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Laplace transform and new homotopy perturbation methods are adopted to study Fisher-type
equations analytically. The solutions introduced in this study can be used to obtain the closed form
of the solutions if they are required. The combined method needs less work in comparison with
the other homotopy perturbation methods and decreases volume of calculations considerably. The
method is tested on various examples, and results show that new method is more effective and
convenient to use, and high accuracy of it is evident.

1. Introduction

Solving nonlinear partial differential equations is very important in mathematical sciences,
and it is one of the most stimulating and particularly active areas of the research. In the recent
years, an increasing interest of scientists and engineers has been devoted to the analytical
asymptotic techniques for solving nonlinear problems. Many new numerical techniques have
been widely applied to the nonlinear problems. Based on homotopy, which is a basic concept
in topology, general analytical method, namely, the homotopy perturbationmethod (HPM) is
established by He [1–8] in 1998 to obtain series solutions of nonlinear differential equations.
The He’s HPM has been already used to solve various functional equations. In this method,
the nonlinear problem is transferred to an infinite number of subproblems and then the
solution is approximated by the sum of the solutions of the first several subproblems. This
simple method has been applied to solve linear and nonlinear equations of heat transfer
[9–11], fluid mechanics [12], nonlinear Schrodinger equations [13], integral equations [14],
boundary value problems [15], fractional KdV-Burgers equation [16], and nonlinear system
of second-order boundary value problems [17]. Khan, et al. [18] solved the long porous
slider problem by homotopy perturbation method which is coupled nonlinear ordinary
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differential equations resulting from the momentum equation. Also, Khan, et al. [19] studied
the long porous slider problem in which the fluid is injected through the porous bottom by
the Adomian decomposition method (ADM). This problem is similar to the problem we
consider in this paper and has many application in chemical reactions, heat transfer, and
chromatography. Recently, Moosaei et al. [20] suggest an alternative way to a similar problem
to the problem we consider in this work. They solved the perturbed nonlinear Schrodinger’s
equation with Kerr law nonlinearity by using the first integral method.

In the present work, we construct the solution using a different approach. In this work,
we obtain an analytical approximation to the solution of the nonlinear Fisher equation using
combination of Laplace transform and new homotopy perturbation method (LTNHPM). The
Fisher equation as a nonlinear model for a physical system involving linear diffusion and
nonlinear growth takes the nondimensional form:

ut = uxx + α
(
1 − uβ

)
(u − a). (1.1)

A kink-like traveling wave solutions of (1.1) describe a constant-velocity front of
transition from one homogeneous state to another. On the other hand, the solitons appear as a
result of a balance between weak nonlinearity and dispersion. Therefore, in mathematics and
physics, a soliton is described as a self-reinforcing solitary wave (a wave packet or pulse) that
maintains its shape while it travels at constant speed. “Dispersive effects” refer to dispersion
relation between the frequency and the speed of the waves. Solitons arise as the solutions of
a widespread class of weakly nonlinear dispersive partial differential equations describing
physical systems. However, when diffusion takes part, instead of dispersion, energy release
by nonlinearity balances energy consumption by diffusion which results in traveling waves
or fronts. Hence, traveling wave fronts are a great extent studied solution form for reaction-
diffusion equations, with important applications to chemistry, biology, and medicine. Several
studies in the literature, employing a large variety of methods, have been conducted to derive
explicit solutions for the Fisher equation (1.1) and for the generalized Fisher equation. For
more details about these investigations, the reader is referred to [21–26] and the references
therein. Recently, Wazwaz and Gorguis [27] studied the Fisher equation, the general Fisher
equation, and nonlinear diffusion equation of the Fisher type subject to initial conditions by
using Adomian decomposition method.

The results obtained via LTNHPM confirm validity of the proposed method. The rest
of this paper is organized as follows.

In Section 2, basic ideas of NHPM and the homotopy perturbation method are
presented. In Section 3, the uses of NHPM for solving nonlinear Fisher-type equations are
presented. Some examples are solved by the proposed method in Section 4. Conclusion will
be appeared in Section 5.

2. Basic Ideas of the LTNHPM

To illustrate the basic ideas of this method, let us consider the following nonlinear differential
equation:

A(u) − f(r) = 0, r ∈ Ω, (2.1)



Journal of Applied Mathematics 3

with the following initial conditions:

u(0) = α0, u′(0) = α1, . . . , u(n−1)(0) = αn−1, (2.2)

where A is a general differential operator and f(r) is a known analytical function. The
operator A can be divided into two parts, L and N, where L is a linear and N is a nonlinear
operator. Therefore, (2.1) can be rewritten as

L(u) +N(u) − f(r) = 0. (2.3)

Based on NHPM [28], we construct a homotopy U(r, p) : Ω × [0, 1] → R, which satisfies

H
(
U, p
)
=
(
1 − p
)
[L(U) − u0] + p

[
A(U) − f(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (2.4)

or equivalently:

H
(
U, p
)
= L(U) − u0 + pu0 + p

[
N(U) − f(r)

]
= 0, (2.5)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation for the solution of
(2.1). Clearly, (2.4) and (2.5) give

H(U, 0) = L(U) − u0 = 0,

H(U(x), 1) = A(U) − f(r) = 0.
(2.6)

Applying Laplace transform to the both sides of (2.5), we arrive at

L
{
L(U) − u0 + pu0 + p

[
N(U) − f(r)

]}
= 0. (2.7)

Using the differential property of Laplace transform we have

snL{U} − sn−1U(0) − sn−2U′(0) − · · · −U(n−1)(0) = L
{
u0 − pu0 + p

[
N(U) − f(r)

]}
(2.8)

or

L{U} =
1
sn

{
sn−1U(0) + sn−2U′(0) + · · · +U(n−1)(0) + L

{
u0 − pu0 + p

[
N(U) − f(r)

]}}
.

(2.9)

Finally, applying the inverse Laplace transform to the both sides of (2.9), one can successfully
reach to the following:

U = L−1
{

1
sn

{
sn−1U(0) + sn−2U′(0) + · · · +U(n−1)(0) + L

{
u0 − pu0 + p

[
N(U) − f(r)

]}}}
.

(2.10)
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According to the HPM, we can first use the embedding parameter p as a small parameter and
assume that the solutions of (2.10) can be represented as a power series in p as

U(x) =
∞∑
n=0

pnUn. (2.11)

Now let us rewrite (2.10) using (2.11) as

∞∑
n=0

pnUn = L−1
{

1
sn

{
sn−1U(0) + sn−2U′(0) + · · · +U(n−1)(0)

+L

{
u0 − pu0 + p

[
N

( ∞∑
n=0

pnUn

)
− f(r)

]}}}
.

(2.12)

Therefore, equating the coefficients of p with the same power leads to

p0 : U0 = L−1
{

1
sn

(
sn−1U(0) + sn−2U′(0) + · · · +U(n−1)(0) + L{u0}

)}
,

p1 : U1 = L−1
{

1
sn
(
L
{
N(U0) − u0 − f(r)

})}
,

p2 : U2 = L−1
{

1
sn

(L{N(U0, U1)})
}
,

p3 : U3 = L−1
{

1
sn

(L{N(U0,U1, U2)})
}
,

...

pj : Uj = L−1
{

1
sn
(
L
{
N
(
U0, U1, U2, . . . , Uj−1

)})}
.

...

(2.13)

Suppose that the initial approximation has the form U(0) = u0 = α0, U
′(0) = α1, . . . ,

U(n−1)(0) = αn−1, therefore the exact solution may be obtained as following:

u = lim
p→ 1

U = U0 +U1 +U2 + · · · . (2.14)

To show the capability of the method, we apply the NHPM to some examples in
Section 4.
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3. Analysis of the Method

Consider the nonlinear Fisher (1.1):

ut = uxx + α
(
1 − uβ

)
(u − a). (3.1)

For solving this equation by applying the new homotopy perturbation method, we
construct the following homotopy:

H
(
U, p
)
= Ut − u0 + p

[
u0 −Uxx − α

(
1 −Uβ

)
(U − a)

]
= 0, (3.2)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of solution of
equation. Clearly, we have from (3.2)

H(U, 0) = Ut − u0 = 0,

H(U, 1) = Ut −Uxx − α
(
1 −Uβ

)
(U − a) = 0.

(3.3)

By applying Laplace transform on both sides of (3.2), we have

L
{
H
(
U, p
)}

= L
{
Ut − u0 + p

[
u0 −Uxx − α

(
1 −Uβ

)
(U − a)

]}
. (3.4)

Using the differential property of Laplace transform we have

sL{U(x, t)} −U(x, 0) = L
{
u0 − p

[
u0 −Uxx − α

(
1 −Uβ

)
(U − a)

]}
(3.5)

or

L{U(x, t)} =
1
s

(
U(x, 0) + L

{
u0 − p

[
u0 −Uxx − α

(
1 −Uβ

)
(U − a)

]})
. (3.6)

By applying inverse Laplace transform on both sides of (3.6), we have

U(x, t) = L−1
{
1
s

(
U(x, 0) + L

{
u0 − p

[
u0 −Uxx − α

(
1 −Uβ

)
(U − a)

]})}
. (3.7)

According to the HPM, we use the embedding parameter p as a small parameter and assume
that the solutions of (3.7) can be represented as a power series in p as

U(x, t) =
∞∑
n=0

pnUn(x, t). (3.8)
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Substituting (3.8) into (3.7) and equating the terms with the identical powers of p, leads to
calculate Uj(x, t), j = 0, 1, 2, . . .

p0 : U0(x, t) = L−1
{
1
s
(U(x, 0) + L{u0(x, t)})

}
,

p1 : U1(x, t) = L−1
{−1

s
L
{
u0(x, t) − (U0)xx + αa − αU0 + αU

β+1
0 − αaU

β

0

}}
,

p2 : U2(x, t) = L−1
{−1

s
L
{
−(U1)xx − αU1 +

(
β + 1
)
αU

β

0U1 −
(
β
)
αaU

β−1
0 U1

}}
,

...

pj : Uj(x, t) = L−1

⎧
⎨
⎩

−1
s
L

⎧
⎨
⎩−(Uj−1

)
xx

− αUj−1 + α
∑

k1+k2+···+kβ+1=j−1
Uk1Uk2 · · ·Ukβ+1

−aα
∑

k1+k2+···+kβ=j−1
Uk1Uk2 · · ·Ukβ

⎫
⎬
⎭

⎫
⎬
⎭.

(3.9)

Suppose that the initial approximation has the form U(x, 0) = u0(x, t), therefore the exact
solution may be obtained as following:

u(X, t) = lim
p→ 1

U(x, t) = U0(x, t) +U1(x, t) +U2(x, t) + · · · . (3.10)

4. Examples

Example 4.1. Consider the following Fisher equation for α = β = 1 and a = 0 taken from [29]
such that

ut = uxx + u(1 − u) (4.1)

subject to a constant initial condition

u(x, 0) = λ. (4.2)

To solve (4.2) by the LTNHPM, we construct the following homotopy:

H
(
U, p
)
= Ut − λ + p[λ −Uxx −U(1 −U)] = 0 (4.3)

or

H
(
U, p
)
= Ut − λ + p

[
λ −Uxx −U +U2

]
= 0. (4.4)
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Applying Laplace transform on both sides of (4.4), we have

L
{
H
(
U, p
)}

= L
{
Ut − λ + p

[
λ −Uxx −U +U2

]}
. (4.5)

Using the differential property of Laplace transform we have

sL{U(x, t)} − λ = L
{
λ − p

[
λ −Uxx −U +U2

]}
(4.6)

or

L{U(x, t)} =
1
s

(
λ + L

{
λ − p

[
λ −Uxx −U +U2

]})
. (4.7)

By applying inverse Laplace transform on both sides of (4.7), we have

U(x, t) = L−1
{
1
s

(
λ + L

{
λ − p

[
λ −Uxx −U +U2

]})}
. (4.8)

Suppose the solution of (4.8) to have the following form:

U(x, t) =
∞∑
n=0

pnUn(x, t), (4.9)

where Ui(x, t) are unknown functions which should be determined. Substituting (4.9) into
(4.8), and equating the terms with the identical powers of p, leads to calculate Uj(x, t), j =
0, 1, 2, . . .

p0 : U0(x, t) = L−1
{
1
s
(λ + L{λ})

}
,

p1 : U1(x, t) = L−1
{−1

s
L
{
λ − (U0)xx −U0 +U2

0

}}
,

p2 : U2(x, t) = L−1
{−1

s
L{−(U1)xx −U1 + 2U0U1}

}
,

...

pj : Uj(x, t) = L−1
{
−1
s
L

{
−(Uj−1

)
xx

−Uj−1 +

(
j−1∑
k=0

UkUk−j−1

)}}
.

(4.10)
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Assuming u0(x, t) = U(x, 0) = λ, and solving the above equation for Uj(x, t), j = 0, 1, . . .
leads to the result

U0(x, t) = λ(1 + t),

U1(x, t) = − 1
3
λ2t3 +

(
1
2
λ − λ2

)
t2 − tλ2,

U2(x, t) =
2
15

λ3t5 +
(
−1
3
λ2 +

2
3
λ3
)
t4 +
(
1
6
λ +

4
3
λ3 − 2

3
λ2
)
t3 +
(
λ3 − 1

2
λ2
)
t2,

U3(x, t) = − 17
315

λ4t7 +
(
−17
45

λ4 +
17
90

λ3
)
t6 +
(
11
15

λ3 − 17
15

λ4 − 11
60

λ2
)
t5

+
(
7
6
λ3 +

1
24

λ − 5
3
λ4 − 1

4
λ2
)
t4 +
(
2
3
λ3 − 1

6
λ2 − λ4

)
t3,

U4(x, t) =
62

2835
λ5t9 +

(
− 31
315

λ4 +
62
315

λ5
)
t8 +
(
1
7
λ3 +

248
315

λ5 − 4
7
λ4
)
t7

+
(
−43
30

λ4 − 13
180

λ2 +
77
45

λ5 +
13
30

λ3
)
t6 +

1
120

λ
(
−208λ3 + 68λ2 + 240λ4 − 8λ + 1

)
t5

+
1
24

λ2(2λ − 1)
(
12λ2 − 4λ + 1

)
t4.

...
(4.11)

Therefore using some algebra with the aid of symbolic computation tool, we gain the solution
of (4.1) as

u(x, t) = U0(x, t) +U1(x, t) +U2(x, t) +U3 + (x, t) + · · ·

= λ + λ(1 − λ)t + λ(1 − λ)(1 − 2λ)
t2

2!
+ λ(1 − λ)

(
1 − 6λ + 6λ2

) t3
3!

+ · · ·

=
λet

1 − λ + λet
,

(4.12)

which is exact solution of problem.
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Example 4.2. Consider the following Fisher equation for α = 6, β = 1, a = 0, [29] such that

ut = uxx + 6u(1 − u) (4.13)

subject to a initial condition:

u(x, 0) = (1 + ex)−2. (4.14)

To solve (4.13) by the LTNHPM, we construct the following homotopy:

H
(
U, p
)
= Ut − u0 + p[u0 −Uxx − 6U(1 −U)] = 0 (4.15)

or

H
(
U, p
)
= Ut − u0 + p

[
u0 −Uxx − 6U + 6U2

]
= 0. (4.16)

Applying Laplace transform on both sides of (4.16), we have

L
{
H
(
U, p
)}

= L
{
Ut − u0 + p

[
u0 −Uxx − 6U + 6U2

]}
. (4.17)

Using the differential property of Laplace transform we have

sL{U(x, t)} −U(x, 0) = L
{
u0 − p

[
u0 −Uxx − 6U + 6U2

]}
(4.18)

or

L{U(x, t)} =
1
s

(
U(x, 0) + L

{
u0 − p

[
u0 −Uxx − 6U + 6U2

]})
. (4.19)

By applying inverse Laplace transform on both sides of (4.19), we have

U(x, t) = L−1
{
1
s

(
(1 + ex)−2 + L

{
u0 − p

[
u0 −Uxx − 6U + 6U2

]})}
. (4.20)
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Suppose the solution of (4.20) to have the following form:

U(x, t) =
∞∑
n=0

pnUn(x, t), (4.21)

where Ui(x, t) are unknown functions which should be determined. Substituting (4.21) into
(4.20), and equating the terms with the identical powers of p, leads to calculate Uj(x, t), j =
0, 1, 2, . . .

p0 : U0(x, t) = L−1
{
1
s
(U(x, 0) + L{u0(x, t)})

}
,

p1 : U1(x, t) = L−1
{−1

s
L
{
u0(x, t) − (U0)xx − 6U0 + 6U2

0

}}
,

p2 : U2(x, t) = L−1
{−1

s
L{−(U1)xx − 6U1 + 12U0U1}

}
,

...

pj : Uj(x, t) = L−1
{
−1
s
L

{
−(Uj−1

)
xx

− 6Uj−1 + 6

(
j−1∑
k=0

UkUk−j−1

)}}
.

(4.22)

Assuming u0(x, t) = U(x, 0) = λ, and solving the above equation for Uj(x, t), j = 0, 1, . . .
leads to the result

U0(x, t) =
1 + t

(1 + ex)2
,

U1(x, t) = −2 t3

(1 + ex)4
+

(−3 + 5e2x + 5ex
)
t2

(1 + ex)4
+

(−1 + 9e2x + 8ex
)
t

(1 + ex)4
,

U2(x, t) =
24
5

t5

(1 + ex)6
+

1
15

(
180 − 390e2x − 285ex

)
t4

(1 + ex)6

+
1
15

(
250e4x − 870e2x + 375e3x − 725ex + 150

)
t3

(1 + ex)6

+
1
15

(
45 + 675e4x + 900e3x − 360ex − 180e2x

)
t2

(1 + ex)6
,
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U3(x, t)

= −408
35

t7

(1 + ex)8
+

1
420

(−17136 + 44352e2x + 26376ex
)
t6

(1 + ex)8

+
1

420

(−22680 − 78036e3x + 132216e2x − 77448e4x + 93996ex
)
t5

(1 + ex)8

+
1

420

(−261380e4x + 21875e5x − 271250e3x + 17500e6x + 81620e2x + 98455ex − 13860
)
t4

(1 + ex)8

+
1

420

(−3360 + 63000e6x + 32760ex + 63000e5x − 183120e3x − 142800e4x − 4200e2x
)
t3

(1 + ex)8
.

...

(4.23)

Therefore using some algebra with the aid of symbolic computation tool, we gain the solution
of (4.13) as

u(x, t) = U0(x, t) +U1(x, t) +U2(x, t) +U3(x, t) + · · ·

=
1

(1 + ex)2
+

10ex

(1 + ex)3
t +

25ex(−1 + 2ex)

(1 + ex)4
t2 +

−125ex(−1 + 7ex − 4e2x
)

3(1 + ex)5
t3 + · · ·

=
1

(1 + ex−5t)2
,

(4.24)

which is exact solution of problem.

Example 4.3. Consider the following generalized Fisher equation for α = 1, β = 6 and a = 0
taken from [29] such that

ut = uxx + u
(
1 − u6

)
(4.25)

subject to a constant initial condition:

u(x, 0) =
1

3
√
1 + e(3/2)x

. (4.26)

To solve (4.26) by the LTNHPM, we construct the following homotopy:

H
(
U, p
)
= Ut − u0 + p

[
u0 −Uxx −U

(
1 −U6

)]
= 0 (4.27)
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or

H
(
U, p
)
= Ut − u0 + p

[
u0 −Uxx −U +U7

]
= 0. (4.28)

Applying Laplace transform on both sides of (4.28), we have

L
{
H
(
U, p
)}

= L
{
Ut − u0 + p

[
u0 −Uxx −U +U7

]}
. (4.29)

Using the differential property of Laplace transform we have

sL{U(x, t)} −U(x, 0) = L
{
u0 − p

[
u0 −Uxx −U +U7

]}
(4.30)

or

L{U(x, t)} =
1
s

(
U(x, 0) + L

{
u0 − p

[
u0 −Uxx −U +U7

]})
. (4.31)

By applying inverse Laplace transform on both sides of (4.31), we have

U(x, t) = L−1
{
1
s

(
1

3
√
1 + e(3/2)x

+ L
{
u0 − p

[
u0 −Uxx −U +U7]}

)}
. (4.32)

Suppose the solution of (4.32) to have the following form:

U(x, t) =
∞∑
n=0

pnUn(x, t), (4.33)

where Ui(x, t) are unknown functions which should be determined. Substituting (4.33) into
(4.32), and equating the terms with the identical powers of p, leads to calculate Uj(x, t), j =
0, 1, 2, . . .

p0 : U0(x, t) = L−1
{
1
s
(U(x, 0) + L{u0(x, t)})

}
,

p1 : U1(x, t) = L−1
{−1

s
L
{
u0(x, t) − (U0)xx −U0 +U7

0

}}
,

p2 : U2(x, t) = L−1
{−1

s
L
{
−(U1)xx −U1 + 7U6

0U1

}}
,

...

pj : Uj(x, t) = L−1

⎧
⎨
⎩

−1
s
L

⎧
⎨
⎩−(Uj−1

)
xx

−Uj−1 +

⎛
⎝ ∑

k1+k2+···+k7=j−1
Uk1Uk2 · · ·Uk7

⎞
⎠
⎫
⎬
⎭

⎫
⎬
⎭.

(4.34)



Journal of Applied Mathematics 13

Assuming u0(x, t) = U(x, 0) = 1/ 3
√
1 + e(3/2)x, and solving the above equation forUj(x, t), j =

0, 1, 2, . . . leads to the result

U0(x, t) =
1 + t

3
√
1 + e(3/2)x

,

U1(x, t)

=
−t8 − 8t7 − 28t6 − 56t5 − 70t4 − 56t3+

(
5e(3/2)x + 5e3x − 24

)
t2+
(−8 − 6e(3/2)x + 2e3x

)
t

8
(
1+e(3/2)x

)7/3 ,

U2(x, t) =
1

(
1 + e(3/2)x

)13/3

×
(

7
120

t15 +
7
8
t14 +

49
8
t13 +

637
24

t12 + · · ·

+
1

1440

(
−28800 + 25995e3x − 18675e(3/2)x − 375e6x + 375e(9/2)x

)
t3

+
1

1440

(
−4320 − 225e6x + 4005e3x − 4365e(3/2)x + 3825e(9/2)x

)
t2
)
,

U3(x, t) =
1

(
1 + e(3/2)x

)19/3

×
(
−8484t22 − 186648t21 − 1959804t20 − 13065360t19 − 62060460t18

+ · · · +
(
−30222720 − 35272215e(3/2)x + 20625e9x − 15482610e6x

+44573265e3x + 64407750e(9/2)x − 309375e(15/2)x
)
t4

+
(
−3294720 − 5585580e(3/2)x + 2950200e6x + 10880760e(9/2)x

+4319700e3x − 1303500e(15/2)x + 16500e9x
)
t3
)
.

...
(4.35)

Therefore using some algebra with the aid of symbolic computation tool, we gain the solution
of (4.25) as

u(x, t) = U0(x, t) +U1(x, t) +U2(x, t) +U3(x, t) + · · ·

=
1

3
√
1 + e(3/2)x

+
5e(3/2)x

4
(

3
√
1 + e(3/2)x

)4 t +
25e(3/2)x

(
e(3/2)x − 3

)

32
(

3
√
1 + e(3/2)x

)7 t2 + · · ·

= 3
√
0.5 + 0.5 tanh[0.75(x − 2.5t)],

(4.36)

which is exact solution of problem.
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Example 4.4. Consider the following nonlinear diffusion equation of the Fisher type for α =
β = 1 taken from [29] such that

ut = uxx + u(1 − u)(u − a), 0 < a < 1 (4.37)

subject to an initial condition:

u(x, 0) =
1

1 + e−x/
√
2
. (4.38)

To solve (4.38) by the LTNHPM, we construct the following homotopy:

H
(
U, p
)
= Ut − u0 + p[u0 −Uxx −U(1 −U)(U − a)] = 0 (4.39)

or

H
(
U, p
)
= Ut − u0 + p

[
u0 −Uxx +U3 + aU − (1 + a)U2

]
= 0. (4.40)

Applying Laplace transform on both sides of (4.40), we have

L
{
H
(
U, p
)}

= L
{
Ut − u0 + p

[
u0 −Uxx +U3 + aU − (1 + a)U2

]}
. (4.41)

Using the differential property of Laplace transform we have

sL{U(x, t)} −U(x, 0) = L
{
u0 − p

[
u0 −Uxx +U3 + aU − (1 + a)U2

]}
(4.42)

or

L{U(x, t)} =
1
s

(
U(x, 0) + L

{
u0 − p

[
u0 −Uxx −U +U2

]})
. (4.43)

By applying inverse Laplace transform on both sides of (4.43), we have

U(x, t) = L−1
{
1
s

(
λ + L

{
u0 − p

[
u0 −Uxx +U3 + aU − (1 + a)U2

]})}
. (4.44)

Suppose the solution of (4.44) to have the following form:

U(x, t) =
∞∑
n=0

pnUn(x, t), (4.45)
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where Ui(x, t) are unknown functions which should be determined. Substituting (4.45) into
(4.43), and equating the terms with the identical powers of p, leads to calculate Uj(x, t), j =
0, 1, 2, . . .

p0 : U0(x, t) = L−1
{
1
s
(U(x, 0) + L{u0(x, t)})

}
,

p1 : U1(x, t) = L−1
{−1

s
L
{
u0(x, t) − (U0)xx +U3

0 + aU0 − (1 + a)U2
0

}}
,

p2 : U2(x, t) = L−1
{−1

s
L
{
−(U1)xx + 3U2

0U1 + aU1 − 2(1 + a)U0U1

}}
,

...

pj : Uj(x, t) = L−1
{
−1
s
L

{
−(Uj−1

)
xx

+ aUj−1 +

(
j−1∑
k=0

k∑
i=0

Uj−k−1UiUk−i

)

−(1 + a)
j−1∑
k=0

UkUj−k−1

}}
.

(4.46)

Assuming u0(x, t) = U(x, 0) = 1/(1+ e−x/
√
2), and solving the above equation forUj(x, t), j =

0, 1, 2, . . . leads to the result

U0(x, t) =
1 + t

1 + e−x/
√
2
,

U1(x, t) =
1

12
(
1 + e−x/

√
2
)3
(
−3t4 +

(
4ee

−x/√2 − 8 + 4a + 4ee
−x/√2

a
)
t3

+
(
3e−

√
2x − 6 + 9ee

−x/√2 − 6e−
√
2xa + 6a

)
t2

+
(
−18ee−x/

√
2 − 12e−

√
2xa − 12 − 12ee

−x/√2
a − 6e−

√
2x
)
t
)
,

U2(x, t) =
1

840
(
1 + e−x/

√
2
)5

×
[
90t7 +

(
−210e−x/

√
2 − 210a − 210e−x/

√
2a + 420

)
t6

+
(
−203e−

√
2x + 112e−

√
2xa2 + 518e−

√
2xa − 742a

+112a2 + 742 − 847e−x/
√
2 + 224e−x/

√
2a2 − 224e−x/

√
2a
)
t5 + · · ·

]
,
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U3(x, t) =
1

20160
(
1 + e−x/

√
2
)7

[
1026t10 +

(
−3420a − 3420e−1/2

√
2x − 3420e−1/2

√
2xa + 6840

)
t9

+
(
3528e−

√
2xa2 + 3528a2 − 20403e−x/

√
2 + 18918 − 7056e−x/

√
2a

+11862e−
√
2xa + 7056e−x/

√
2a2 − 3627e−

√
2x − 18918a

)
t8 + · · ·

]
.

...

(4.47)

Therefore using some algebra with the aid of symbolic computation tool, we gain the solution
of (4.37) as

u(x, t) = U0(x, t) +U1(x, t) +U2(x, t) +U3(x, t) + · · ·

=
1

1 + e−x/
√
2
− e−x/

√
2(−1 + 2 a)

2
(
1 + e−x/

√
2
)2

+
e−x/

√
2
(
e−x/

√
2 − 4 e−x/

√
2a + 4 e−x/

√
2a2 − 1 + 4 a − 4 a2

)

8
(
1 + e−x/

√
2
)3 + · · ·

=
1

1 + e(−x−
√
2(0.5−a)t)/√2

,

(4.48)

which is exact solution of problem.

5. Summary and Conclusion

In the present work, we proposed a combination of Laplace transformmethod and homotopy
perturbation method to solve Fisher-type Equations. This method is simple and finds exact
solution of the equations using the initial condition only. This method unlike the most
numerical techniques provides a closed form of the solution. The new method developed
in the current paper was tested on several examples. The obtained results show that this
approach does not require specific algorithms and complex calculations, such as, ADM or
construction of correction functionals using general Lagrange multipliers, such as, VIM and
is much easier and more convenient than ADM and VIM, and this approach can solve the
problem very fast and effectively.
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