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A mixed spectral CD-DY conjugate descent method for solving unconstrained optimization
problems is proposed, which combines the advantages of the spectral conjugate gradient method,
the CD method, and the DY method. Under the Wolfe line search, the proposed method can
generate a descent direction in each iteration, and the global convergence property can be also
guaranteed. Numerical results show that the new method is efficient and stationary compared to
the CD (Fletcher 1987) method, the DY (Dai and Yuan 1999) method, and the SFR (Du and Chen
2008) method; so it can be widely used in scientific computation.

1. Introduction

The purpose of this paper is to study the global convergence properties and practical com-
putational performance of a mixed spectral CD-DY conjugate gradient method for un-
constrained optimization without restarts, and with appropriate conditions.

Consider the following unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f : Rn → R is continuously differentiable and its gradient g(x) = ∇f(x) is available.
Generally, we use the iterative method to solve (1.1), and the iterative formula is given by

xk+1 = xk + αkdk, (1.2)
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where xk is the current iteration, αk is a positive scalar and called the step-size, which is
determined by some line search, dk is the search direction defined by

dk =

{
−gk, for k = 1,
−gk + βkdk−1, for k ≥ 2,

(1.3)

where gk = ∇f(xk) and βk is a scalar which determines the different conjugate gradient
methods [1, 2].

There are many kinds of iterative method that include the steepest descent method,
Newton method, and conjugate gradient method. The conjugate direction method is a
commonly used and effective method in optimization, and it only needs to use the
information of the first derivative. However, it overcomes the shortcoming of the steepest
descent method in the slow convergence and avoids the defects of Newton method in storage
and computing the second derivative.

The original CD method was proposed by Fletcher [3], in which βk is defined by

βCDk = −
∥∥gk∥∥2

dT
k−1gk−1

, (1.4)

where ‖ · ‖ denotes the Euclidean norm of vectors. An important property of the CD method
is that the method in each iteration will produce a descent direction under the strong Wolfe
line search:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (1.5)

∣∣∣g(xk + αkdk)
Tdk

∣∣∣ ≤ −σgT
k dk, (1.6)

where 0 < δ < σ < 1. Dai and Yuan [4] first proposed the DY method, in which βk is defined
by

βk =

∥∥gk∥∥2

dT
k−1

(
gk − gk−1

) . (1.7)

Dai and Yuan [4] also strictly proved that the DYmethod in each iteration produces a descent
direction under the Wolfe line search (1.5) and

g(xk + αkdk)
Tdk ≥ σgT

k dk. (1.8)

Some good results about the CD method and DY method have also been reported in recent
years [5–11].

Quite recently, Birgin and Martinez [12] proposed a spectral conjugate gradient
method by combining conjugate gradient method and spectral gradient method. Unfortu-
nately, the spectral conjugate gradient method [12] cannot guarantee to generate descent
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directions. So, based on the FR formula, Zhang et al. [13] modified the FR method such that
the direction generated is always a descent direction. Based on the modified FR conjugate
gradient method [13], Du and Chen [14] proposed a new spectral conjugate gradient method:

dk =

{
−gk, for k = 1,
−θkgk + βFRk dk−1, for k ≥ 2,

(1.9)

where

βFRk =

∥∥gk∥∥2

∥∥gk−1∥∥2
, θk =

dT
k

(
gk − gk−1

)
∥∥gk−1∥∥2

. (1.10)

And they proved the global convergence of the modified spectral FR method (In this paper,
we call it SFR method) with the mild conditions.

The observation of the above formula motivates us to construct a new formula; which
combines the advantage of the spectral gradient method, CD method, and DY method as
follows:

dk =

{
−gk, for k = 1,
−θkgk + βkdk−1, for k ≥ 2,

(1.11)

where βk is specified by

βk = βCDk +min
{
0, ϕk · βCDk

}
, (1.12)

θk = 1 − gT
k
dk−1

gT
k−1dk−1

, (1.13)

ϕk = − gT
k
dk−1

dT
k−1

(
gk − gk−1

) . (1.14)

And under some mild conditions, we give the global convergence of the mixed spectral CD-
DY conjugate gradient method with the Wolfe line search.

This paper is organized as follows. In Section 2, we propose the corresponding
algorithm and give some assumptions and lemmas, which are usually used in the proof of the
global convergence properties of nonlinear conjugate gradient methods. In Section 3, global
convergence analysis is provided with suitable conditions. Preliminary numerical results are
presented in Section 4.
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2. Algorithm and Lemmas

In order to establish the global convergence of the proposed method, we need the following
assumption on objective function, which have been used often in the literature to analyze the
global convergence of nonlinear conjugate gradient methods with inexact line search.

Assumption 2.1. (i) The level set Ω = {x | f(x) ≤ f(x1)} is bounded, where x1 is the starting
point.

(ii) In some neighborhoodN ofΩ, the objective function is continuously differentiable,
and its gradient is Lipchitz continuous, that is, there exists a constant L > 0 such that

∥∥g(x) − g
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ N. (2.1)

Now we give the mixed spectral CD-DY conjugate gradient method as follows.

Algorithm 2.2.

Step 1. Data x1 ∈ Rn, ε ≥ 0. Set d1 = −g1; if ‖g1‖ ≤ ε, then stop.

Step 2. Compute αk by the strong Wolfe line search (1.5) and (1.8).

Step 3. Let xk+1 = xk + αkdk,gk+1 = g(xk+1); if ‖gk+1‖ ≤ ε, then stop.

Step 4. Compute βk+1 by (1.12), and generate dk+1 by (1.11).

Step 5. Set k = k + 1; go to Step 2.

The following lemma shows that Algorithm 2.2 produces a descent direction in each
iteration with the Wolfe line search.

Lemma 2.3. Let the sequences {gk} and {dk} be generated by Algorithm 2.2, and let the step-size αk

be determined by the Wolfe line search (1.5) and (1.8), then

gT
k dk < 0. (2.2)

Proof. The conclusion can be proved by induction. Since gT
1 d1 = −‖g1‖2, the conclusion holds

for k = 1. Now we assume that the conclusion is true for k − 1, k ≥ 2. Then from (1.8), we
have

dT
k−1

(
gk − gk−1

) ≥ (σ − 1)gT
k−1dk−1 > 0. (2.3)

If gT
k
dk−1 ≤ 0, then from (1.14) and (2.3), we have βk = βCD

k
.
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From (1.4), (1.11), and (1.13), we have

gT
k dk = −

(
1 − gT

k dk−1

gT
k−1dk−1

)
· ∥∥gk∥∥2 −

∥∥gk∥∥2

gT
k−1dk−1

· gT
k dk−1 = −∥∥gk∥∥2

< 0. (2.4)

If gT
k
dk−1 > 0, then from (1.14) and (2.3), we have βk = βCD

k
+ ϕk · βCDk = βDY

k
.

From (1.11), (1.7), and (1.13), we have

gT
k dk = −θk ·

∥∥gk∥∥2 + βDY
k · gT

k dk−1

= βDY
k ·

[
−θk · dT

k−1
(
gk − gk−1

)
+ gT

k dk−1
]

= βDY
k ·

[
gT
k−1dk−1 +

gT
k
dk−1

gT
k−1dk−1

· dT
k−1

(
gk − gk−1

)]

≤ βDY
k · gT

k−1dk−1 < 0.

(2.5)

From the above inequality (2.4) and (2.5), we obtain that the conclusion holds for k.

The conclusion of the following lemma, often called the Zoutendijk condition, is used
to prove the global convergence properties of nonlinear conjugate gradient methods. It was
originally given by Zoutendijk [15].

Lemma 2.4 (see [15]). Suppose that Assumption 2.1 holds. Let the sequences {gk} and {dk} be
generated by Algorithm 2.2, and let the step-size αk be determined by the Wolfe line search (1.5) and
(1.8), and Lemma 2.3 holds. Then

∑
k≥1

(
gTk dk

)2
‖dk‖2

< +∞. (2.6)

Lemma 2.5. Let the sequences {gk} and {dk} be generated by Algorithm 2.2, and let the step-size αk

be determined by the Wolfe line search (1.5) and (1.8), and Lemma 2.3 holds. Then

βk ≤ gT
k dk

gT
k−1dk−1

. (2.7)

Proof. If gT
k
dk−1 ≤ 0, then from Lemma 2.3, we have βk = βCD

k
. From (1.11), (1.4), and (1.13),

we have

gT
k dk = −

(
1 − gT

k dk−1

gT
k−1dk−1

)
· ∥∥gk∥∥2 + βCDk · gT

k dk−1

= βCDk ·
(
gT
k−1dk−1 − gT

k dk−1
)
+ βCDk · gT

k dk−1

= βCDk · gT
k−1dk−1.

(2.8)
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From the above equation, we have

βCDk =
gT
k dk

gT
k−1dk−1

. (2.9)

If gT
k dk−1 > 0, from (2.5), we have

βDY
k ≤ gT

k dk

gT
k−1dk−1

. (2.10)

From (1.12), (2.9), and (2.10), we obtain that the conclusion (2.7) holds.

3. Global Convergence Property

The following theorem proves the global convergence of the mixed spectral CD-DY conjugate
gradient method with the Wolfe line search.

Theorem 3.1. Suppose that Assumption 2.1 holds. Let the sequences {gk} and {dk} be generated by
Algorithm 2.2, and let the step-size αk be determined by the Wolfe line search (1.5) and (1.8), and
Lemma 2.3 holds. Then

lim inf
k→+∞

∥∥gk∥∥ = 0. (3.1)

Proof. Suppose by contradiction that there exists a positive constant ρ > 0, such that

∥∥gk∥∥ ≥ ρ (3.2)

holds for all k ≥ 1.

From (1.11), we have dk + θkgk = βkdk−1, and by squaring it, we get

‖dk‖2 = β2k‖dk−1‖2 − 2θkgT
k dk − θ2

k

∥∥gk∥∥2
. (3.3)

From the above equation and Lemma 2.5, we have

‖dk‖2 ≤
(

gT
k dk

gT
k−1dk−1

)2

· ‖dk−1‖2 − 2θkgT
k dk − θ2

k

∥∥gk∥∥2
. (3.4)
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Dividing the above inequality by (gT
k dk)

2, we have

‖dk‖2(
gT
k dk

)2 ≤ ‖dk−1‖2(
gT
k−1dk−1

)2 − 2θk
gT
k dk

− θ2
k ·

∥∥gk∥∥2

(
gT
k dk

)2
=

‖dk−1‖2(
gT
k−1dk−1

)2 −
(
θk ·

∥∥gk∥∥
gT
k dk

+
1∥∥gk∥∥

)2

+
1∥∥gk∥∥2

≤ ‖dk−1‖2(
gT
k−1dk−1

)2 +
1∥∥gk∥∥2

.

(3.5)

Using (3.5) recursively and noting that ‖d1‖2 = −gT
1 d1 = ‖g1‖2, we get

‖dk‖2(
gT
k dk

)2 ≤
k∑
i=1

1∥∥gi∥∥2
. (3.6)

Then from (3.2) and (3.6), we have

(
gT
k
dk

)2
‖dk‖2

≥ ρ2

k
, (3.7)

which indicates

∑
k≥1

1∥∥gk∥∥2
= +∞. (3.8)

The above equation contradicts the conclusion of Lemma 2.4. Therefore, the conclusion (3.1)
holds.

4. Numerical Experiments

In this section, we report some numerical results. We usedMATLAB 7.0 to test some problems
that are from [16] and compare the performance of the mixed spectral CD-DY method
(Algorithm 2.2) with the CD method, DY method, and SFR method. The global convergence
of the CD method has not still been proved under the Wolfe line search, so our line search
subroutine computes αk such that the strong Wolfe line search conditions hold with δ = 0.01
and σ = 0.1. We also use the condition ||gk|| ≤ 10−6 or It-max > 9999 as the stopping criterion.
It-max denotes the maximal number of iterations.

The numerical results of our tests are reported in the following table. The first column
“Problem” represents the name of the tested problem in [16]. “Dim” denotes the dimension
of the tested problem. The detailed numerical results are listed in the form NI/NF/NG,
where NI, NF, and NG denote the number of iterations, function evaluations, and gradient
evaluations respectively. If the limit of 9999 function evaluations was exceeded, the run was
stopped; this is indicated by “—”.
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In order to rank the average performance of all above methods, one can compute the
total number of function and gradient evaluation by the formula

Ntotal = NF + l ∗NG, (4.1)

where l is some integer. According to the results on automatic differentiation [17, 18], the
value of l can be set to 5

Ntotal = NF + 5 ∗NG. (4.2)

That is to say, one gradient evaluation is equivalent to five function evaluations if automatic
differentiation is used.

By making use of (4.2), we compare the mixed spectral CD-DY method as follows: for
the ith problem, compute the total number of function evaluations and gradient evaluations
required by the CD method, the DY method, the SFR method, and the mixed spectral CD-
DY method by formula (4.2), and denote them by Ntotal,i(CD), Ntotal,i(DY), Ntotal,i(SFR), and
Ntotal,i(CD-DY); then calculate the ratios:

γi(CD) =
Ntotal,i(CD)

Ntotal,i(CD-DY)
,

γi(DY) =
Ntotal,i(DY)

Ntotal,i(CD-DY)
,

γi(SFR) =
Ntotal,i(SFR)

Ntotal,i(CD-DY)
.

(4.3)

From Table 1, we know that some problems are not run by somemethods. So, if the i0th
problem is not run by the given method, we use a constant τ = max{γi(the given method) |
i ∈ S1} instead of γi0(the given method), where S1 denotes the set of test problems, which can
be run by the given method.

The geometric mean of these ratios for the CD method, the DY method and SFR
method, over all the test problems is defined by

γ(CD) =

(∏
i∈S

γi(CD)

)1/|S|
,

γ(DY) =

(∏
i∈S

γi(DY)

)1/|S|
,

γ(SFR) =

(∏
i∈S

γi(SFR)

)1/|S|
,

(4.4)

where S denotes the set of the test problems and |S| denotes the number of elements in S. One
advantage of the above rule is that, the comparison is relative and hence is not be dominated a
few problems for which themethod requires a great deal of function evaluations and gradient
functions.
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Table 1: The performance of the CD method, DY method, CD-DY method, and SFR method.

Problem Dim CD DY CD-DY SFR

ROSE 2 88/250/223 64/190/172 60/188/168 64/190/172
FROTH 2 — 42/168/138 38/151/123 —
BADSCP 2 682/1885/1637 — 2704/6550/6438 —
BADSCB 2 272/941/800 — 726/2051/1786 —
BEALE 2 73/177/155 75/186/164 68/175/145 75/186/164
JENSAM 2 (m = 6) 17/61/43 10/49/26 26/80/57 15/48/32
HELIX 3 56/157/132 37/118/98 50/145/120 37/118/98
BRAD 3 75/224/189 66/208/177 37/120/98 66/208/177
SING 4 454/1074/1009 2286/4555/4545 850/1894/1863 1476/2901/2891
WOOD 4 184/438/399 100/291/240 139/396/337 100/291/240
KOWOSB 4 173/516/449 536/1449/1271 144/421/365 504/1386/1211
BD 4 43/169/132 39/158/121 28/144/113 37/152/116
WATSON 5 89/279/239 127/348/299 158/438/373 128/352/304
BIGGS 6 200/579/509 294/824/712 236/680/599 288/812/703
OSB2 11 3243/5413/5398 7006/11059/11048 584/1262/1226 7013/11102/11091

VAEDIM 5 6/57/38 6/57/38 6/57/38 6/57/38
10 7/81/52 7/81/52 7/81/52 7/81/52

PEN1 50 2209/2565/2536 1727/2117/2043 116/221/190 1727/2117/2043
100 62/223/182 31/157/121 31/167/131 31/157/121

TRIG 100 — 305/399/398 88/145/144 305/399/398
500 — 343/424/423 109/189/188 344/427/425

ROSEX 500 92/267/238 68/207/186 65/205/182 68/207/186
1000 98/287/255 68/207/186 65/205/182 68/207/186

SINGX 100 682/1593/1517 1488/3139/3073 1159/2366/2614 2411/5326/5084
1000 511/1245/1135 2092/4451/4321 1374/3104/3064 5213/10042/10032

BV 500 1950/2543/2542 4796/6823/6822 1311/2131/2130 4784/6793/6792
1000 632/833/832 414/449/448 414/449/448 414/449/448

IE 500 7/15/8 7/15/8 7/15/8 7/15/8
1000 7/15/8 7/15/8 7/15/8 7/15/8

TRID 500 52/112/107 49/106/101 43/94/89 49/106/101
1000 70/149/145 64/137/133 55/119/115 64/137/133

Table 2: Relative efficiency of the CD, DY, SFR, and the mixed spectral CD-DY methods.

CD DY SFR CD-DY
1.3956 1.6092 1.6580 1

According to the above rule, it is clear that γ(CD-DY) = 1. From Table 2, we can
see that average performance of the mixed spectral CD-DY conjugate gradient method
(Algorithm 2.2) works the best. So, the mixed spectral CD-DY conjugate gradient method
has some practical values.
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