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We give a sufficient condition on the coefficients of a class of infinite horizon BDSDEs, under
which the infinite horizon BDSDEs have a unique solution for any given square integrable terminal
values. We also show continuous dependence theorem and convergence theorem for this kind of
equations. A probabilistic interpretation for solutions to a class of stochastic partial differential
equations is given.

1. Introduction

Pardoux and Peng [1] brought forward a new kind of backward doubly stochastic differential
equations (BDSDEs in short); these equations are with two different directions of stochastic
integrals, that is, the equations involve both a standard (forward) stochastic integral dW;
and a backward stochastic integral dB;. They have proved the existence and uniqueness
of solutions to BDSDEs under uniformly Lipschitz conditions on coefficients on finite time
interval [0,T]. That is, for a given terminal time T > 0, under the uniformly Lipschitz
assumptions on coefficients f, g, for any square integrable terminal value ¢, the following
BDSDE has a unique solution pair (y;, z;) in the interval [0, T]:

T T T
Yi=¢+ I f(s,Ys, Zs)ds + j g(s,Ys, Zs)dBs - f Z,dW,, tel0,T]. (1.1)
t t t

Pardoux and Peng also showed that BDSDEs can produce a probabilistic representation for
certain quasilinear stochastic partial differential equations (SPDEs). Many researchers do
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their work in this area (refer to, e.g., [2-13] and the references therein). Infinite horizon
BDSDEs are also very interesting to produce a probabilistic representation of certain
quasilinear stochastic partial differential equations. Recently, Zhang and Zhao [14] got
stationary solutions of SPDEs and infinite horizon BDSDEs, but their researches under the
assumption that terminal value limr_, ,e *TYr = 0. Zhu and Han [15] also give a sufficient
condition on the coefficients of a class of infinite horizon BDSDESs, but there the coefficient g
is independent of z.

This paper studies the existence and uniqueness of BDSDE (1.1) when T = oo. Our
method is different from Zhang and Zhao. Due to sufficient utilization of the properties of
martingales, this method is essential to the theory of BSDEs. In this paper we give a sufficient
condition on coefficients f, g under which, for any square integrable random variable ¢,
BDSDE (1.1) still has a unique solution pair when T = oo. Our conditions are a special
kind of Lipschitz conditions, which even include some cases of unbounded coefficients. This
allows us to give a probabilistic interpretation for the solutions to a class of stochastic partial
differential equations (SPDEs in short).

The paper is organized as follows: in Section2 we introduce some preliminaries
and notations; in Section 3 we prove the existence and uniqueness theorem of BDSDEs; in
Section 4 we discuss continuous dependence theorem and convergence theorem; at the end,
we give the connection of the solutions of SPDEs and BDSDE:s in Section 5.

2. Setting of Infinite Horizon BDSDEs

Notation. The Euclidean norm of a vector x € R* will be denoted by |x|, and, for a d x k matrix
A, we define ||A|| = VTrAA*, where A* is the transpose of A.

Let (Q,¥,P) be a completed probability space and let {W;},,, and {B;};,, be two
mutually independent standard Brownian motions, with values, respectively, in R? and R/,
defined on (Q, &, P). Let U denote the class of P-null sets of . For each t € [0, o0), we define

Fop=o{Ws0<r<t})\/ N,  F, =0{B-B,;t<r<oo}\/ N,

Foo= V Forr Faow= [) Froor @2.1)

0<t<co 0<t<co

Fi=For \/ Fooor tE[0,00).

Note that {qig‘;;t € [0,00)} is an increasing filtration and { Eoo;t € [0,00)} is a decreasing

filtration, and the collection {%;,t € [0, o)} is neither increasing nor decreasing.
Suppose

F=Foo = Foo V Foroo: (2.2)

For any n € N, let S?(R*; R") denote the space of all {¥;}-measurable n-dimensional
processes v with norm of ||v||s = [1—3(sup320|v(s)|)2]1/2 < 0.

We denote similarly by M?(R*; R") the space of all (classes of dP ® dt a.e. equal) {F:}-
measurable n-dimensional processes v with norm of ||[v||p = [E fgo |v(s)|2ds]1/ 2 < oo
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For any t > 0, let L*(Q, ¥+, P; R") denote the space of all {¥;}-measurable n-valued
random variables ¢ satisfying E|¢|* < oo.
We also denote

B2 = {(X,Y);X € S2(R*;R"),Y € Mz(R+;R")}. (2.3)

For each (X, Y) € B?, we define the norm of (X,Y) by

1%l = (1K1 + Y1) 24)

Obviously B? is a Banach space.
Consider the following infinite horizon backward doubly stochastic differential equa-
tion:

yi=¢+ J. f(s,ys,zs)ds + J g(s,ys,25)dBs — f zdW,, t>0, (2.5)
t t t

where ¢ € L2(Q, ¥, P; R¥) is given. We note that the integral with respect to {B;} is a backward
Ito integral and the integral with respect to {W,} is a standard forward It6 integral. These two
types of integrals are particular cases of the It6-Skorohod integral; see Boufoussi et al. [12].
Our aim is to find some conditions under which BDSDE (2.5) has a unique solution. Now we
give the definition of solution of BDSDE (2.5).

Definition 2.1. A pair of processes (y,z) : Q x R* — RF x R*? is called a solution of BDSDE
(2.5), if (y, z) € B? and satisfies BDSDE (2.5).
Let

f:QxR+><Rk><RkXd—>Rk,
2.6
g:Qx R x RF x RFd — Rk 20
satisfy the following assumptions:

(H1) for any (y,z) € RF x R*4, f(-,y,z) and g(, y, z) are {F:}-progressively measurable
processes, such that

E (J?f (t, O,O)dt)2 < oo; 2(-,0,0) € M? <R+; kal>, (2.7)

(H2) f and g satisfy Lipschitz condition with Lipschitz coefficient v := {v(t)}; that is,
there exists a positive nonrandom function {v(t)} such that

|[f(ty1,21) = f(ty2,22)| S OB (|1 = 2 + 121 = 2211),
gt y1,21) = g(ty2, 22) || < v(t)(Jy1 = y2 + 121 = 22l]),

(2.8)

forall (t,v;,z;) € R* x Rk x RF4, i =1,2,
(H3) [;° v (t)dt < oo.
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3. Existence and Uniqueness Theorem
The following existence and uniqueness theorem is our main result.

Theorem 3.1. Under the above conditions, in particular (H1), (H2), and (H3), (2.5) has unique
solution (y,z) € B>

In order to prove the existence and uniqueness theorem, one first gives an a priori
estimate.

Lemma 3.2. Suppose (H1), (H2), and (H3) hold for f and g. For any T € [0,00], let Yi €
L2(Q,¥r, P; RY), (Y, Z) and (y', z') € B? (i = 1,2) satisfy the following equation:

T T

g(s,yi,zé)st - J. ZidW,, 0<t<T < co. (3.1)

t

Y =Yi+ ij(s,yi,zis)ds +I

t

Then there is a constant C > 0, such that, for any T € [0,T],

(=)t (2 - 2)tem)],

(3.2)
2 2
<cefvi -l el (2 - )t (2 -2 rem)
where ljz 1) = jTT v%(s)ds and Ij;1)(-) is an indicator function.
Proof. Firstly, we assume that 7 =0, T = oo.
Set
Yo=Y =Y, Z=Z-Z, Gi=vi-yi, E=z-3,
A (3.3)
fi=f(tvl2)-F(bvd ), &=g(byl =) -g(tvh2).
Then
Y=Y, + f fods + f g.dB, — J' Z,dW,. (3.4)
t t t

We define the filtration {G;} o by

G =F00 \/ Foeo- (3.5)
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Obviously G is an increasing filtration. Since (]?, Z) € B?, { fé stWS} is a G;-martingale, thus
from (3.4) it follows that

?t:eq

Yoo + f tw feds + f gsst] : (3.6)
Note that
e( (" |fs|ds : <E c}o(v(s)|_175| +0(s)|Zs])ds ’
([, ez <£(], )
<2E <st1>1£)|yt|2> : J? v*(s)ds + 2E<J‘: v*(s)ds - JZO ||25||2ds>

—zf P(s)ds - |(5,2)|]3 < 0, (3.7)
Ef lglids <E [ (o5l + oz ds
<2 s | 72) I} <
Applying Doob inequality and B-D-G inequality, we can deduce
2
[¥[ - £ (aurl)
>0
=E<sup EG [?OO-FJ‘ fsds+f 3sdB;
£0 t t
<2E<supEG’[|Y| f
£0
R o 2 5
§8E<|Ym|+f ds> +2c0Ej 2. | 2ds
0 0
Y © 2 ® )
16( E|V.| +E<I ds) +ZCQEI 1121 *ds
0 0
) © 2 w° )
< (16 +2¢0) ( E|Yao| +E<f ds> +Ef llg:[1Pds ),
0 0

where ¢y > 0 is a constant.

>2
> +2E (supEG’ H f g5dB;
>0

fS ds

] > (3.8)

fs

IN

fs

fs
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On the other hand, from (3.4) it follows that

|2[, = ([, Z.aw.)
M 0 &)
= E(?w + foo feds + Jw gsst>2 - [E(?w + fw fods + JOO gsst>] :
0 0 0 0

) ®© 2 (39)
< E(ffw + f fods +J gsst>
0 0
2 o, 2 o )
<BE( |V (I fs ds) +f 13:11%ds ),
0 0
where (M) is the variation process generated by the martingale M.
Consequently, (3.8) and (3.9) imply that
o a2 2 a2
[, = Y[ <1171,
© 2 ©
< (19 + 2¢9) <15|1?<x,|2 + E(J fs ds> + Ef ||§s||2ds>
’ ’ (3.10)

~ |2
< <57+6co)(E|Yoo| +l[o,oo1ll(?,2)llé>

~ 12 ~
- (B[] ol @213,

where C = (57 + 6¢y) is a constant, and l[,.] = [ v*(s)ds.

For any 7,T € [0,00], we set fi(t,y:,z:) = f(t,yo,ze)ler), and gty zi) =
8t y1, ze)Iir 7). Then f1, and gi satisfy the assumptions (H1), (H2), and (H3), and
their Lipschitz constants are v1; ).

Obviously,

T T T
YtI[T,T] = YT + ’[ fSI[T,T] ds + j gsI[T,T] dBS - J‘ ZSI[T,T] dWS. (3.11)
t t t
Since (1?[ [rT], ZI [~1]) € B?, {fé ZSI (r,71dWs} is a Gi-martingale, thus from (3.11) it follows that

T T
YiIj.r) = E% [YT + j foljzyds + f Ssljzm) st]. (3.12)
t t
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Note that

2 T 2
Folper) |ds> < E< f ((s)T1e) || + v(s)I[T,T]||25||)ds>
0

(I

T
<2E <sup|gtI[T,T] |2> . f 0% ()l 11ds
0

t>0

T T
+ 2E<f UZ (S)I[T,T]ds . I ”251[7-,7"] ||2d5>
0 0

T
= 2f o2 (s)ds - || (Pl ixry, 2Ly || < o0

T

(3.13)

T T
EI ||§s1[r,T1||2dSSEI () iz |Fs| + () [1rmy 1Zs]1) s
0 0

T
<2 f W2(s)ds - || (Flie), 2l || < co.

T

Applying Doob inequality and B-D-G inequality, we can deduce

2
||17I[T,T] ”z = E<S:zlg>|?t1[r,ﬂ|>
T 2
<2E <supEc” [|)A/T‘ + J‘ st[T,T] |ds]> +2E <supEC“|:
>0 t >0
T
< 8E<'?T| +I
0
2 T
< 16<E|YT| +E<f0
2 T
< (16 + 2¢p) <E|YT| + E<IO

T
J‘ §51[T,T]st
t

D

2 T
st[-r,T] |ds> + ZCOE j ||§51[T,T] ||2ds
0

2 T
fSI[T,T] |ds> ) + ZCOEJ‘ ”gsI[T,T] ||2ds
0

2 T
st[T,T1|d5> +EI ||§51[7,T]||2d5>r
0

(3.14)

where ¢y > 0 is a constant.
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On the other hand, from (3.11) it follows that
|22, = ([ Ztemaw.)
M 0 )

R T T 2
= E(YT + ’[ fSI[T,T]dS + J gSI[T,T]dBS>
0 0
R T T 2
— [E (YT + I st[T,T]dS + J‘ gsI[T,T]st>] (3.15)
0 0

T T 2
< E<YT + f fSI[T,T]dS + J gsdI[T,T]Bs>
0 0

9 T 2T
§3E<|YT| + <f0 st[T,T]|dS> +IO ||§SI[T,T]”2dS>'

Consequently, (3.14) and (3.15) imply that

|V emy Z1 || = [ Vien ||+ | Z8m[,

o T 2 T
< (19 +2¢y) <E|YT| +E<f0 st[T,n|ds> +Ef0 II§SI[T,T]||2ds>

~ 12
< (57+ 600)<E|YT| "‘l[T,T]||(91[T,T]IEI[T,T])||?3>

~ 12 N N
= C<E|YT| +Z[T,TJ||(yI[T,T1/21[r,T1)||ZB>/
(3.16)

where C = (57 + 6¢p) is a constant, and [[,1] = fTT v?(s)ds. O

Martingale Representation Theorem [4]

Suppose Y is a random variable, such that E|Y?| < co. Note that M; = E[Y | G] is a
square integrable martingale with respect to G; and can be represented using martingale
representation theorem as M; = M + fé Z,dW,, where E [;° |1 Z|*dt < 0.

Now we give the proof of the Theorem 3.1.

Proof. The proof of Theorem 3.1 is divided into two steps.

Step 1. We assume ljo) = [;° v*(s)ds < 1/2C. For any (y, z) € B, let

M, = E%

§+J‘ f(s,ys,zs)ds+J- g(s,ys,2z5)dBs|, t>0. (3.17)
0 0
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We will prove { M} is a square integrable G;-martingale. From (H1)-(H3), it follows that
2

<E(ii+ [ 17z lds + || gl ).
0

§+J f(s,ys,zs)ds+j g(s,ys,z5)dBs
0 0

y

< BE|¢[* + 9E<f|f(s, 0, 0)|ds>2 + 9E<f: v(s)|ys|ds)2

~9E( [ olzlds) <9 [ (Iss.0.01 DIl + o)1) ds

0 (3.18)

%) 2 o)
s3E|g|2+9E(fo 1£(5,0,0)|ds) +9f0 (s)ds -yl

+ 9J' 2 (s)ds - ||z)3 + 9EJ‘ llg(s,0,0)||ds
0 0

+9f v?(s)ds - ||y||§+9f v2(s)ds - ||z||3
0 0

< oo,

which means {M;} is a square integrable G;-martingale. According to the martingale
representation theorem, there exists a unique G;-progressively measurable process Z; with
value in RF*? such that

Ef 1 Z:|dt < oo,
0

(3.19)
M, = E%

) © t
&+ f f(s,ys,z5)ds + f g(s,ys,z5)dBs| + I Z,dW,, 0<t<oo.
0 0 0

Let
Y, = E% [§ + LOO f(s,ys,z5)ds + J:w g(s,ys, zs)dBS] , 0<t< oo, (3.20)
So
M, = E% [§ + J:D f(s,ys,z5)ds + J? g(s,ys, zs)st]
_ G [,; N fo F(5,yez)ds + Lm (5,9 zs)st]

t ¢
+ f f(s,ys,z5)ds + f g(s,ys,z5)dBs
0 0
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¢ ¢
=Y, + j f(s,ys,z5)ds + f g(s,ys,z5)dBs
0 0

t
= E% +I ZsdWs.
0

&+ Jm f(s,ys,z5)ds + Jm g(s,ys,z5)dBs
0 0
(3.21)

Then

Yi=¢+ f f(s,ys,zs)ds + J‘ g(s,ys,z5)dBs — f Z,dW,, t>0. (3.22)
t ¢ ¢

We show that {Y;} and {Z;} are in fact ¥;-measurable. For Y}, this is obvious since, for each t,

0 © [e)
Yt — EQt [g + J; _f(S,yS/ zs)ds + J‘t g(S, Ys, Zs)st] = E<qut>, (323)

where © = ¢ + ftoo f(s,ys,z5)ds + ftw (s, ys,z5)dB; is indeed ?g}’w \ ?Eoo—measurable. Hence
?g , is independent of ¥; \/ ¢(©), and

©
Y,=E( = ). 3.24
t (%) (324
Now
J‘ ZdWs = ¢+ f f(s,ys,z5)ds + I g(s,ys,25)dBs - Y, (3.25)
t t t

and the right side is ?gf’w \ ¥/,,-measurable. Hence, from Ito’s martingale representation
theorem, {Z,,s > t} is ?3(‘)’}’5 \V ?Ew-adapted. Consequently Z; is Siglvs \ ¥¢.,-measurable, for
any t < s, and, thus, Z; is #;-measurable. So (Y, Z) € B?. Therefore (3.22) has constructed a
mapping from B? to B2, and we denote it by ¢, that is,

¢:(y,z) — (Y, 2). (3.26)

If ¢ is a contractive mapping with respect to the norm || - ||, by the fixed point theorem, there
exists a unique (v, z) € B, satisfying (3.22), which is just the unique solution to BDSDE (2.5).

Now we are in the position to prove that ¢ is a contractive mapping. Supposing that
(v, z') € B?, let (Y, Z') be the map ¢ of (v',z), (i =1,2), thatis

o(v.2)=(¥.Z), i=12 (3.27)
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We denote

Y=Y'-Y?, Zz=27'-72, g=y'-y?, @ zZ=z'-2%

~ (3.28)
fi= f<t,y1,zl> —f(t,y2,22>, 3t = g<t,y1,zl> —g<t,y2, zz>.
By Lemma 3.2, we have
1.1 SN > 2 ~ A2
w2 - 92 )|, = | (. 2|, < Cliosalll @ DI (3.29)
Due to I[g) < 1/2C, it follows that ¢ is a contractive mapping from B? to B2
Step 2. Since [ v*(t)dt < oo, then there exists a sufficiently large constant T such that
Jm v%(s)ds < i (3.30)
T - 2C
Let
fl (t/y/ Z) = I[T,oo] (t)f(t;]// Z)/ 81 (t/y/ Z) = I[T,oo] (t)g(tryr Z)/ (331)

then (H1)-(H3) hold for f; and g, whose Lipschitz coefficients are o(t) = I v(f).
Obviously,

f: 7% (s)ds < % (3.32)

By Step 1, there exists a unique (¥, Z) € B? satisfying

=&+ j fi(s, ¥s, Zs)ds +’[ §1(5,Js,Zs)dBs —j Z,dW,, 0<t<oo. (3.33)
¢ ¢

t

For (i, z;) given as above, let us consider the following infinite BDSDE:

T T T
Y, :f f(s,ys+gs,zs+25)ds+f g(s,ys+gs,25+is)st—f z,dW,, 0<t<T,
t t t (3.34)

v, =0, z=0, t>T.

According to the results of Pardoux and Peng [1], the above BDSDE has a unique solution
(v,z) in [0, T], thus the above BDSDE has a unique solution such that (y,z) = (0,0) for every
t>T.Let

y=y+y, zZZ+%. (3.35)

It is easy to check that (y;, z¢) is the unique solution of (2.5). O
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Remark 3.3. Suppose v is a constant, if we choose v(t) = vljor|(t), then Theorem 3.1 is the
main theorem in the paper by Pardoux and Peng [1].

Remark 3.4. The condition (H3) is usually necessary. That is, if for any ¢ € L*(Q, ¥, P; R¥)
and f, g hold in (H1) and (H2), BDSDE (2.5) has a unique solution in B?, then the (H3) is
necessary.

In fact, let us choose f(s,ys,zs) = (1/(1 + s5))zs, g(s,¥s,2s) = 0 and any ¢ €
L*(Q, ¥, P; R¥), then the solution of BDSDE

ye=§¢+ f zsds f zsdWy (3.36)

t

should be

<—(1/2) [7 1/ +s))2ds + [P(1/(1+ s))th>
=E|¢exp Z, ,

(3.37)

d(y:, Wi)
T Tar

where (y;, W;) is the variation process generated by the semimartingale y; and Brownian
motion W;.
Thus the assumption (H3) is necessary.

Remark 3.5. The following example shows that if the coefficients f and ¢ of BDSDE (2.5)
satisfy the uniformly Lipschitz, the BDSDE (2.5) has no solution.

Forall T >0, let ér = fo (1/(1 + s))dWs, then the BDSDE y; = ¢ + _ft v|z,|ds — ft zsdW,
has a unique solution pair (y/,zl),

t>T,
f dW f—ds t<T,

r 0, t>T,
zZ, =
! L oer

1+t ~

(3.38)

WhenT — oo, ér — [;7(1/(1 +5))dWs and z{ — 1/(1+1) in L*(Q, ¥, P), but z; =
1/(1 + t) is not the solution of the following infinite horizon BDSDE:

(e ] 1 jos] o]
Y = f —dW, + J v|zslds — I zs AW (3.39)
0o 1+s t t

because [;°(v/(1+s))ds = oo



Journal of Applied Mathematics 13

4. Continuous Dependence Theorem

In this section we will discuss the convergence of solutions of infinite horizon BDSDEs. First
we give the following continuous dependence theorem.

Theorem 4.1. Suppose & € L*(Q,¥F, P;R¥), (i = 1,2), and consider (H1)—~(H3). Let (y',z") be the
solutions of BDSDE (2.5) corresponding to the terminal data & = &, & = &, respectively. Then there
exists a constant C > 0 such that

|(v - 2.2 - 2| <TEle - &P (4.1)

Proof. Set i := y' — y?, Z := z' — 2% Since [;° v*(s)ds < oo, we can choose a strictly increasing

sequence 0 =ty < t; <--- < t, <ty = oo such that

tivl 1
Lt ti] = ft v*(s)ds < 5cr 1=01..n (4.2)

Applying Lemma 3.2, we have

” (gl E)I[tirtiﬂ] |§3 < CE']?fM ? + Cl[ti,tm] |§;

| (?l 2) I[ti,tm]

X (4.3)
|-

< CE|p:

1,,. .
’ + 2 ” (]// Z)I[fi,ti+1]

i+1

Thus

|§3 < 2CE|th ?

2 tivo
< 2CE<< sup |gs|> + J ||25||2ds> (4.4)
tiv1<s<tis tiv1

” (y’ E)I[ti/tm]

= 2C||(7, D) itnpiol 3y i=0,1,...,m—1.
In particular, we have
17, )T, 0|5 < 2CElG1 - &I (4.5)
From (4.4) and (4.5), it follows that
1621 = 316Dl
< (zc +Q2C) 4+ (zc)"“)mg1 — 5 (4.6)

) 2c((2c)"+1 - 1)

so1 Fléi &l =CElG - &P

Thus the desired result is obtained. O
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Now we can assert the following convergence theorem for infinite horizon BDSDEs.

Theorem 4.2. Suppose ¢,¢& € L*(Q,F,P;RY), (i = 1,2,...), (H1)-(H3) hold for f and g. Let
(y', z') be the solutions of the following BDSDE:

[ee]

Y=g+ J’too f(s, yé,z@)ds + J‘too g(s, yé,z@)st - f ZLdW,, t>0. (4.7)

t

IfE|g —¢|> — 0asi — oo, then there exists a pair (y, z) € B such that ||(y' —y,z' - z)||p — 0Oas
i — oo. Furthermore, (y, z) is the solution of the following BDSDE:

yi=¢ +f f(s,ys,zs)ds + J‘ g(s,ys,zs)dB;s —f zsdW,, 0<t<oo. (4.8)
¢ ¢ ¢

Proof. For any n,m > 1, let (y", z"*) and (y™, ") be the solutions of (4.7) corresponding to ¢,
and ¢, respectively. Due to Theorem 4.1, there exists a constant C > 0 such that

(" =y, 2" = 2|5 < CEl&n — &ml®

_ (4.9)
<2C(Elgy &P +E@n-2)) —0, asn,m— oo,

which means that {(y',z'), i = 1,2,...} is a Cauchy sequence in B?. Thus there exists a pair
(y,z) € B?such that ||(y' -y, z' — z)||s — O0asi — oo. Since

2
‘I Slys/ s f(s’yS’ZS)>dS

SEUOO( >ds>2

< 2f v2(s)ds - ” <yi -y,z - z>||2B —0, asi— oo, (4.10)

i
Zy — Zs

_ys

2
U g(svi2L) —8(s,ye,2:) ) ds

<2J‘ v*(s)ds - ”(y y,z—z>||2—>0, as i — oo.

Thus for any t € R, [ f(s,yi,zl)ds — [7f(s,ys, zs)ds and [ g(s,y,z0)dB; —
f t°° g(s,ys, zs)dBs in L*(Q,¥F,P). Taking the limit on both sides of (4.7), we deduce that (y, z)
is the solution to BDSDE (4.8). The desired result is obtained. O
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The following corollary shows the relation between the solution of infinite horizon
BDSDE (2.5) and the following finite time BDSDE:

T T T
y: = E¥[¢] +I f(s,ys 2s)ds +J g(s,ys, zs)dBs —f zsdW,, 0<t<T<oo. (411)
t t

t

Corollary 4.3. Assume ¢ € L>(Q, ¥, P; R¥), (H1)—(H3) hold for f and g. Let (y, z) be the solution
of BDSDE (2.5). Forany T > 0, let (yT, z") be the solutions of the finite time interval BDSDE (4.11),
then(y’,z") — (y,z) in B*>asT — co.

Proof. Note that E¥7[¢] — ¢in L*(Q, ¥, P;RF) asT — oo. The proof is straightforward from
Theorem 4.2. O

5. BDSDEs and Systems of Quasilinear SPDEs

In this section, we study the link between BDSDEs and the solution of a class of SPDEs.

Let us first give some notations. C*(RP; R7), Cffb (RP; RY), C’; (RP; R7) will denote,
respectively, the set of functions of classes from R into R, the set of those functions of class
Ck whose partial derivatives of order less than or equal to k are bounded (and hence the
function itself grows at most linearly at infinity), and the set of those functions of class C*
which, together with all their partial derivatives of order less than or equal to k, grow at most
like a polynomial function of the variable x at infinity.

For s > t, let X} be a diffusion process given by the solution of

S

Xé’x=x+f
t

b(Xi)dp + L o(Xi)dw,, (5.1)

where b € C}, (R R?), 0 € C},(RY; R? x RY), and, for 0 < s < t, we regulate X =«

It is well known that the solution defines a stochastic flow of diffeomorphism X¢' :
RY — R? and denotes by X! the inverse flow (see e.g., [15]). The random field X%%; s >
t, x € R? has a version which is a.s. of class C2 in x, the function and its derivatives being a.s.
continuous with respect to (¢, s, x).

Now the coefficients of the BDSDE will be of the form (with an obvious abuse of
notations):

f(s,y,z) = f<s, Xy, z>; g(s,y,z) = g(s, Xy, z), (5.2)

where f : [0,T] x R* x Rk x R4 — RF; ¢: [0,T] x R* x RF x RF*d — RF,
We assume that for any s > ¢, (x,y,z) — (f(s,x,y,z),8(s,x,y,z)) is of class C3, and
all derivatives are bounded on [0, c0) x R% x R¥ x Rk*4,
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We assume again that (H1), (H2), and (H3) hold, then the following BDSDE has a
unique solution:

Yé”‘=<§+f f(r,Xifx,Yﬁ"‘,Z£"‘)dr+f g(r,xif",Y:'x,z?x)dBr—f Z dW,, t>0.
S s S
(5.3)

Let (Y2*, ZL*) denote the unique solution of (4.11). We shall define X5, Y™, and ZL* for all
(s,t) € [0,00) x [0, 00) by letting Xt* = X2, YI* = Y5, and ZI* = 0 for s < t.

We now relate our BDSDE to the following system of quasilinear backward stochastic
partial differential equations:

dr(t,x) = — [Lx(t,x) + f(x,x(t,x),0"(x)Dx(t, x))] dt

(5.4)
- g(x,x(t,x),0"(x)Dx(t, x))dB;, t>0.
2 is the infinitesimal generator of a diffusion process X4* (solution of (5.1)) given by
1 » & )
L= Ei,]zzlai’(x)m + ;bi(x)a—xi, (5.5)

where (a;j(x)) = 00" (x).

Theorem 5.1. Let x(t,x); t > 0, x € R be a random field such that x(t, x) is ?fw—measumble
for each (t,x), x € C*2([0,00) x R%; R¥) as., and « satisfies (5.4). Then x(t,x) = Y}, where
(Y™, 7z s > t) ;>0 solves the BDSDE (5.3).

Proof. We can apply the extension of the It6 formula [5] to the solution « of (5.4):

dx (s, Xé’x) = Lx <s, Xé’x>ds +0*Dx <s, Xé’x>dWs
- [ﬂ(K(S, Xé”‘)) + f<s, Xé’x,K<S, Xé’x>,0'*D1<<s, Xi’x>>]ds (5.6)
- g<s, X, K<S, Xé’x>, o*Dx(s, Xé’x>>st.
We can see that (x(s, X%¥),0*Dx(s, X5¥)) coincides with the unique solution of (5.3). It
follows that x(t, x) = Y. O

We have also a converse to Theorem 5.1.

Theorem 5.2. Let f and g satisfy (H1), (H2), and (H3). Then {x(t,x) = Ytt’x;t >0,x € Rd} is the
unique classical solution of the system of backward SPDEs (5.3).
We can finish the proof exactly as in Theorem 3.2 of Hu and Ren [13].
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