 3, pp. 433–442, 1999.

[6] Q. H. Ansari, S. Schaible, and J. C. Yao, “System of vector equilibrium problems and its applications,”
Journal of Optimization Theory and Applications, vol. 107, no. 3, pp. 547–557, 2000.

[7] S. Plubtieng and K. Sombut, “Weak convergence theorems for a system of mixed equilibrium
problems and nonspreading mappings in a Hilbert space,” Journal of Inequalities and Applications, vol.
2010, Article ID 246237, 12 pages, 2010.



Journal of Applied Mathematics 15

[8] S. Plubtieng andK. Sitthithakerngkiet, “On the existence result for system of generalized strong vector
quasiequilibrium problems,” Fixed Point Theory and Applications, vol. 2011, Article ID 475121, 9 pages,
2011.

[9] S. Plubtieng and T. Thammathiwat, “Existence of solutions of systems of generalized implicit vector
quasi-equilibrium problems in G-convex spaces,” Computers & Mathematics with Applications, vol. 62,
no. 1, pp. 124–130, 2011.

[10] R. U. Verma, “A-monotonicity and applications to nonlinear variational inclusion problems,” Journal
of Applied Mathematics and Stochastic Analysis, no. 2, pp. 193–195, 2004.

[11] W.-Y. Yan, Y.-P. Fang, and N.-J. Huang, “A new system of set-valued variational inclusions with H-
monotone operators,”Mathematical Inequalities & Applications, vol. 8, no. 3, pp. 537–546, 2005.

[12] S. Plubtieng and W. Sriprad, “A viscosity approximation method for finding common solutions of
variational inclusions, equilibrium problems, and fixed point problems in Hilbert spaces,” Fixed Point
Theory and Applications, vol. 2009, Article ID 567147, 20 pages, 2009.

[13] R. U. Verma, “General nonlinear variational inclusion problems involving A-monotone mappings,”
Applied Mathematics Letters, vol. 19, no. 9, pp. 960–963, 2006.

[14] Y. J. Cho, H.-Y. Lan, and R. U. Verma, “Nonlinear relaxed cocoercive variational inclusions involving
(A, η)-accretive mappings in Banach spaces,” Computers & Mathematics with Applications, vol. 51, no.
9-10, pp. 1529–1538, 2006.

[15] R. U. Verma, “Approximation solvability of a class of nonlinear set-valued variational inclusions
involving (A, η)-monotone mappings,” Journal of Mathematical Analysis and Applications, vol. 337, no.
2, pp. 969–975, 2008.

[16] Y.-Z. Zou and N.-J. Huang, “H(·, ·)-accretive operator with an application for solving variational
inclusions in Banach spaces,” Applied Mathematics and Computation, vol. 204, no. 2, pp. 809–816, 2008.

[17] Y. Z. Zou andN. J. Huang, “A new system of variational inclusions involvingH(·, ·)-accretive operator
in Banach spaces,” Applied Mathematics and Computation, vol. 212, pp. 135–144, 2009.

[18] H. K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis. Theory, Methods &
Applications, vol. 16, no. 12, pp. 1127–1138, 1991.

[19] Y.-P. Fang, N.-J. Huang, and H. B. Thompson, “A new system of variational inclusions with (H,η)-
monotone operators in Hilbert spaces,” Computers &Mathematics with Applications, vol. 49, no. 2-3, pp.
365–374, 2005.

[20] S. B. Nadler,, “Multi-valued contractionmappings,” Pacific Journal of Mathematics, vol. 30, pp. 475–488,
1969.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


