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We present preconditioned generalized accelerated overrelaxation methods for solving weighted
linear least square problems. We compare the spectral radii of the iteration matrices of the
preconditioned and the original methods. The comparison results show that the preconditioned
GAOR methods converge faster than the GAOR method whenever the GAOR method is
convergent. Finally, we give a numerical example to confirm our theoretical results.

1. Introduction

Consider the weighted linear least squares problem

min
x∈Rn

(Ax − b)TW−1(Ax − b), (1.1)

where W is the variance-covariance matrix. The problem has many scientific applications. A
typical source is parameter estimation in mathematical modeling.

This problem has been discussed in many books and articles. In order to solve it, one
has to solve a nonsingular linear system as

Hy = f, (1.2)
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where

H =
(
I − B1 U
C I − B2

)
(1.3)

is an invertible matrix with

B1 =
(
bij

)
p×p, B2 =

(
bij

)
(n−p)×(n−p), C =

(
cij

)
(n−p)×p, U =

(
uij

)
p×(n−p). (1.4)

Yuan proposed a generalized SOR (GSOR) method to solve linear system (1) in [1];
afterwards, Yuan and Jin [2] established a generalized AOR (GAOR) method to solve linear
system (1). In [3, 4], authors studied the convergence of the GAOR method for solving
the linear system Hy = f . In [3], authors studied the convergence of the GAOR method
when the coefficient matrices are consistently ordered matrices and gave the regions of
convergence. In [4], authors studied the convergence of the GAOR method for diagonally
dominant coefficient matrices and gave the regions of convergence.

In order to solve the linear system (1.2) using the GAOR method, we split H as

H = I −
(

0 0
−C 0

)
−
(
B1 −U
0 B2

)
. (1.5)

Then, for ω/= 0, one GAOR method can be defined by

y(k+1) = Lr,ωy
(k) +ωg, k = 0, 1, 2, . . . , (1.6)

where

Lr,ω =
(

I 0
rC I

)−1[
(1 −ω)I + (ω − r)

(
0 0
−C 0

)
+ω

(
B1 −U
0 B2

)]

=
(

(1 −ω)I +ωB1 −ωU
ω(r − 1)C −ωrCB1 (1 −ω)I +ωB2 +ωrCU

) (1.7)

is the iteration matrix and

g =
(

I 0
−rC I

)
f. (1.8)

In order to decrease the spectral radius of Lr,ω, an effective method is to precondition
the linear system (1.2), namely,

PH =
(
I − B∗

1 U∗

C∗ I − B∗
2

)
, (1.9)
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then the preconditioned GAOR method can be defined by

y(k+1) = L∗
r,ωy

(k) +ωg∗, k = 0, 1, 2, . . . , (1.10)

where

L∗
r,ω =

(
(1 −ω)I +ωB∗

1 −ωU∗

ω(1 − r)C∗ −ωrC∗B∗
1 (1 −ω)I +ωB∗

2 +ωrC∗U∗

)
,

g∗ =
(

I 0
−rC∗ I

)
Pf.

(1.11)

In [5], authors presented three kinds of preconditioners for preconditioned modified
accelerated overrelaxation method to solve systems of linear equations. They showed that the
convergence rate of the preconditioned modified accelerated overrelaxation method is better
than that of the original method, whenever the original method is convergent.

This paper is organized as follows. In Section 2, we give some important definition
and the known results as the preliminaries of the paper. In Section 3, we propose three
preconditioners and give the comparison theorems between the preconditioned and original
methods. These results show that the preconditioned GAOR methods converge faster than
the GAOR method whenever the GAOR method is convergent. In Section 4, we give an
example to confirm our theoretical results.

2. Preliminaries

We need the following definition and results.

Definition 2.1. LetA = (aij)n×n and B = (bij)n×n. We sayA ≥ B if aij ≥ bij for all i, j = 1, 2, . . . , n.
This definition can be carried over to vectors by identifying them with n × 1 matrices.
In this paper, ρ(·) denotes the spectral radius of a matrix.

Lemma 2.2 (see [6]). Let A ∈ Rn×n be nonnegative and irreducible. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A);

(ii) for ρ(A), there corresponds an eigenvector x > 0.

Lemma 2.3 (see [7]). Let A ∈ Rn×n be nonnegative and irreducible. If

0/=αx ≤ Ax ≤ βx, αx /=Ax, Ax/= βx, (2.1)

for some nonnegative vector x, then α < ρ(A) < β and x is a positive vector.

3. Comparison Results

We consider the preconditioned linear system

H̃y = f̃ , (3.1)
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where H̃ = (I + S̃)H and f̃ = (I + S̃)f with

S̃ =
(
S 0
0 0

)
, (3.2)

S is a p × p matrix with 1 < p < n.
We take S as follows:

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α2b12 · · · 0 0

β2b21 0
. . . 0 0

...
. . .

...
. . .

...

0 0
. . . 0 αpbp−1,p

0 0 · · · βpbp,p−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S2 =

⎛
⎜⎜⎜⎝

0 α2b12 · · · αpb1p
β2b21 0 · · · 0
...

...
. . .

...
βpbp1 0 · · · 0

⎞
⎟⎟⎟⎠. (3.3)

Now, we obtain two preconditioned linear systems with coefficient matrices

H̃i =
(
I − [B1 − Si(I − B1)] (I + Si)U

C I − B2

)
, for i = 1, 2, (3.4)

where

B1 − S1(I − B1)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

b11 + α2b21b12 · · · b1p + α2b2pb12
b21 + α3b23b31 − β2b21(1 − b11) · · · b2p + β2b1pb21 + α3b3pb23

...
...

...
bp−1,1 + βp−1bp−1,p−2bp−2,1+αpbp−1,pbp1 · · · bp−1,p + βp−1bp−1,p−2bp−2,p+αpbp−2,pbp−1,p−2

bp1 + βpbp−1,1bp,p−1 · · · bpp + βpbp,p−1bp−1,p

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B1 − S2(I − B1)

=

⎛
⎜⎜⎜⎝

b11 + α2b12b21 + · · · + αpb1pbp1 · · · b1p + α2b12b2p + · · · + αpb1p
(
1 − bpp

)
b21 − β2b21(1 − b11) · · · b2p + β2b21b1p

...
. . .

...
bp1 − βpbp1(1 − b11) · · · bpp + βpbp1b1p

⎞
⎟⎟⎟⎠.

(3.5)

We split H̃i (i = 1, 2) as

H̃i = I −
(

0 0
−C 0

)
−
(
[B1 − Si(I − B1)] −(I + Si)U

0 B2

)
, for i = 1, 2, (3.6)
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then the preconditioned GAOR methods for solving (3.1) are defined as follows

y(k+1) = L
(i)
r,ωy

(k) +ωg̃, k = 0, 1, 2, . . . , (3.7)

where

L
(i)
r,ω =

(
(1 −ω)I +ω

[
B1 − Si

(
I − B 1

)] −ω(I + Si)U
ω(r − 1)C −ωrC[B1 − Si(I − B1)] (1 −ω)I +ωB2 +ωrC(I + Si)U

)
(3.8)

are iteration matrices and

g̃ =
(

I 0
−rC I

)
f̃ . (3.9)

Now,we give comparison results between the preconditioned GAORmethods defined
by (3.7) and the corresponding GAOR method defined by (1.6).

Theorem 3.1. Let Lr,ω, L
(1)
r,ω be the iteration matrices associated with the GAOR and preconditioned

GAORmethods, respectively. If the matrixH in (1.2) is irreducible withC ≤ 0,U ≤ 0,B1 ≥ 0,B2 ≥ 0,
0 < ω ≤ 1, 0 ≤ r < 1, bi,i+1 > 0, bi+1,i > 0 for some i ∈ {2, . . . , p}, when 0 ≤ bii < 1 (i ∈ {2, . . . , p}),

0 < αi <
bi−1,i−2bi−2,i + bi−1,i(1 − bi−2,i−2)

bi−1,i−2[(1 − bii)(1 − bi−2,i−2) − bi,i−2bi−2,i]
for i ∈ {

3, . . . , p
}
, α2 <

1
1 − b22

,

0 < βi <
bi,i−1(1 − bi+1,i+1) + bi−1,ibi+1,i−1

bi,i−1[(1−bi−1,i−1)(1−bi+1,i+1)−bi−1,i+1bi+1,i−1] for i ∈ {
2, . . . , p − 1

}
, βp <

1
1 − bpp

,

(3.10)

or when bii ≥ 1, αi > 0, βi > 0 (i ∈ {2, . . . , p}), then either

ρ
(
L
(1)
r,ω

)
< ρ(Lr,ω) < 1 (3.11)

or

ρ
(
L
(1)
r,ω

)
> ρ(Lr,ω) > 1. (3.12)

Proof. By direct operation, we have

Lr,ω =
(
(1 −ω)I +ωB1 −ωU
−ω(1 − r)C (1 −ω)I +ωB2

)
+ωr

(
0 0

−CB1 CU

)
. (3.13)
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Since 0 < ω ≤ 1, 0 ≤ r < 1, C ≤ 0, U ≤ 0, B1 ≥ 0, B2 ≥ 0, then

(
0 0

−CB1 CU

)
≥ 0 (3.14)

and Lr,ω is nonnegative. Since H is irreducible, from (3.13), it is easy to see that the matrix
Lr,ω is nonnegative and irreducible.

Similarly, we can prove that the matrix L
(1)
r,ω is a nonnegative and irreducible matrix.

By Lemma 2.2, there is a positive vector x such that

Lr,ωx = λx, (3.15)

where λ = ρ(Lr,ω). Since the matrix H is nonsingular, λ/= 1. Hence, we get either λ > 1 or
λ < 1.

Now, from (3.15) and by the definitions of Lr,ω and L
(1)
r,ω, we have

L
(1)
r,ωx − λx =

(
L
(1)
r,ω − Lr,ω

)
x

=
( −ωS1(I − B1) −ωS1U
ωrCS1(I − B1) ωrCS1U

)
x

=
(

S1 0
−rCS1 0

)(−ω(I − B1) −ωU
0 0

)
x

=
(

S1 0
−rCS1 0

)( −ω(I − B1) −ωU
ω(r − 1)C −ωrCB1 −ωI +ωB2 +ωrCU

)
x

=
(

S1 0
−rCS1 0

)
(Lr,ω − I)x = (λ − 1)

(
S1 0

−rCS1 0

)
x.

(3.16)

Since bi,i+1 > 0, bi+1,i > 0 for some i ∈ {2, . . . , p}, when 0 ≤ bii < 1 (i ∈ {2, . . . , p}),

0 < αi <
bi−1,i−2bi−2,i + bi−1,i(1 − bi−2,i−2)

bi−1,i−2[(1 − bii)(1 − bi−2,i−2) − bi,i−2bi−2,i]
for i ∈ {

3, . . . , p
}
, α2 <

1
1 − b22

,

0 < βi <
bi,i−1(1 − bi+1,i+1) + bi−1,ibi+1,i−1

bi,i−1[(1−bi−1,i−1)(1−bi+1,i+1)−bi−1,i+1bi+1,i−1] for i ∈ {
2, . . . , p − 1

}
, βp <

1
1 − bpp

,

(3.17)
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or when bii ≥ 1, αi > 0, βi > 0 (i ∈ {2, . . . , p}), then S1 ≥ 0 and S1 /= 0. So we have
(

S1 0
−rCS1 0

)
x ≥

0,
(

S1 0
−rCS1 0

)
x /= 0.

If λ < 1, then L
(1)
r,ωx − λx ≤ 0, L(1)

r,ωx − λx /= 0.
By Lemma 2.3, the inequality (3.11) is proved.
If λ > 1, then L

(1)
r,ωx − λx ≥ 0, L(1)

r,ωx − λx /= 0.
By Lemma 2.3, the inequality (3.12) is proved.

Theorem 3.2. Let Lr,ω, L
(2)
r,ω be the iteration matrices associated with the GAOR and preconditioned

GAOR methods, respectively. If the matrix H in (1.2) is irreducible with C ≤ 0, U ≤ 0, B1 ≥ 0,
B2 ≥ 0, 0 < ω ≤ 1, 0 ≤ r < 1, bi,1 > 0, b1,i > 0 for some i ∈ {2, 3, . . . , p}, when 0 ≤ b11 < 1,
0 < βi < 1/(1 − b11),

0 < αi <
b1i + α2b12b2i + · · ·αi−1b1,i−1bi−1,i + αi+1b1,i+1bi+1,i + · · · + αpb1pbpi

b1i(1 − bii)
, i ∈ {

2, 3, . . . , p
}

(3.18)

or when b11 ≥ 1, αi > 0, βi > 0, i ∈ {2, 3, . . . , p}, then either

ρ
(
L
(2)
r,ω

)
< ρ(Lr,ω) < 1 (3.19)

or

ρ
(
L
(2)
r,ω

)
> ρ(Lr,ω) > 1. (3.20)

By the analogous proof of Theorem 3.1, we can prove Theorem 3.2.

4. Numerical Example

Now, we present an example to illustrate our theoretical results.

Example 4.1. The coefficient matrix H in (1.2) is given by

H =
(
I − B1 U
C I − B2

)
, (4.1)
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Table 1: The spectral radii of the GAOR and preconditioned GAOR iteration matrices.

n ω r p ρ ρ1 ρ2

5 0.95 0.7 3 0.1450 0.1384 0.1348
10 0.9 0.85 5 0.2782 0.2726 0.2695
15 0.95 0.8 5 0.3834 0.3808 0.3796
20 0.75 0.65 10 0.6350 0.6317 0.6297
25 0.7 0.55 8 0.7872 0.7861 0.7855
30 0.65 0.55 16 0.9145 0.9136 0.9130
40 0.6 0.5 10 1.1426 1.1433 1.1436
50 0.6 0.5 10 1.3668 1.3683 1.3691
Where ρ = ρ(Lr,ω), ρ1 = ρ(L(1)

r,ω), ρ2 = ρ(L(2)
r,ω).

where B1 = (b(1)ij )
p×p, B2 = (b(2)ij )

(n−p)×(n−p), C = (cij)(n−p)×p, and U = (uij)p×(n−p) with

b
(1)
ii =

1
10 × (i + 1)

, i = 1, 2, . . . , p,

b
(1)
ij =

1
30

− 1
30 × j + i

, i < j, i = 1, 2, . . . , p − 1, j = 2, . . . , p,

b
(1)
ij =

1
30

− 1
30 × (

i − j + 1
)
+ i

, i > j, i = 2, . . . , p, j = 1, 2, . . . , p − 1,

b
(2)
ii =

1
10 × (

p + i + 1
) , i = 1, 2, . . . , n − p,

b
(2)
ij =

1
30

− 1
30 × (

p + j
)
+ p + i

, i < j, i = 1, 2, . . . , n − p + 1, j = 2, . . . , n − p,

b
(2)
ij =

1
30

− 1
30 × (

i − j + 1
)
+ p + i

, i > j, i =, 2, . . . , n − p, j = 1, 2, . . . , n − p − 1,

cij =
1

30 × (
p + i − j + 1

)
+ p + i

− 1
30

, i = 1, 2, . . . , n − p, j = 1, 2, . . . , p,

uij =
1

30 × (
p + j

)
+ i

− 1
30

, i = 1, 2, . . . , p, j = 1, 2, . . . , n − p.

(4.2)

Table 1 displays the spectral radii of the corresponding iteration matrices with some
randomly chosen parameters r, ω, p. The randomly chosen parameters αi and βi satisfy the
conditions of two theorems.

From Table 1, we see that these results accord with Theorems 3.1-3.2.
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