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Based on the relaxed extragradient method and viscosity method, we introduce a new iterative
method for finding a common element of solution of equilibrium problems, the solution set of
a general system of variational inequalities, and the set of fixed points of a countable family of
nonexpansive mappings in a real Hilbert space. Furthermore, we prove the strong convergence
theorem of the studied iterative method. The results of this paper extend and improve the results
of Ceng et al., (2008) , W. Kumam and P. Kumam, (2009) , Yao et al., (2010) and many others.

1. Introduction

Let H be a real Hilbert space with the inner product (-, -) and the norm || - ||. Let C be a closed
convex subset of H. Let F be a bifunction of C x C into R, where R is the set of real numbers.
The equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) >0, VYyeC (1.1)

The set of solutions of (1.1) is denoted by EP(F). The equilibrium problems covers, as
special cases, monotone inclusion problems, saddle point problems, minimization problems,
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optimization problems, variational inequality problems, Nash equilibria in noncooperative
games, and various forms of feasibility problems (see [1-4] and the references therein).

A mapping A : C — H is called a-inverse-strongly monotone if there exists a positive
real number a such that

(Au- Av,u—-v) > al|Au- Av|*, VYu,veC. (1.2)

It is obvious that any a-inverse-strongly monotone mapping A is monotone and Lipschitz
continuous. A mapping T : C — C is said to be nonexpansive if

ITx =Tyl < [lx -y

, Yx,yeC. (1.3)

We denote by F(T) the set of fixed points of T. Recently, Wang and Guo [5] introduced an
iterative scheme for a countable family of nonexpansive mappings.

Let C be a nonempty closed convex subset of a real Hilbert space H. For a given
nonlinear operator A : C — H, consider the following variational inequality problem of
finding x* € C such that

(Ax*,x—x*) >0, «xe€eC. (1.4)

The set of solutions of the variational inequality (1.4) is denoted by VI(C, A) (see [6-9] and
the references therein).

Let A,B : C — H be two mappings. Consider the following problem of finding
(x*,y*) € C x C such that

(My* +x*—y*,x-x") >0, VYxeC,

1.5
(uUBx*+y* —x*,x-y*) >0, VxeC, 1)

which is called a general system of variational inequalities, where A > 0 and y > 0 are two
constants. The set of solutions of (1.5) is denoted by GSVI(A, B, and C). In particular, if
A = B, then problem (1.5) reduces to finding (x*, y*) € C x C such that

(My* +x* —y*,x-x*)>0, VxeC,

1.6
(MAX* +y* - x*, x-y*) >0, VxeC, 16)

which is defined by Verma [7] (see also [10]) and is called the new system of variational
inequalities. Further, if we add up the requirement that x* = y*, then problem (1.6) reduces
to the classical variational inequality problem (1.4). Recently, Yao et al. [11] presented system
of variational inequalities in Banach space. For solving problem (1.5), recently, Ceng et al. [12]
introduced and studied a relaxed extragradient method. Based on the relaxed extragradient
method and the viscosity approximation method, W. Kumam and P. Kumam [13] constructed
a new viscosity-relaxed extragradient approximation method. Very recently, based on the
extragradient method, Yao et al. [14] proposed an iterative method for finding a common
element of the set of a general system of variational inequalities and the set of fixed points of
a strictly pseudocontractive mapping in a real Hilbert space.
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Motivated and inspired by the above works, in this paper, we introduce an iterative
method based on the extragradient method and viscosity method for finding a common
element of solution of equilibrium problems, the solution set of a general system of
variational inequalities, and the set of fixed points of a countable family of nonexpansive
mappings in a real Hilbert space. Furthermore, we prove the strong convergence theorem of
the proposed iterative method.

2. Preliminaries

Let C be a closed convex subset of H, and let T : C — C be nonexpansive such that F(T) # 0.
For all X € F(T) and all x € C, we have

llx = %* > ITx = TX|I* = |Tx = X||* = ||(Tx = x) + (x - %)||*

= |Tx - x|+ ||x = X||* + 2(Tx — x, x — X), @1
and hence
|ITx - x||* <2(x -Tx,x-X), VYxeF(T),VxeC. (2.2)
Remark 2.1. Let A be a-inverse-strongly monotone. For all x, 7 € C, 1 > 0, we have
a1z - T-da)y|* = = -yl* -2 Ax - Ay x-y) + Rl ax-ayl®

<l =y + AL - 2a) | Ax - Ay||*.

So, if A < 2a, then I — 1A is a nonexpansive mapping from C to H.

Recall that the (nearest point) projection Pc from H onto C assigns to each x € H the
unique point Pcx € C satisfying the property

[lx = Pex|| =r;1€iél||x—y||. (2.4)

The following characterizes the projection Pc.

Lemma 2.2. Given that x € H and y € C, then Pcx = y if and only if there holds the inequality
(x-y,y-z)>0 VzeC (2.5)

Lemma 2.3 (see [15]). Let H be a Hilbert space, C a closed convex subset of H, and T : C — Ca
nonexpansive mapping with F(T) #0. If {x,} is a sequence in C weakly converging to x € C and if
{(1 =T)x,} converges strongly to y, then(1 -T)x = y.

Lemma 2.4 (see [16]). Assume that {a,} is a sequence of nonnegative real numbers such that

Aps1 < (1 - Yn)an + 6nr Vn > 0, (26)
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where two sequences {y,} C (0,1) and {6,} satisfy

(1) X1 Yn = oo
(2) limsup, _,  6,/yn <0 or 371 164] < oo.

Then lim,, _, xct,, = 0.

Lemma 2.5 (see [12]). For given x*,y* € C, (x*,y*) is a solution of problem (1.5) if and only if x*
is a fixed point of the mapping G : C — C defined by

G(x) = Pc[Pc(x — uBx) — AAPc(x — uBx)], VxeC, (2.7)

where y* = Pc(x* — uBx™).

Note that the mapping G is nonexpansive provided that A € (0,2a) and u € (0,2p).
Throughout this paper, the set of fixed points of the mapping G is denoted by I'.

Lemma 2.6 (see [1]). Let C be a nonempty closed convex subset of H and F : C x C — R satisfy
following conditions:

(A1) F(x,x) =0,Yx € C;
(A2) F is monotone, that is, F(x,y) + F(y,x) <0, Vx,y € C;
(A3) limsup,_,,.F(tz+ (1-t) x,y) < F(x,y),Vx,y, z€ C;

(A4) for each x € C, F(x,-) is convex and lower semicontinuous.

Forx€Candr>0,set TF : H — C to be
TH(x) = {zeC:F(z,y)+%<y—z,z—x> >0, VyeC}. (2.8)

Then T} is well defined and the following holds:

(1) TF is single valued;
(2) TF is firmly nonexpansive [17], that is, for any x,y € E,

Thx-1y|| < (Thx =Ty, x - ) 29)

(3) F(T)) = EP(F);
(4) EP(F) is closed and convex.
By the proof of Lemma 5 in [2] (also see [3]), we have following lemma.
Lemma 2.7. Let C be a nonempty closed convex subset of a Hilbert space H and F : C x C — R be

a bifunction. Let x € C and ry, 1, € (0, 00). Then

T x = Tro x| < (Tl + llx]D).- (2.10)

r
1-2=
n
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3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mappings
A,B: C — H be a-inverse strongly monotone and p-inverse strongly monotone, respectively. Let F
be a bifunction from C x C to R satisfying (A1)-(A4) and {T,},., : C — C be a countable family of
nonexpansive mappings such that Q := (\>y F(T,)N EP(F)N T'#@. Let f : C — C be a contraction
with coefficient p € (0,1/2). Set po = 1. For given x € C arbitrarily, let the sequences {x,}, {yx},
{zn}, and {u,} be generated by

F(un,y) + rl(y—un,un—xn> >0, VyeC(C,

zn = Pc(un — pBuy),
Yn = anf(xn) + (1 — ay)Pc(zn — LAzy),

Xn+l = ﬁnxn + GnZ(ﬁi—l - ﬁi)Tiyn + (1 - ﬁn)(l —0p)Pc(z, — MAzy,),

i=1

(3.1)

where A € (0,2a), p € (0,2p), and sequences {a,} C [0,1], {f.} C [0,1], {o,} C [0,1], and
{ra) C (r,®), r >0, are such that
¢

(ii

) is strictly decreasing,

{
0 <liminf, ., ,p, <limsup, , _p. <1,

)
)
(iii) limy, gy =0and X7 a, = oo,
(iv) 0w > 1/2(1 = p), 524 10w = Ot] < o0,
(V) 524 I = ] < oo

Then the sequence {x,} generated by (3.1) converges strongly to x* = Pg - f(x*), and (x*,y*) isa
solution of the general system of variational inequalities (1.5), where y* = Pc(x* — uBx™).

Proof. The proof is divided into several steps.
Step 1. The sequence {x,} defined by (3.1) is bounded.
For each x* € Q, from Lemma 2.6, we have u,, = T, x, and hence
lltn = x*|| = Ty, % = Tp, X7 < [|20n — X7 (3.2)

Since f is a p-contraction mapping, using (2.3) and (3.2), we have

? = || Pe(un - pBuy) - Pe(x" - pBx")
< || (n = pBuy) = (x* = uBx)||*
< Nl = x|I? + p(p — 2p) | Butn — Bx"|? (3.3)
< floew = x|I* + p(p — 2p) | Bun — Bx"|?

2
< loen = x*|I°.

|2

1z~ y*
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Set v, = Pc(z, — LAz,). Since Pc is nonexpansive, from (2.3), we have

lon = 2| = || Pe(z0 - 1Az,) - Pe(y* - Aay") |

< lzn = y*||” + AL - 20) || Az, — Ay*| (3.4)
S E
Hence we get
[y = %"l = llonf (n) + (1 = @n)on - x7||

< | fen) =) + (1= @)1z~ v
< an (|| f(xn) = FEN|| + [ (™) = x7[]) + (1= an) [0 — x|
< (1= (1= p))llws = 'l + L") ]

(3.5)

From (3.1) and (3.3)-(3.5), we get

[[ns1 = 7| =

ﬁnxn + O'nZ(ﬂi—l - ﬂi)Tiyn + (1 - ﬁn)(l —0p)Up — X*
i=1

< ﬁn”xn - X*” + Onz (ﬁi—l - ﬂz) ”Tiyn - x*” + (1 - ﬂn)(l - Gn)llvn - X*”
i=1

< Bulln = 211+ 00 3 (Bt = B) [lyn = 2" [| + (1= Bu) (A = o) |z - |

i=1
< (1= 02 (1= Bu)) 120 = x*[| + 02 (1= Bu) [lya — || (3.6)
< (1 - Gn(l - ﬂn))“xn - x|
+ 0 (1= ) [(1 = an(1 = p))llxn = x"[| + @n| £ (x") = x*]]
< [1 - O'n(l _pn)an(l - P)] |2, — x|

1
- ou(1=p)an (1 p) T 1) -
<M,

where M = max{||x; —x*|| ,1/(1 - p)||f(x*) — x*||}. Hence, {x,} is bounded and therefore
{un}, {za}, {va}, and {y,} are also bounded.

Step 2. limy, ., oo ||Xp+1 — x4|| = 0. Since u,, = T, x, and u,—1 = T, ,x,-1, using Lemma 2.7, we
have

lun — wnall = 1Ty, 20 — T,y Xna |l

< ”Trnxn - Tr,,xn—lll + ||Tr,,xn—1 =T, Xn-1||

< ||xn - xn—l“ +

(lsn-all + ll2cn-11) (3.7)

1-n
.

1
< ”xn - xn—l” + ;|rn—1 - Tn|Lr
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where L = sup{||u,|| + |[x4]| : n=1,2,...}. From (3.1) and (3.7), it follows that

”Zn - Zn—l” = ”PC(I - #B)un - PC<I - //lB)un—l ”
< lun — up-l (3.8)

1
< ”xn - xn—l” + ;lrn—l - Tn|L'

From (3.1) and (3.8), we have

lyn = yna|| < anll f(xn) = f(xan) || + = @) IPc(I = AA)z, = Pc(I = LA) z, 4 ||
< anp“xn - xn—l” +(1- “n)”zn - Zn—l“

1
< anpllacn = xXp-a|l + (1 - an) <||xn = |+ e = rn|L> (3.9)

1
<(1-a,(1-p))llxn — xpall + (1 - an);|rn_1 — 14|L.

By definition of scheme (3.1), we have

Xn+l — Xp = ,Bn(xn - xn—l) + (,Bn - ﬂn—l)xn—l + Uni (ﬂi—l - ﬂl) (Tiyn - Tiyn—l)
i=1

n-1
+ (On - Gn—l)z (ﬂi—l - ﬁi)Tiyn—l + On (ﬁn—l - ﬁn)Tnyn—l
i=1

+ (1 - ﬂn)(l - Gn)[PC(Zn - )LAZn) - PC(Zn—l - )LAZn—l)]

- (1 - ﬂn—l) (1 - O-n—l)pC(zn—l - -)LAZn—l) + (1 - ﬁn) (1 - O'n)PC(Zn—l - )‘Azn—l)-
(3.10)

Thus, from (3.8)—(3.10),
||xn+1 - xn“ < ﬁn“xn - xn—l” + (ﬂn—l - ,Bn)“xn—ln + O'nZ(.Bi—l - ﬁl) ”Ti]/n - Ti]/n—l ”
i=1

n-1
+100 = 01| Y (Bi-t = I Tty || + 00 (Bt = Bo) | Tatrna |
i=1

+ (1 - ﬂn) (1= 0n)l|Pc(zn — MAzy) = Pc(zp1 — LAzy1) ||

+ |<1 - ﬂn)(l —0Op) = (1 - ﬁn—l)(l - on—l)lan(Zn—l —AAz, 1)

< ﬁn”xn - xn—]” + (ﬂn—l - ﬂn)”xn—ln + O'ni(,gi—l - ﬁl) ”]/n - ]/n—l”
i=1

n-1
+ 10w = 01l 25 (Bict = P I Ty [l + (B = B) [ Tuyna |
i=1
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+ (1= Bu) (X =020 = 2Znall + (Bu1 = Pn) (1 = 0u) [Pc(I = LA) zp 1 ||
+ (1= Bn-1)|0n = Opal[|Pc(I = LA) zp1 |
< ﬁn”xn - xn—l” + (,Bn—l - ,Bn)”xn—ln + O'n(l - ,Bn)

1
x [(1 —a,(1=p))lxn = xpall + (1 - an);lrn_l - rnlL]
n-1
+ o — Gn—1|Z(ﬁi—1 = Bi) || Tiyn1]|
i1

+ (,Bn—l - ﬂn) ”Tn]/n—l ” + (1 - .Bn) (1-o04) <||xn = Xp1l| + %|rn—1 - r"|L>
+ (Bu-1 = Pu)IPc(I = XA)zya || + |0 = Ot || Pe(I = LA)zp1 |
< [1 - O'n(l —ﬂn)an(l - P)] lloxn = xp-all + (ﬁn—l - ﬁ")M

n-1
+ %m,l — tulL + 0% = 0] D (Bict = Bi) M + (But — Pu) M
i=1
+ ((ﬂnfl _ﬂn) + |O'n - O'n71|)M
<[1-0.(1-Bn)an(1=p)]llxn — 1]l + %Irnq —ra|L

+3(Bu1 = Pu) M + 2|0, — 041|M,

(3.11)

where M = max{sup,,;[|xull, sup o1lITiynll, sup, ;|| Pc(I-AA)z,||}. Since {f,} is strictly
decreasing, we have X7, (B,-1 — fn) = p1 < oo. Further, by assumption conditions (iv)-(v),
we have

© (1]
Z{ st = 1l + 3(Bu = fu) M + 2/0, - crn_1|M} < 0. (3.12)

n=2

Thus, using Lemma 2.4, we have lim,, _, oo || X541 — x| = 0.

Step 3. limy, o ||xy — uu|| = 0.
For any x* € Q, it follows from Lemma 2.6 that

|l — x*||2 =T}, xy — Trnx*||2 <(Tp,xy — T X*, % — X*) = (Uy — X", Xy — X¥)

1 (3.13)
= 5 (It = 11+ len = I = 1t = ).



Journal of Applied Mathematics 9

From (2.3), (3.1)-(3.4), we can get

llym =2 |1* < ] £ () = x|| + (1= ay)|fo, - x|
< ap 1= a)(||za - v*||* + A - 200) || Az, — 2
+ (=) |z =y | + 41 - 2a)| ) G
< o f () = x|+ (1= @) ||z - |
< ay||f () = x|+ (1= ) = [
From (3.1), (3.3)-(3.4), and (3.13)-(3.14), it follows that
n 2
”xn+1 - x*”2 = pnxn + O'nZ(ﬂifl _ﬂi)Tiyn + (1 _ﬂn)(l - On)vn -x*
i=1
2

< Pullxn = x*|* + (1= Bo)

Z(ﬂzl Bi)Tiyn + (1 = 0n)v, -
2

S:Bnllxn X ” + (1 ﬂn)o'n Z(ﬂl 1 _ﬂz)T]/n

+ (1= Pu)(1 = 0n)llon — x ||
< Balln — x>+ (1 - ﬁn)on Z(p, L= B) || Ty = x*||° (3.15)

+ (1= fu) (1= on)llon - x*?
< Pullen = 2" + (1= ) Oullym = °|I* + (1= ) (1 = 0) |20 — ||
< Balln = %I + (1= )0 [(1 = )1t = 2" + x| f () = °]
+ (1= o) (1= o)ty — x|
< Jlw = 1+ (1= Bu) ot (|1 f (o) = 2| = 1w = 71
= (1= Bn) (1 = Outtn) [, — x1*

which implies that

(1 - ﬂn)(l — Onty) ||ty — xn||2 < (1o = x| + e = XD % = Xnea |

3.16
+ || f () —x*||2. (3.16)

Since {x,} is both bounded, using Step 2 and conditions (ii)—(iv), we conclude the result.
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Step 4. lim, ., ||Az, — Ay*|| =0and lim,_, o ||Bx, — Bx*|| =0.
Using (3.3), (3.14), and (3.15), we have

i = %1% < Bullcn = X7 + (1= Bu)Gullym = x|+ (1= B) (1 = o) |2 = ¥°I°
< Bullxn = x*|* + (1= Bu) 0w
x [anllf(xn) ~x|P+ (1~ txn)<||zn -y
+(1-B) A -0z -y
< Bullatn = x|+ (1= Bu)on(l — ) A(A = 20) || Az, — Ay

24\ -20) |Az, — Ay*

)l

(3.17)
ol fxn) =P+ (1= ) ||z - y°|I”
< Bullxn — X*|7 + AL - 20) || Az, — Ay*|?
|| £ Gen) = 2|+ (1= o) [lben = 1P + (e — 28) | Buy - B[]
< Jloen = %[> + A(A = 2a) || Az, — Ay*|)?
+ ]| f(xn) = x°||* + (= 2) |1 Buun - Bx"|I%.
Therefore,
A2a - V|| Azy = Ay*||* + p(26 - ) |Bun = Bx"| 68)

2
< (lloen = x|+ llotnar = X Dlltn = X[l + o || f Cen) =y ||

From Step 2, using condition (iii), we get lim,, _, || Az,— Ay*|| = 0 and lim,, ., o || Bu,,— Bx*|| = 0.
From the fact that the B is f-inverse strongly monotone operator, it follows that

* * 1 *
[[Bxy, — Bx™|| < ||Bxn = Buy|| + ||Bun — BX"|| < Z||xXn — ttn]| + [|Buy, — Bx7||. (3.19)

Applying Step 3, we have lim,, _, .|| Bx,, — Bx*|| = 0.

Step 5. limy, o ||xy — Tixy|| =0, foralli=1,2,...
Noting that Pc is firmly nonexpansive, we have

20—y I = 1Pt - Buty) = Pe(x” - B |
< ((un = pBuy) - (x" = uBx"), 20~ ")

1
e [ o R R

[t = 20) = (Bt — B = (" = y) ||
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1 *
<5 [l =21 + Yz =y =l = 20 = (& = y) |
+2u(uy — zu — (x* = y*), Buy — Bx*) — p?||Buy, — Bx*||2]

< 5[l = =y = =20 (=9

I\JIH

+2u(up — zp — (X" = y"), Buy - Bx*>]’

[on — x°I* = || P (20 — AAzy) — Pe(y* = A Ay |1
< ((zn—AAzy) - (y* — LAY*), v, — x7)

1 . . .
= > [lIlzn -y = A(Az0 = Ay P+ llow = %I

[z =on) = M(Azy = Ay) = (v

1 * * * *
§[||Z ~yY |+ o =% = |20 =00 = (v - x

+20(zy —vn = (y* = x*), Az — Ay*) — \?|| Az, - Ay*”z]
1 * *
L R e e EE R e

+2Mzp — vy — (y* = x*) Az, — Ay™)]|.

(3.20)
It follows that
Iz =" > < N30 = %1% = [|ttn = 20 = (x" = y*) | (3.21)
+2p(un = zn = (x" = ¥"), Bun - Bx"),
0w =" IP < s = 1P = |20~ 0~ (" = 2] (322)

+2Mzp — vy - (y* - x*), Az, — Ay").
By (3.3), (3.14)-(3.15), and (3.22), we have

e =217 < (1= (1= Bu) o) 2n = x°IF + (1= Bu) Gullym = x°|1°
< (1= (1=Bu)on) = XIP + (1= B [aall fCea) = x| + lfon = x|
< (1= (1= Pu)on) lacn —x*|?
+ (1= Pn)on [zxn
+2M(zy — v — (y* - x*) Az, - Ay*)]
= [lotn = x| + | £ (20) = x*||* + (1= Bo) (1 = 5)
x (—”zn — 0, = (v = )P+ 2020 —0u — (y* - x*), Az, — Ay*)).

* * * 2
-X ||2‘ |zn = on = (y* = x7)|| (3.23)
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It follows that

2

(L=pn)oul|vn —z- (x"-y")
< (lln = {1+ ll2mer = () 120 = Xl + et | f (2en) = x| (3:24)
+20(1 = ) 0n(zn — vn — (y* — x*), Az, — AY™).

From conditions (ii)—(iv), Steps 2 and 4, we get the following;:

lim ||on -z, — (x* = y*)|| =0. (3.25)

n—=ao

On the other hand, from (3.14)-(3.21), we have

6w =1 < Bl = 217 + (1= B)on (all £ Gen) = |12 + |z = 7 |17)
(1= A=)z -y
< Bulln = P + | £ Gen) = 27|1P + (1= o) |20 = y°|1°
< Bullen = X1 + | £ () = 2|17 + (1= )
o [t =12 = fltn = 20 = (3" = y") P + 20t = 20 = (" = y"), B = B
= llotn = x*|* + || £ (20) = X7

(1= ) (-l = 2= (=) 20t = 20— 0= 37), B — B)),
(3.26)

which implies that

2 < (e = X+ 1201 = X120 = X
+an || f (n) = x*||P +20(1 = B) (3.27)
x (Uy — 2y — (X* = y*), Bu, — Bx*).

(1= Pa)un =20 = (" = y7)

From (ii)-(iii), Steps 2 and 4, we get the following:

lim ||u, -z, — (x* = y*)|| = 0. (3.28)

Combining (3.25) and (3.28), we get the following;:

lim [ju, — v, = 0. (3.29)
n—oo

Using Step 3, we obtain the following:

lim ||x, — v,|| = 0. (3.30)
n—aoo
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This together with ||y, — v,|| = &, f (x,) — v4l| — 0implies that
Tim [Jx, - | = 0.

For any x* € Q, we have from (3.1) that

o, (Bi-1 = Bi) ((xtn = Tixxy, xn = X*) + (Tixty = Ty, xp — X*))
i=1

= ann:(ﬂi—l = Pi)(n = Tiyyn, 20 = x7)
i=1

= (X = Xps1, X = X*) + (1= B) (1 = 0n) (U — X, X5 — X*).
Since each T; is nonexpansive, from (2.2), we have
(I Tixn — x||* < 2(x — Tixp, X — x*).

Hence, combining this inequality with (3.32), we get the following:

1 n n .
zonz (Bic = Bi) I Tixn = xull* < =00 >, (Bi-1 = Bi) (Tixn = Ty, X — X*)
i=1

i=1
+ (X = X1, Xn — XY + (1= Bn) (1 = 0)

X Uy = Xp, X — X*),

that is (noting that f3, is strictly decreasing),

2(1 - pn) 2
Tix, — x> < =— 22 |x,, — Xp— X+ —————||x — x Xy — x*
I Tixn nll” < Bt — p; ” n yn”“ n [ O'n(ﬂi—l—ﬂi) (B e || %n l
2(1 - 1-
Ml D M TN
o (i1 = Bi)

Now from (3.30)-(3.31) and Step 2, we conclude that

lim || Tix, —x,|| =0, Vi=1,2,...,
n—>ao

which completes the proof.

Step 6. limsup, , _(f(x*) —x*,x, —x*) <0, where x* = P - f(x).

13

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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As {x,} is bounded, there exists a subsequence {x,,} of {x,} such that {x,} — X
weakly. First, it is clear from Step 5 and Lemma 2.3 that X € (), F(T,,). Next, we prove that
x € I'. From (iii), Step 3 and (3.31), we note that

= GQyn) || < anll f Cxn) = G(yn) ||
+ (1= ay) || Pc [P (ttn — pButy) — NAPc (4 — puBuy)| = G(yn)||

= || f (xn) = G(y) | + (1 = @) | G(n) = G () | (3.37)
< atn| £ (xn) = G(yn) || + (1 = @) ||t = |
— 0.

According to (3.31) and Lemma 2.3, we obtain that X € I'. Next, we show that X € EP(F).
Indeed, by u,, = T;, x,, we have

F(un,y) + %(y —Up, Uy —Xn) 20, VyeC. (3.38)
From (A2), we have also
1
Y~ tn = x0) 2 =F (n,y) 2 F(y, 1tn), (3.39)

and hence,

<y—unk,@> > F(y, un,). (3.40)
Nk

According to r, > r > 0 and u, — x, — 0, we conclude that (u,, — x,,) /7, — 0and u,, — X.
From (A4), we obtain the following:

F(y,%)<0, VyeC (3.41)

FortwithO<t<landy € C, lety; =ty + (1 -t)X.Since y € C and X € C (due to u,, — X as
i — o0), we have y; € C and hence F(y;, X) < 0. So, from (A1) and (A4), we have

tF(y1,y) 2 tF(yr, y) + (1 = t)F(y, X) > tF(yi, y¢) =0 (3.42)
and F(y;,y) >0, forallt € (0,1) and y € C. From (A3), we obtain the following:

F(X,y)>0 VyeC, (3.43)
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and hence X € EP(F). Therefore, we obtain that X € Q. Hence, it follows from Lemma 2.2 that

lmsup(f(x*) — x*, x, — x*) = lim (f (x*) — x*, x,, — x*)

= (f(x*) - x*, X - x*) (3.44)
<0.

Step 7. limy,_, o X, = x*.
From (3.1), (3.3)-(3.4), and the convexity of || - ||, we have

llyn = "I = [lanf () + (1 = @) = x|
< (1= ap)l|on = x| + 2, ( f (x0) = X", Y — x) (3.45)

< (1= )2y = x| + 20, ( f (x00) = X*, Y — x*).

We can also get

Pensn = %11 = Bt = ) + U"i (Bir = Bi) (Tiypn = x7) + (1= Bu) (1 = 00) (Y — x7)
i=1
2
+(1 = Pu) (1 = on)an(vn = f(xn))
n 2
< ||Bu(xn — x*) + O'nz (ﬁi—l - ﬂl) (szn - X*) + (1 - ﬂn)(l - Gn)(yn - X*)
i=1

+ 2(1 - p")(l - On)an<vn - f(xn)rxnﬂ - x*>
< Bullxn = x>+ (1= Bu) ||y - X*”Z +2(1=Bu) (1 = op)an(vn — x*, Xps1 — x*)

+ 2(1 - ﬂn)(l - Gn)an<X* - f(xn)/ Xntl — x*>-
(3.46)

By (3.45), we have

s = 1P < Bl = 217+ (1= B) [(1 = @n)len = 21+ 2 (f () = 2,y = )]

+2(1= B,) (1 = 0n)@nllon = x| [|Xne1 = ]|
+2(1 = Bu)an(l = 00) (X" = f(2xn), Xns1 = x)

< 1= (1= Bu)an] 20 = "I +2(1 = Bu) (1 = 0u)an(f () = X, Y = X1
+2(1= Bu) (1 = On)atu|zn = y* ||| xne1 — x°]
+2(1 = Pu)anOu(f (xu) = x*, yu = x*)

< 1= (1= Bu)an]llxn = x*|* +2(1 = Bu) (1 = ou)ata || f (xn) = x*|| || ¥ns1 = |
+2(1= Bu) (1 = ow)aullocn — x|l — x|
+2(1 = ) 2n0n ( f (Xn) = X", Y = Xn) +2(1 = ) @n0n{ f (xn) = f(x7), 20 = X7)
+2(1 = ) anon(f (x*) = x*, x, — x*)
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< [1= (1= )] llan = 271+ 2(1 = ) (1 = )| £ (2n) = 2" [|2m1 = v
+ (1= ) (1 = e (e = X1 + i = 1)
+2(1 = ) atnul| £ (xn) = 2 |1y = xal +2(1 = Bu) tu0wplln = x|

+2(1 = fu)anon(f (x") = X", xn = x7),
(3.47)

which implies that

[20n(1-p) 1) (1 - fn)]

| Co1-p)-1)(1-p)
1-(1-.)1-o0p)an

1-(1-.)1-o0p)an

umH—st[ %h%—fW+

2(1—0'71) N ZO'n )
’ [W”f G =l =yl + 50— I o) =]
20, . .
Xllyn_xn” +m<f(xn)—x Xy — X >]
(3.48)

From liminf, . (20,(1 — p) - 1) - B,)/A - 1 = ) - 0,)) > 0, it follows that
S0 (20,(1=p) =1)(1 = Bn) /(1 = (1= ) (1 - 0n)axn))a, = 0. It is clear that

. 2(1 - on) 20y,
1 ~_ /4 N 4 n) — * n+l — Yn T n) — *
imsup| 520 ) <l -l + 2o - "
20, . . '
><||y"_x"”-i-20_ (1_p)_1<f(xn)_x1xn_x> <0.

Therefore, all conditions of Lemma 2.4 are satisfied. Therefore, we immediately deduce that
x, — x*. This completes the proof. u

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mappings
A,B: C — H be a-inverse strongly monotone and p-inverse strongly monotone, respectively. Let F
be a bifunction from C x C to R satisfying (A1)—(A4) and T : C — C be a nonexpansive mapping
such that Q := F (T) NEP(F)NT #0.Let f : C — C be a contraction with coefficient p € (0,1/2).
For given xq € C arbitrarily, let the sequences {x,}, {yn}, {zn} and, {u,} be generated By

F@my)+;{y—umun—m020, Yy eC,

zp = Pc(un — puBuy), (3.50)
Yn = anf(xn) + (1= au)Pc(zn — AAzy),
X1 = Puxn + 00 (1= Bo)Tyn + (1= ) (1 — 04) Pe(zn — AAzy),
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where A € (0,2a), u € (0,2p), and sequences {a,} C [0,1], {B.} € [0,1], {on } C [0,1], and
{ra} C (r,00), r > 0, are such that

(i) 0 < liminf, B, <limsup, B, <1,

)
(ii) limy, —, o0y, = Oand 3771 ay = oo,
(iii) 0, > 1/2(1 - p) , Xgey |On — Op-1| < 0,
(v) X2 [rn = Tna| < oo,

Then the sequence {x,} generated by (3.50) converges strongly to x* = Pq - f(x*), and (x*,y*) is a
solution of the general system of variational inequalities (1.5), where y* = Pc(x* — uBx*).
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