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We introduce and study a class of a system of random set-valued variational inclusion problems.
Some conditions for the existence of solutions of such problems are provided, when the operators
are contained in the classes of generalized monotone operators, so-called (A,m, η)-monotone op-
erator. Further, the stability of the iterative algorithm for finding a solution of the considered prob-
lem is also discussed.

1. Introduction

It is well known that the ideas and techniques of the variational inequalities are being applied
in a variety of diverse fields of pure and applied sciences and proven to be productive and
innovative. It has been shown that this theory provides the most natural, direct, simple,
unified, and efficient framework for a general treatment of a wide class of linear and nonlin-
ear problems. The development of variational inequality theory can be viewed as the
simultaneous pursuit of two different lines of research. On the one hand, it reveals the
fundamental facts on the qualitative aspects of the solutions to important classes of problems.
On the other hand, it also enables us to develop highly efficient and powerful new numerical
methods for solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems. Of course, the concept of variational inequality has been extended and generalized
in several directions, and it is worth to noticed that, an important and useful generalization
of variational inequality problem is the concept of variational inclusion. Many efficient ways



2 Journal of Applied Mathematics

have been studied to find solutions for variational inclusions and a related technique, as
resolvent operator technique, was of great concern.

In 2006, Jin [1] investigated the approximation solvability of a type of set-valued
variational inclusions based on the convergence of (H,η)-resolvent operator technique,
while the convergence analysis for approximate solutions much depends on the existence
of Cauchy sequences generated by a proposed iterative algorithm. In the same year, Lan [2]
first introduced a concept of (A, η)-monotone operators, which contains the class of (H,η)-
monotonicity, A-monotonicity (see [3–5]), and other existing monotone operators as special
cases. In such paper, he studied some properties of (A, η)-monotone operators and defined
resolvent operators associated with (A, η)-monotone operators. Then, by using this new
resolvent operator, he constructed some iterative algorithms to approximate the solutions of a
new class of nonlinear (A, η)-monotone operator inclusion problems with relaxed cocoercive
mappings in Hilbert spaces. After that, Verma [5] explored sensitivity analysis for strongly
monotone variational inclusions using (A, η)-resolvent operator technique in a Hilbert space
setting. For more examples, ones may consult [6–11].

Meanwhile, in 2001, Verma [12] introduced and studied some systems of variational
inequalities and developed some iterative algorithms for approximating the solutions of
such those problems. Furthermore, in 2004, Fang and Huang [13] introduced and studied
some new systems of variational inclusions involving H-monotone operators. By Using the
resolvent operator associated with H-monotone operators, they proved the existence and
uniqueness of solutions for the such considered problem, and also some new algorithms for
approximating the solutions are provided. Consequently, in 2007, Lan et al. [14] introduced
and studied another system of nonlinear A-monotone multivalued variational inclusions
in Hilbert spaces. Recently, based on the generalized (A, η)-resolvent operator method,
Argarwal and Verma [15] considered the existence and approximation of solutions for a
general system of nonlinear set-valued variational inclusions involving relaxed cocoercive
mappings in Hilbert spaces. Notice that, the concept of a system of variational inequality is
very interesting since it is well-known that a variety of equilibrium models, for example, the
traffic equilibrium problem, the spatial equilibrium problem, the Nash equilibrium problem,
and the general equilibrium programming problem, can be uniformly modelled as a system
of variational inequalities. Additional researches on the approximate solvability of a system
of nonlinear variational inequalities are problems; ones may see Cho et al. [16], Cho and
Petrot [17], Noor [18], Petrot [19], Suantai and Petrot [20], and others.

On the other hand, the systematic study of random equations employing the
techniques of functional analysis was first introduced by Špaček [21] and Hanš [22], and it
has received considerable attention from numerous authors. It is well known that the theory
of randomness leads to several new questions like measurability of solutions, probabilistic
and statistical aspects of random solutions estimate for the difference between the mean
value of the solutions of the random equations and deterministic solutions of the averaged
equations. The main question concerning random operator equations is essentially the same
as those of deterministic operator equations, that is, a question of existence, uniqueness,
characterization, contraction, and approximation of solutions. Of course, random variational
inequality theory is an important part of random function analysis. This topic has attracted
many scholars and experts due to the extensive applications of the random problems. For the
examples of research works in these fascinating areas, ones may see Ahmad and Bazán [23],
Huang [24], Huang et al. [25], Khan et al. [26], Lan [27], and Noor and Elsanousi [28].

In this paper, inspired by the works going on these fields, we introduce a system of
set-valued random variational inclusion problems and provide the sufficient conditions for
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the existence of solutions and the algorithm for finding a solution of proposed problems,
involving a class of generalized monotone operators by using the resolvent operator
technique. Furthermore, the stability of the constructed iterative algorithm is also discussed.

2. Preliminaries

Let H be a real Hilbert space equipped with norm ‖ · ‖ and inner product 〈·, ·〉, and let 2H

and CB(H) denote for the family of all the nonempty subsets of H and the family of all the
nonempty closed bounded subsets of H, respectively. As usual, we will define D : CB(H) ×
CB(H) → [0,∞), the Hausdorff metric on CB(H), by

D(A,B) = max

{
sup
x∈A

inf
y∈B

∥∥x − y
∥∥, sup

y∈B
inf
x∈A

∥∥x − y
∥∥}, ∀A,B ∈ CB(H). (2.1)

Let (Ω,Σ, μ) be a complete σ-finite measure space and B(H) the class of Borel σ-fields
in H. A mapping x : Ω → H is said to be measurable if {t ∈ Ω : x(t) ∈ B} ∈ Σ, for all
B ∈ B(H). We will denote by MH a set of all measurable mappings on H, that is, MH = {x :
Ω → H|x is a measurable mapping}.

LetH1 andH2 be two real Hilbert spaces. Let F : Ω×H1×H2 → H1 andG : Ω×H1×
H2 → H2 be single-valued mappings. Let U : Ω ×H1 → CB(H1), V : Ω ×H2 → CB(H2),
and Mi : Ω × Hi → 2Hi be set-valued mappings, for i = 1, 2. In this paper, we will consider
the following problem: find measurable mappings a, u : Ω → H1 and b, v : Ω → H2 such
that u(t) ∈ U(t, a(t)), v(t) ∈ V (t, b(t)) and

0 ∈ F(t, a(t), v(t)) +M1(t, a(t)),

0 ∈ G(t, u(t), b(t)) +M2(t, b(t)), ∀t ∈ Ω.
(2.2)

The problem of type (2.2) is called the system of random set-valued variational inclusion
problem. If a, u : Ω → H1 and b, v : Ω → H2 are solutions of problem (2.2), we will denote
by (a, u, b, v) ∈ SRSVI(M1,M2)(F,G,U, V ).

Notice that, if U : Ω × H1 → H1 and V : Ω × H2 → H2 are two single-valued
mappings, then the problem (2.2) reduces to the following problem: find a : Ω → H1 and
b : Ω → H2 such that

0 ∈ F(t, a(t), V (t, b(t))) +M1(t, a(t)),

0 ∈ G(t,U(t, a(t)), b(t)) +M2(t, b(t)), ∀t ∈ Ω.
(2.3)

In this case, we will denote by (a, b) ∈ SRSI(M1,M2)(F,G,U, V ). Other special cases of the
problem (2.2) are presented the following.

(I) If M1(t, a(t)) = ∂ϕ(t, a(t)) and M2(t, b(t)) = ∂φ(t, b(t)), where ϕ : Ω × H1 → R ∪
{+∞} and φ : Ω×H2 → R∪{+∞} are two proper convex and lower semicontinuous
functions and ∂ϕ and ∂φ denoted for the subdifferential operators of ϕ and φ,
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respectively, then (2.2) reduces to the following problem: find a, u : Ω → H1 and
b, v : Ω → H2 such that u(t) ∈ U(t, a(t)), v(t) ∈ V (t, b(t)) and

〈F(t, a(t), v(t)), x(t) − a(t)〉 + ϕ(x(t)) − ϕ(a(t)) ≥ 0, ∀x ∈ MH1,

〈G(t, u(t), b(t)), y(t) − b(t)〉 + φ
(
y(t)

) − φ(b(t)) ≥ 0, ∀y ∈ MH2,
(2.4)

for all t ∈ Ω. The problem (2.4) is called a system of random set-valued mixed
variational inequalities. A special of problem (2.4) was studied in by Agarwal and
Verma [15].

(II) Let K1 ⊆ H1, K2 ⊆ H2 be two nonempty closed and convex subsets and δKi the
indicator functions of Ki for i = 1, 2. If M1(t, x(t)) = ∂δK1(x(t)) and M2(t, y(t)) =
∂δK2(y(t)) for all x ∈ MK1 and y ∈ MK2 . Then the problem (2.2) reduces to the
following problem: find a, u : Ω → H1 and b, v : Ω → H2 such that u(t) ∈
U(t, a(t)), v(t) ∈ V (t, b(t)) and

〈F(t, a(t), v(t)), x(t) − a(t)〉 ≥ 0, ∀x ∈ MK1,

〈G(t, u(t), b(t)), y(t) − b(t)〉 ≥ 0, ∀y ∈ MK2,
(2.5)

for all t ∈ Ω.

(III) If H1 = H2 = H and M1(t, a(t)) = M2(t, b(t)) = ∂ϕ(t, a(t)), where ϕ : Ω × H →
R ∪ {+∞} is proper convex and lower semicontinuous function and ∂ϕ is denoted
for the subdifferential operators of ϕ. Let g : H → H be a nonlinear mapping and
ρ, η > 0. If we set F(t, a(t), v(t)) = ρv(t) +a(t)−g(b(t)), and G(t, u(t), b(t)) = ηu(t) +
b(t)−g(a(t))where u(t) ∈ U(t, a(t)), v(t) ∈ V (t, b(t)), then problem (2.2) reduces to
the following system of variational inequalities: find a, b : Ω → H, u(t) ∈ U(t, a(t))
and v(t) ∈ V (t, b(t)) such that

〈ρv(t) + a(t) − g(b(t)), g(x(t)) − a(t)〉 + ϕ
(
g(x(t))

) − ϕ(a(t)) ≥ 0,

〈ηu(t) + b(t) − g(a(t)), g(x(t)) − b(t)〉 + ϕ
(
g(x(t))

) − ϕ(b(t)) ≥ 0,
(2.6)

for all t ∈ Ω and g(x(t)) ∈ MH. A special of problem (2.6)was studied by Argarwal
et al. [29].

(IV) Let T : K → H be a nonlinear mapping and ρ, η > 0 two fixed constants. If H1 =
H2 = H, K1 = K2 = K,F(t, a(t), v(t)) = ρT(v(t)) + a(t) − v(t), and G(t, u(t), b(t)) =
ηT(u(t)) + b(t) − u(t). Then (2.5) reduces to the following system of variational
inequalities: find a, u, b, v : Ω → H such that u(t) ∈ U(t, a(t)), v(t) ∈ V (t, b(t)) and

〈ρT(v(t)) + a(t) − v(t), x(t) − a(t)〉 ≥ 0,

〈ηT(u(t)) + b(t) − u(t), y(t) − b(t)〉 ≥ 0,
(2.7)

for all x, y ∈ MH and t ∈ Ω. Notice that, if U = V = I, then (2.5), (2.7) are studied
by Kim and Kim [30].

We now recall important basic concepts and definitions, which will be used in this work.
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Definition 2.1. A mapping f : Ω × H → H is called a random single-valued mapping if for
any x ∈ H, the mapping f(·, x) : Ω → H is measurable.

Definition 2.2. A set-valued mapping G : Ω → 2H is said to be measurable if G−1(B) = {t ∈
Ω : G(t) ∩ B /= ∅} ∈ Σ, for all B ∈ B(H).

Definition 2.3. A set-valued mapping F : Ω×H → 2H is called a random set-valued mapping
if for any x ∈ H, the set-valued mapping F(·, x) : Ω → 2H is measurable.

Definition 2.4. A single-valued mapping η : Ω×H×H → H is said to be random τ-Lipschitz
continuous if there exists a measurable function τ : Ω → (0,∞) such that

∥∥η(t, x(t), y(t))∥∥ ≤ τ(t)
∥∥x(t) − y(t)

∥∥, (2.8)

for all x, y ∈ MH, t ∈ Ω.

Definition 2.5. A set-valuedmappingU : Ω×H → CB(H) is said to be random φ-D-Lipschitz
continuous if there exists a measurable function φ : Ω → (0,∞) such that

D
(
U(t, x(t)), U

(
t, y(t)

)) ≤ φ(t)
∥∥x(t) − y(t)

∥∥, (2.9)

for all x, y ∈ MH and t ∈ Ω, where D(·, ·) is the Hausdorff metric on CB(H).

Definition 2.6. A set-valued mapping F : Ω × H → CB(H) is said to be D-continuous if, for
any t ∈ Ω, the mapping F(t, ·) : H → CB(H) is continuous in D(·, ·), where D(·, ·) is the
Hausdorff metric on CB(H).

Definition 2.7. Let A : Ω × H → H and η : Ω × H ×H → H be two random single-valued
mappings. Then A is said to be

(i) random β-Lipschitz continuous if there exists ameasurable function β : Ω → (0,∞)
such that

∥∥A(t, x(t)) −A
(
t, y(t)

)∥∥ ≤ β(t)
∥∥x(t) − y(t)

∥∥, (2.10)

for all x, y ∈ MH, t ∈ Ω;

(ii) random η-monotone if

〈
A(t, x(t)) −A

(
t, y(t)

)
, η
(
t, x(t), y(t)

)〉 ≥ 0, (2.11)

for all x, y ∈ MH, t ∈ Ω;
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(iii) random strictly η-monotone if, A is a random η-monotone and

〈
A(t, x(t)) −A

(
t, y(t)

)
, η
(
t, x(t), y(t)

)〉
= 0 iff x(t) = y(t), (2.12)

for all x, y ∈ MH, t ∈ Ω;

(iv) random (r, η)-strongly monotone if there exists a measurable function r : Ω →
(0,∞) such that

〈A(t, x(t)) −A
(
t, y(t)

)
, η
(
t, x(t), y(t)

)〉 ≥ r(t)
∥∥x(t) − y(t)

∥∥2
, (2.13)

for all x, y ∈ MH, t ∈ Ω.

Definition 2.8. Let A : Ω × H → H be a random single-valued mapping. A single-valued
mapping F : Ω ×H ×H → H is said to be

(i) random (c, μ)-relaxed cocoercive with respect to A in the second argument if there
exist measurable functions c, μ : Ω → (0,∞) such that

〈F(t, ·, x(t)) − F
(
t, ·, y(t)), A(t, x(t)) −A

(
t, y(t)

)〉
≥ −c(t)∥∥F(t, ·, x(t)) − F

(
t, ·, y(t))∥∥2 + μ(t)

∥∥x(t) − y(t)
∥∥2

,
(2.14)

for all x, y ∈ MH and t ∈ Ω;

(ii) random α-Lipschitz continuous in the second argument if there exists a measurable
function α : Ω → (0,∞) such that

∥∥F(t, ·, x(t)) − F
(
t, ·, y(t))∥∥ ≤ α(t)

∥∥x(t) − y(t)
∥∥, (2.15)

for all x, y ∈ MH, t ∈ Ω.

Notice that, in a similar way, we can define the concepts of relaxed cocoercive and Lipschitz
continuous in the third argument.

Definition 2.9. Let η : Ω × H ×H → H and A : Ω × H → H be two random single-valued
mappings. Then a set-valued mapping M : Ω ×H → 2H is said to be

(i) random (m,η)-relaxed monotone if there exists a measurable function m : Ω →
(0,∞) such that

〈
u(t) − v(t), η

(
t, x(t), y(t)

)〉 ≥ −m(t)‖x(t) − y(t)‖2, (2.16)

for all x, y ∈ MH, u(t) ∈ M(t, x(t)), v(t) ∈ M(t, y(t)), t ∈ Ω;
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(ii) random (A,m, η)-monotone if M is a random (m,η)-relaxed monotone and (At +
ρ(t)Mt)(H) = H for all measurable function ρ : Ω → (0,∞) and t ∈ Ω, where
At(x) = A(t, x(t)),Mt(x) = M(t, x(t)).

Definition 2.10. LetA : Ω×H → H be a random single-valuedmapping andM : Ω×H → 2H

a random (A,m, η)-monotone mapping. For each measurable function ρ : Ω → (0,∞), the
corresponding random (A,m, η)-resolvent operator Jη,Mρ,A : Ω ×H → H is defined by

J
ηt,Mt

ρ(t),At
(x) =

(
At + ρ(t)Mt

)−1(x), ∀x ∈ MH, t ∈ Ω, (2.17)

where At(x) = A(t, x(t)),Mt(x) = M(t, x(t)), and J
ηt,Mt

ρ(t),At
(x) = J

η,M

ρ,A (t, x(t)).

The following lemma, which related to J
η,M

ρ,A operator, is very useful in order to prove
our results.

Lemma 2.11. Let η : Ω × H ×H → H be a random single-valued mapping, A : Ω × H → H a
random (r, η)-strongly monotone mapping, and M : Ω × H → 2H a random (A,m, η)-monotone
mapping. If ρ : Ω → (0,∞) is a measurable function with ρ(t) ∈ (0, r(t)/m(t)) for all t ∈ Ω, then
the following are true.

(i) The corresponding random (A,m, η)-resolvent operator J
η,M

ρ,A is a random single-valued
mapping.

(ii) If η : Ω × H × H → H is a random τ-Lipschitz continuous mapping, then the
corresponding random (A,m, η)-resolvent operator Jη,Mρ,A is a random τ/(r−ρm)-Lipschitz
continuous.

Proof. The proof is similar to Proposition 3.9 in [2].

In order to prove our main results, we also need the following well known facts.

Lemma 2.12 (see [31]). Let H be a separable real Hilbert space and U : Ω × H → CB(H) be
a D-continuous random set-valued mapping. Then for any measurable mapping w : Ω → H, the
set-valued mapping U(·, w(·)) : Ω → CB(H) is measurable.

Lemma 2.13 (see [31]). Let H be a separable real Hilbert space and U,V : Ω → CB(H) two
measurable set-valued mappings; ε > 0 be a constant and u : Ω → H a measurable selection of U.
Then there exists a measurable selection v : Ω → H of V such that

‖u(t) − v(t)‖ ≤ (1 + ε)D(U(t), V (t)), ∀t ∈ Ω. (2.18)

Lemma 2.14 (see [32]). Let {γn} be a nonnegative real sequence, and let {λn} be a real sequence in
[0, 1] such that Σ∞

n=0λn = ∞. If there exists a positive integer n1 such that

γn+1 ≤ (1 − λn)γn + λnσn, ∀n ≥ n1, (2.19)

where σn ≥ 0 for all n ≥ 0 and σn → 0 as n → ∞, then limn→∞γn = 0.
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3. Existence Theorems

In this section, we will provide sufficient conditions for the existence solutions of the problem
(2.2). To do this, we will begin with a useful lemma.

Lemma 3.1. LetH1 andH2 be two real Hilbert spaces. Let F : Ω×H1×H2 → H1 andG : Ω×H1×
H2 → H2 be single-valued mappings. Let U : Ω ×H1 → CB(H1), V : Ω ×H2 → CB(H2), and
Mi : Ω ×Hi → 2Hi be a set-valued mappings for i = 1, 2. Assume that Mi are random (Ai,mi, ηi)-
monotone mappings andAi : Ω×Hi → Hi random (ri, ηi)-strongly monotone mappings, for i = 1, 2.
Then we have the following statements:

(i) if (a, u, b, v) ∈ SRSVI(M1,M2)(F,G,U, V ), then for any measurable functions ρ1, ρ2 : Ω →
(0,∞) we have

a(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
,

b(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))

]
, ∀t ∈ Ω;

(3.1)

(ii) if there exist two measurable functions ρ1, ρ2 : Ω → (0,∞) such that

a(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
,

b(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))

]
,

(3.2)

for all t ∈ Ω, then (a, u, b, v) ∈ SRSVI(M1,M2)(F,G,U, V ).

Proof. (i) Let ρ1, ρ2 : Ω → (0,∞) be any measurable functions. Since (a, u, b, v) ∈
SRSVI(M1,M2)(F,G,U, V ), we have

0 ∈ F(t, a(t), v(t)) +M1(t, a(t)),

0 ∈ G(t, u(t), b(t)) +M2(t, b(t)), ∀t ∈ Ω.
(3.3)

Let t ∈ Ω be fixed. By 0 ∈ F(t, a(t), v(t)) +M1(t, a(t)), we obtain

A1(t, a(t)) − ρ1(t)F(t, a(t), v(t)) ∈ A1(t, a(t)) + ρ1(t)M1(t, a(t)). (3.4)

This means

A1(t, a(t)) − ρ1(t)F(t, a(t), v(t)) ∈
(
A1t + ρ1(t)M1t

)
(a(t)). (3.5)

Thus

a(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
, (3.6)

where (A1t + ρ1(t)M1t)
−1 = J

η1t ,M1t
ρ1(t),A1t

.
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Similarly, if 0 ∈ G(t, u(t), b(t)) + M2(t, b(t)), we can show that b(t) =
J
η2t ,M2t
ρ2(t),A2t

[A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))], where (A2t + ρ2(t)M2t)
−1 = J

η2t ,M2t
ρ2(t),A2t

. Hence (i) is
proved.

(ii) Assume that there exist two measurable functions ρ1, ρ2 : Ω → (0,∞) such that

a(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
,

b(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))

]
,

(3.7)

for all t ∈ Ω. Let t ∈ Ω be fixed. Since a(t) = J
η1t ,M1t
ρ1(t),A1t

[A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))], then by

the definition of J
η1t ,M1t
ρ1(t),A1t

, we see that

a(t) =
(
A1t + ρ1(t)M1t

)−1[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
. (3.8)

This implies that

−F(t, a(t), v(t)) ∈ M1(t, a(t)). (3.9)

That is,

0 ∈ F(t, a(t), v(t)) +M1(t, a(t)). (3.10)

Similarly, if b(t) = J
η2t ,M2t
ρ2(t),A2t

[A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))] we can show that 0 ∈
G(t, u(t), b(t)) +M2(t, b(t)). This completes the proof.

Due to Lemma 3.1, in order to prove our main theorems, the following assumptions
should be needed.

Assumption A
A(a) H1 and H2 are separable real Hilbert spaces.

A(b) ηi : Ω×Hi×Hi → Hi are random τi-Lipschitz continuous single-valuedmappings,
for i = 1, 2.

A(c) Ai : Ω ×Hi → Hi are random (ri, ηi)-strongly monotone and random βi-Lipschitz
continuous single-valued mappings, for i = 1, 2.

A(d) Mi : Ω × Hi → 2Hi are random (Ai,mi, ηi)-monotone set-valued mappings, for
i = 1, 2.

A(e) U : Ω×H1 → CB(H1) is a random φ1-D-Lipschitz continuous set-valued mapping
and V : Ω × H2 → CB(H2) is a random φ2-D-Lipschitz continuous set-valued
mapping.

A(f) F : Ω×H1×H2 → H1 is a random single-valuedmapping, which has the following
conditions:
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(i) F is a random (c1, μ1)-relaxed cocoercive with respect to A1 in the third
argument and a random α1-Lipschitz continuous in the third argument,

(ii) F is a random ζ1-Lipschitz continuous in the second argument.

A(g) G : Ω×H1×H2 → H2 is a random single-valuedmapping, which has the following
conditions:

(i) G is a random (c2, μ2)-relaxed cocoercive with respect to A2 in the second
argument and a random α2-Lipschitz continuous in the second argument;

(ii) G is a random ζ2-Lipschitz continuous in the third argument.

Now, we are in position to present our main results.

Theorem 3.2. Assume that Assumption (A) holds and there exist two measurable functions ρ1, ρ2 :
Ω → (0,∞) such that ρi(t) ∈ (0, ri(t)/mi(t)), for each i = 1, 2 and

τ1(t)
r1(t) − ρ1(t)m1(t)

√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)α2

1(t)c1(t) + ρ21(t)α
2
1(t)<1 −

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

,

τ2(t)
r2(t) − ρ2(t)m2(t)

√
β22(t) − 2ρ2(t)μ2(t) + 2ρ2(t)α2

2(t)c2(t) + ρ22(t)α
2
2(t)<1 −

τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

,

(3.11)

for all t ∈ Ω. Then the problem (2.2) has a solution.

Proof. Let {εn} be a null sequence of positive real numbers. Starting with measurable
mappings a0 : Ω → H1 and b0 : Ω → H2. By Lemma 2.12, we know that the set-
valued mappings U(·, a0(·)) : Ω → CB(H1) and V (·, b0(·)) : Ω → CB(H2) are measurable
mappings. Consequently, by Himmelberg [33], there exist measurable selections u0 : Ω →
H1 of U(·, a0(·)) and v0 : Ω → H2 of V (·, b0(·)). We define now the measurable mappings
a1 : Ω → H1 and b1 : Ω → H2 by

a1(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a0(t)) − ρ1(t)F(t, a0(t), v0(t))

]
,

b1(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b0(t)) − ρ2(t)G(t, u0(t), b0(t))

]
,

(3.12)

where J
ηit ,Mit

ρi(t),Ait
(x) = (Ait + ρi(t)Mit)

−1(x), for all x ∈ MH, t ∈ Ω, and i = 1, 2. Further,
by Lemma 2.12, the set-valued mappings U(·, a1(·)) : Ω → CB(H1), V (·, b1(·)) : Ω →
CB(H2) are measurable. Again, by Himmelberg [33] and Lemma 2.13, there exist measurable
selections u1 : Ω → H1 of U(·, a1(·)) and v1 : Ω → H2 of V (·, b1(·)) such that

‖u0(t) − u1(t)‖ ≤ (1 + ε1)D(U(t, a0(t)), U(t, a1(t))),

‖v0(t) − v1(t)‖ ≤ (1 + ε1)D(V (t, b0(t)), V (t, b1(t))),
(3.13)
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for all t ∈ Ω. Define measurable mappings a2 : Ω → H1 and b2 : Ω → H2 as follows:

a2(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a1(t)) − ρ1(t)F(t, a1(t), v1(t))

]
,

b2(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b1(t)) − ρ2(t)G(t, u1(t), b1(t))

]
,

(3.14)

for all t ∈ Ω. Continuing this process, inductively, we obtain the sequences {an}, {bn}, {un},
and {vn} of measurable mappings satisfy the following:

an+1(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, an(t)) − ρ1(t)F(t, an(t), vn(t))

]
,

bn+1(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, bn(t)) − ρ2(t)G(t, un(t), bn(t))

]
,

‖un(t) − un+1(t)‖ ≤ (1 + εn+1)D(U(t, an(t)), U(t, an+1(t))),

‖vn(t) − vn+1(t)‖ ≤ (1 + εn+1)D(V (t, bn(t)), V (t, bn+1(t))),

(3.15)

where un(t) ∈ U(t, an(t)), vn(t) ∈ V (t, bn(t)) and for all t ∈ Ω, n = 0, 1, 2, . . ..
Now, since Jη1,M1

ρ1,A1
is a random τ1/(r1 − ρ1m1)-Lipschitz continuous mapping, we have

‖an+1(t) − an(t)‖ =
∥∥∥Jη1t ,M1t

ρ1(t),A1t

[
A1(t, an(t)) − ρ1(t)F(t, an(t), vn(t))

]
−Jη1t ,M1t

ρ1(t),A1t

[
A1(t, an−1(t)) − ρ1(t)F(t, an−1(t), vn−1(t))

]∥∥∥
≤ τ1(t)

r1(t) − ρ1(t)m1(t)

∥∥∥A1(t, an(t)) −A1(t, an−1(t))

−ρ1(t)[F(t, an(t), vn(t)) − F(t, an−1(t), vn−1(t))]
∥∥∥

≤ τ1(t)
r1(t) − ρ1(t)m1(t)

∥∥∥A1(t, an(t)) −A1(t, an−1(t))

−ρ1(t)[F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))]
∥∥∥

+
ρ1(t)τ1(t)

r1(t) − ρ1(t)m1(t)
‖F(t, an−1(t), vn(t)) − F(t, an−1(t), vn−1(t))‖,

(3.16)

for all t ∈ Ω. On the other hand, by Assumptions A(c) and A(f), we see that

∥∥A1(t, an(t)) −A1(t, an−1(t)) − ρ1(t)[F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))]
∥∥2

= ‖A1(t, an(t)) −A1(t, an−1(t))‖2

− 2ρ1(t)〈F(t, an(t), vn(t)) − F(t, an−1(t), vn(t)), A1(t, an(t)) −A1(t, an−1(t))〉

+ ρ21(t)‖F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))‖2

≤ β21(t)‖an(t) − an−1(t)‖2 + 2ρ1(t)c1(t)‖F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))‖2

− 2ρ1(t)μ1(t)‖an(t) − an−1(t)‖2 + ρ21(t)‖F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))‖2
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=
[
β21(t) − 2ρ1(t)μ1(t)

]
‖an(t) − an−1(t)‖2 +

[
2ρ1(t)c1(t) + ρ21(t)

]
× ‖F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))‖2

≤
[
β21(t) − 2ρ1(t)μ1(t)

]
‖an(t) − an−1(t)‖2 +

[
2ρ1(t)c1(t) + ρ21(t)

]
α2
1(t)‖an(t) − an−1(t)‖2

≤
[
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)

]
‖an(t) − an−1(t)‖2,

(3.17)

for all t ∈ Ω. This gives

∥∥A1(t, an(t)) −A1(t, an−1(t)) − ρ1(t)[F(t, an(t), vn(t)) − F(t, an−1(t), vn(t))]
∥∥

≤
√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)‖an(t) − an−1(t)‖,

(3.18)

for all t ∈ Ω.
Meanwhile, since F is a random ζ1-Lipschitz continuous mapping in the second

argument, we get

‖F(t, an−1(t), vn(t)) − F(t, an−1(t), vn−1(t))‖ ≤ ζ1(t)‖vn(t) − vn−1(t)‖, (3.19)

for all t ∈ Ω. From (3.16), (3.18), and (3.19), we obtain that

‖an+1(t) − an(t)‖ ≤ τ1(t)‖an(t) − an−1(t)‖
r1(t) − ρ1(t)m1(t)

√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)

+
τ1(t)ρ1(t)ζ1(t)

r1(t) − ρ1(t)m1(t)
‖vn(t) − vn−1(t)‖

= Δ1(t)‖an(t) − an−1(t)‖ +
τ1(t)ρ1(t)ζ1(t)

r1(t) − ρ1(t)m1(t)
‖vn(t) − vn−1(t)‖,

(3.20)

where

Δ1(t) =
τ1(t)

r1(t) − ρ1(t)m1(t)

√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t) (3.21)

for all t ∈ Ω.
Similarly, by using Assumptions A(c) and A(g), we know that

‖bn+1(t) − bn(t)‖ ≤ Δ2(t)‖bn(t) − bn−1(t)‖ +
τ2(t)ρ2(t)ζ2(t)

r2(t) − ρ2(t)m2(t)
‖un(t) − un−1(t)‖, (3.22)
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where

Δ2(t) =
τ2(t)

r2(t) − ρ2(t)m2(t)

√
β22(t) − 2ρ2(t)μ2(t) + 2ρ2(t)c2(t)α2

2(t) + ρ22(t)α
2
2(t) (3.23)

for all t ∈ Ω.
Next, since U is a random φ1-D-Lipschitz continuous mapping and V is a random

φ2-D-Lipschitz continuous mapping, by the choices of {un} and {vn}, we have

‖vn(t) − vn−1(t)‖ ≤ (1 + εn)D(V (t, bn(t)), V (t, bn−1(t)))

≤ (1 + εn)φ2(t)‖bn(t) − bn−1(t)‖,
‖un(t) − un−1(t)‖ ≤ (1 + εn)D(U(t, an(t)), U(t, an−1(t)))

≤ (1 + εn)φ1(t)‖an(t) − an−1(t)‖,

(3.24)

for all t ∈ Ω. Now, by (3.20), (3.22), and (3.24), we obtain that

‖an+1(t) − an(t)‖ + ‖bn+1(t) − bn(t)‖ ≤
(
Δ1(t) + (1 + εn)

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

)
‖an(t) − an−1(t)‖

+
(
Δ2(t) + (1 + εn)

τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

)

× ‖bn(t) − bn−1(t)‖,
(3.25)

for all t ∈ Ω. This implies that

‖an+1(t) − an(t)‖ + ‖bn+1(t) − bn(t)‖ ≤ θn(t)(‖an(t) − an−1(t)‖ + ‖bn(t) − bn−1(t)‖), (3.26)

where

θn(t) = max
{
Δ1(t) + (1 + εn)

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

,Δ2(t) + (1 + εn)
τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

}
,

(3.27)

for all t ∈ Ω.
Next, let us define a norm ‖ · ‖+ on H1 ×H2 by

∥∥(x, y)∥∥+ = ‖x‖ + ∥∥y∥∥, ∀(x, y) ∈ H1 ×H2. (3.28)

It is well known that (H1 ×H2, ‖ · ‖+) is a Hilbert space. Moreover, for each n ∈ N, we have

‖(an+1(t), bn+1(t)) − (an(t), bn(t))‖+ ≤ θn(t)‖(an(t), bn(t)) − (an−1(t), bn−1(t))‖+, (3.29)

for all t ∈ Ω.
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Let

θ(t) = max
{
Δ1(t) +

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

,Δ2(t) +
τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

}
, for each t ∈ Ω.

(3.30)

We see that θn(t) ↓ θ(t) as n → ∞. Moreover, condition (3.11) yields that 0 < θ(t) < 1 for all
t ∈ Ω. This allows us to choose ϑ ∈ (θ(t), 1) and a natural number N such that θn(t) < ϑ for
all n ≥ N. Using this one together with (3.30), we get

‖(an+1(t), bn+1(t)) − (an(t), bn(t))‖+ ≤ ϑ‖(an(t), bn(t)) − (an−1(t), bn−1(t))‖+, (3.31)

for all t ∈ Ω and n ≥ N. Thus, for each n > N, we obtain

‖(an+1(t), bn+1(t)) − (an(t), bn(t))‖+ ≤ ϑn−N‖(aN+1(t), bN+1(t)) − (aN(t), bN(t))‖+, (3.32)

for all t ∈ Ω. So, for any m ≥ n > N, we have

‖(am(t), bm(t)) − (an(t), bn(t))‖+ ≤ Σm−1
i=n ‖(ai+1(t), bi+1(t)) − (ai(t), bi(t))‖+

≤ Σm−1
i=n ϑi−N‖(aN+1(t), bN+1(t)) − (aN(t), bN(t))‖+

≤ ϑn

ϑN(1 − ϑ)
‖(aN+1(t), bN+1(t)) − (aN(t), bN(t))‖+,

(3.33)

for all t ∈ Ω. Since ϑ ∈ (0, 1), it follows that {ϑn}∞n=N+1 converges to 0, as n → ∞. This means
that {(an(t), bn(t))} is a Cauchy sequence, for each t ∈ Ω. Thus, there are a(t) ∈ H1 and
b(t) ∈ H2 such that an(t) → a(t) and bn(t) → b(t) as n → ∞, for each t ∈ Ω.

Next, we will show that {un(t)} and {vn(t)} converge to an element of U(t, a(t)) and
V (t, b(t)), for all t ∈ Ω. Indeed, for m ≥ n > N, we have from (3.24) and (3.33) that

‖(um(t), vm(t)) − (un(t), vn(t))‖+ = ‖um(t) − un(t)‖ + ‖vm(t) − vn(t)‖
≤ Σm−1

i=n ‖ui+1(t) − ui(t)‖ + Σm−1
i=n ‖vi+1(t) − vi(t)‖

≤ Σm−1
i=n (1 + εi+1)φ2(t)‖ai+1(t) − ai(t)‖
+ Σm−1

i=n (1 + εi+1)φ1(t)‖bi+1(t) − bi(t)‖
≤ 2φ(t)Σm−1

i=n ‖(ai+1(t), bi+1(t)) − (ai(t), bi(t))‖+

=
2φ(t)ϑn

ϑN(1 − ϑ)
‖(aN+1(t), bN+1(t)) − (aN(t), bN(t))‖+,

(3.34)
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where φ(t) = max{φ1(t), φ2(t)}, for each t ∈ Ω. This implies that {(un(t), vn(t))} is a Cauchy
sequence in (H1 ×H2, ‖ · ‖+), for all t ∈ Ω. Therefore, there exist u(t) ∈ H1 and v(t) ∈ H2 such
that un(t) → u(t) and vn(t) → v(t) as n → ∞, for each t ∈ Ω. Furthermore,

inf
{∥∥u(t) − u′(t)

∥∥ : u′(t) ∈ U(t, a(t))
} ≤ ‖u(t) − un(t)‖ + inf

u(t)∈U(t,a(t))
‖un(t) − u(t)‖

≤ ‖u(t) − un(t)‖ +D(U(t, an(t)), U(t, a(t)))

≤ ‖u(t) − un(t)‖ + φ1(t)‖an(t) − a(t)‖.
(3.35)

Since un(t) → u(t) and an(t) → a(t) as n → ∞, we have from the closedness property of
U(t, a(t)) and (3.35) that u(t) ∈ U(t, a(t)), for all t ∈ Ω. Similarly, we can show that v(t) ∈
V (t, b(t)), for all t ∈ Ω.

Finally, in view of (3.15) and applying the continuity of Ai, F,G and J
ηi,Mi

ρi,Ai
, for i = 1, 2,

we see that

a(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), v(t))

]
,

b(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b(t)) − ρ2(t)G(t, u(t), b(t))

]
,

(3.36)

for all t ∈ Ω. Thus Lemma 3.1(ii) implies that (a, b, u, v) is a solution to problem (2.2). This
completes the proof.

In particular, we have the following result.

Theorem 3.3. Let U : Ω × H1 → H1 and V : Ω × H2 → H2 be two random single-valued
mappings. Assume that Assumption A holds and there exist measurable functions ρ1, ρ2 satisfing
(3.11). Then problem (2.3) has a unique solution.

Proof. From Theorem 3.2, we know that the problem (2.3) has a solution. So it remains to
prove that, in fact, it has the unique solution. Assume that a, a∗ : Ω → H1 and b, b∗ : Ω → H2

such that (a, b), (a∗, b∗) are solutions of the problem (2.3). Using the same lines as obtaining
(3.20) and (3.22), by replacing an with a and an+1 with a∗, we have

‖a(t) − a∗(t)‖ ≤ Δ1(t)‖a(t) − a∗(t)‖ + τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

‖b(t) − b∗(t)‖, ∀t ∈ Ω, (3.37)

and, by replacing bn with b and bn+1 with b∗, we obtain that

‖b(t) − b∗(t)‖ ≤ Δ2(t)‖b(t) − b∗(t)‖ + τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

‖a(t) − a∗(t)‖, ∀t ∈ Ω, (3.38)
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whereΔ1(t) andΔ2(t) are defined as in (3.21) and (3.23), respectively. From (3.37) and (3.38),
we get

‖(a(t), b(t)) − (a∗(t), b∗(t))‖+ ≤
[
Δ1(t) +

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

]
‖a(t) − a∗(t)‖

+
[
Δ2(t) +

τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

]
‖b(t) − b∗(t)‖

≤ θ(t)‖(a(t), b(t)) − (a∗(t), b∗(t))‖+, ∀t ∈ Ω,

(3.39)

where θ(t) is defined as in (3.30). Since 0 < θ(t) < 1, it follows that (a(t), b(t)) = (a∗(t), b∗(t)),
for all t ∈ Ω. This completes the proof.

4. Stability Analysis

In the proof of Theorem 3.3, in fact, we have constructed a sequence of measurable
mappings {(an, bn)} and show that its limit point is nothing but the unique element of
SRSI(M1,M2)(F,G,U, V ). In this section, we will consider the stability of such a constructed
sequence.

We start with a definition for stability analysis.

Definition 4.1. Let H1,H2 be real Hilbert spaces. Let Q : Ω × H1 × H2 → H1 ×
H2, (a0(t), b0(t)) ∈ H1 × H2, and let (an+1(t), bn+1(t)) = h(Q, an(t), bn(t)) define an iterative
procedure which yields a sequence of points {(an(t), bn(t))} inH1×H2, where h is an iterative
procedure involving the mapping Q. Let F(Q) = {(a, b) ∈ MH1 × MH2 : Q(t, a(t), b(t)) =
(a(t), b(t)), for all t ∈ Ω}/= ∅ and that {(an, bn)} converges to a random fixed point (a, b) of
Q. Let {(xn, yn)} be an arbitrary sequence in MH1 ×MH2 and let δn(t) = ‖(xn+1(t), yn+1(t)) −
h(Q,xn(t), yn(t))‖, for each n ≥ 0 and t ∈ Ω. For each t ∈ Ω, if limn→∞δn(t) = 0
implies that limn→∞(xn(t), yn(t)) → (a(t), b(t)), then the iteration procedure defined by
(an+1(t), bn+1(t)) = h(Q, an(t), bn(t)) is said to be Q-stable or stable with respect to Q.

Let F,G,Mi, ηi, Ai, and ρi, for i = 1, 2, be random mappings defined as in Theorem 3.2.
Now, for each t ∈ Ω, if {(xn(t), yn(t))} is any sequence in H1 × H2. We will consider the
sequence {(Sn(t), Tn(t))}, which is defined by

Sn(t) = J
η1t ,M1t
ρ1(t),A1t

[
A1(t, xn(t)) − ρ1(t)F

(
t, xn(t), V

(
t, yn(t)

))]
,

Tn(t) = J
η2t ,M2t
ρ2(t),A2t

[
A2

(
t, yn(t)

) − ρ2(t)G
(
t,U(t, xn(t)), yn(t)

)]
,

(4.1)

where U : Ω ×H1 → H1 and V : Ω ×H2 → H2 and t ∈ Ω. Consequently, we put

δn(t) =
∥∥(xn+1(t), yn+1(t)) − (Sn(t), Tn(t))

∥∥+
. (4.2)
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Meanwhile, let Q : Ω ×H1 ×H2 → H1 ×H2 be defined by

Q(t, a(t), b(t)) =
(
J
η1t ,M1t
ρ1(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), b(t))

]
,

J
η2t ,M2t
ρ2(t),A2t

[
A2(t, b(t)) − ρ2(t)G(t, a(t), b(t))

]) (4.3)

for all a ∈ MH1, b ∈ MH2, t ∈ Ω. In view of Lemma 3.1, we see that (a, b) ∈
SRSI(M1,M2)(F,G,U, V ) if and only if (a, b) ∈ F(Q).

Now, we prove the stability of the sequence {(an, bn)} with respect to mapping Q,
defined by (4.3).

Theorem 4.2. Assume that AssumptionA holds and there exist ρ1, ρ2 satisfing (3.11). Then for each
t ∈ Ω, we have limn→∞δn(t) = 0 if and only if limn→∞(xn(t), yn(t)) = (a(t), b(t)), where δn(t) are
defined by (4.2) and (a(t), b(t)) ∈ F(Q).

Proof. According to Theorem 3.3, the solution set SRSI(M1,M2)(F,G,U, V ) of problem (2.3) is a
singleton set, that is, SRSI(M1,M2)(F,G,U, V ) = {(a, b)}. For each t ∈ Ω, let {(xn(t), yn(t))} be
any sequence inH1 ×H2. By (4.1) and (4.2), we have

∥∥(xn+1(t), yn+1(t)) − (a(t), b(t))
∥∥+

≤ ∥∥(xn+1(t), yn+1(t)) − (Sn(t), Tn(t))
∥∥+ + ‖(Sn(t), Tn(t)) − (a(t), b(t))‖+

= ‖(Sn(t), Tn(t)) − (a(t), b(t))‖+ + δn(t)

=
∥∥∥Jη1t ,M1t

ρ1(t),A1t

[
A1(t, xn(t)) − ρ1(t)F

(
t, xn(t), V

(
t, yn(t)

))] − a(t)
∥∥∥

+
∥∥∥Jη2t ,M2t

ρ2(t),A2t

[
A2

(
t, yn(t)

) − ρ2(t)G
(
t,U(t, xn(t)), yn(t)

)] − b(t)
∥∥∥ + δn(t).

(4.4)

Since J
η1,M1

ρ1,A1
is a random τ1/(r1 − ρ1m1)-Lipschitz continuous mapping, by Assumptions

A(c),A(f) and Lemma 3.1(i), we get

∥∥∥Jη1t ,M1t
ρ1(t),A1t

[
A1(t, xn(t)) − ρ1(t)F

(
t, xn(t), V

(
t, yn(t)

))] − a(t)
∥∥∥

=
∥∥∥Jη1t ,M1t

ρ1(t),A1t

[
A1(t, xn(t)) − ρ1(t)F

(
t, xn(t), V

(
t, yn(t)

))]
−Jη1t ,M1t

ρ2(t),A1t

[
A1(t, a(t)) − ρ1(t)F(t, a(t), V (t, b(t)))

]∥∥∥
≤ τ1(t)

r1(t) − ρ1(t)m1(t)

× ∥∥A1(t, xn(t)) −A1(t, a(t)) − ρ1(t)
[
F
(
t, xn(t), V

(
t, yn(t)

)) − F(t, a(t), V (t, b(t)))
]∥∥

≤ τ1(t)
r1(t) − ρ1(t)m1(t)

× ∥∥A1(t, xn(t)) −A1(t, a(t)) − ρ1(t)
[
F
(
t, xn(t), V

(
t, yn(t)

)) − F
(
t, a(t), V

(
t, yn(t)

))]∥∥
+

ρ1(t)τ1(t)
r1(t) − ρ1(t)m1(t)

∥∥F(t, a(t), V (
t, yn(t)

)) − F(t, a(t), V (t, b(t)))
∥∥.

(4.5)
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On the other hand, by Assumptions A(c) and A(f), we see that

∥∥A1(t, xn(t)) −A1(t, a(t)) − ρ1(t)
[
F(t, xn(t), V (t, yn(t))) − F(t, a(t), V (t, yn(t)))

]∥∥2

= ‖A1(t, xn(t)) −A1(t, a(t))‖2

− 2ρ1(t)
〈
F
(
t, xn(t), V

(
t, yn(t)

)) − F
(
t, a(t), V

(
t, yn(t)

))
, A1(t, xn(t)) −A1(t, a(t))

〉
+ ρ21(t)

∥∥F(t, xn(t), V (t, yn(t))) − F(t, a(t), V (t, yn(t)))
∥∥2

≤ β21(t)‖xn(t) − a(t)‖2 + 2ρ1(t)c1(t)
∥∥F(t, xn(t), V (t, yn(t))) − F(t, a(t), V (t, yn(t)))

∥∥2

− 2ρ1(t)μ1(t)‖xn(t) − a(t)‖2

+ ρ21(t)
∥∥F(t, xn(t), V (t, yn(t))) − F(t, a(t), V (t, yn(t)))

∥∥2

=
[
β21(t) − 2ρ1(t)μ1(t)

]
‖xn(t) − a(t)‖2 +

[
2ρ1(t)c1(t) + ρ21(t)

]

× ∥∥F(t, xn(t), V (t, yn(t))) − F(t, a(t), V (t, yn(t)))
∥∥2

≤
[
β21(t) − 2ρ1(t)μ1(t)

]
‖xn(t) − a(t)‖2 +

[
2ρ1(t)c1(t) + ρ21(t)

]
α2
1(t)‖xn(t) − a(t)‖2

≤
[
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)

]
‖xn(t) − a(t)‖2.

(4.6)

This gives

∥∥A1(t, xn(t)) −A1(t, a(t)) − ρ1(t)
[
F
(
t, xn(t), V

(
t, yn(t)

)) − F
(
t, a(t), V

(
t, yn(t)

))]∥∥
≤
√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)‖xn(t) − a(t)‖.

(4.7)

Meanwhile, since F is a random ζ1-Lipschitz continuous mapping in the second
argument, we get

∥∥F(t, a(t), V (
t, yn(t)

)) − F(t, a(t), V (t, b(t)))
∥∥ ≤ ζ1(t)φ2(t)

∥∥yn(t) − b(t)
∥∥. (4.8)

From (4.5)–(4.8), we obtain that

∥∥∥Jη1t ,M1t
ρ1(t),A1t

[
A1(t, xn(t)) − ρ1(t)F

(
t, xn(t), V

(
t, yn(t)

))] − a(t)
∥∥∥

≤
τ1(t)

√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t)

r1(t) − ρ1(t)m1(t)
‖xn(t) − a(t)‖

+
ρ1(t)τ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

∥∥yn(t) − b(t)
∥∥,

(4.9)
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where

Δ1(t) =
τ1(t)

r1(t) − ρ1(t)m1(t)

√
β21(t) − 2ρ1(t)μ1(t) + 2ρ1(t)c1(t)α2

1(t) + ρ21(t)α
2
1(t). (4.10)

Similarly, since J
η2,M2

ρ2,A2
is a random τ2/(r2 − ρ2m2)-Lipschitz continuous mapping, by

Assumption A(c),A(g), and Lemma 3.1, we obtain that

∥∥∥Jη2t ,M2t
ρ2(t),A2t

[
A2

(
t, yn(t)

) − ρ2(t)G
(
t,U(t, xn(t)), yn(t)

)] − b(t)
∥∥∥

≤ Δ2(t)
∥∥yn(t) − b(t)

∥∥ +
τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

‖xn(t) − a(t)‖,
(4.11)

where

Δ2(t) =
τ2(t)

r2(t) − ρ2(t)m2(t)

√
β22(t) − 2ρ2(t)μ2(t) + 2ρ2(t)c2(t)α2

2(t) + ρ22(t)α
2
2(t). (4.12)

Thus

∥∥(xn+1(t), yn+1(t)) − (a(t), b(t))
∥∥+ ≤

[
Δ1(t) +

τ2(t)ρ2(t)ζ2(t)φ1(t)
r2(t) − ρ2(t)m2(t)

]
‖xn(t) − a(t)‖

+
[
Δ2(t) +

τ1(t)ρ1(t)ζ1(t)φ2(t)
r1(t) − ρ1(t)m1(t)

]∥∥yn(t) − b(t)
∥∥

≤ θ(t)
∥∥(xn(t), yn(t)) − (a(t), b(t))

∥∥+ + δn(t)

= (1 − (1 − θ(t)))
∥∥(xn(t), yn(t)) − (a(t), b(t))

∥∥+ + δn(t),
(4.13)

where θ(t) = max{Δ1(t) + τ2(t)ρ2(t)ζ2(t)φ1(t)/(r2(t) − ρ2(t)m2(t)),Δ2(t) +
τ1(t)ρ1(t)ζ1(t)φ2(t)/(r1(t) − ρ1(t)m1(t))}, for all t ∈ Ω.

So

∥∥(xn+1(t), yn+1(t)) − (a(t), b(t))
∥∥+

≤ (1 − (1 − θ(t)))
∥∥(xn(t), yn(t)) − (a(t), b(t))

∥∥+ + (1 − θ(t)) · δn(t)
(1 − θ(t))

.
(4.14)

In view of (4.14), if limn→∞δn(t) = 0, we see that Lemma 2.14 implies

lim
n→∞

(
xn(t), yn(t)

)
= (a(t), b(t)). (4.15)

On the other hand, by using (4.5) and (4.11), we see that

δn(t) ≤
∥∥(xn+1(t), yn+1(t)) − (Sn(t), Tn(t))

∥∥+

≤ ∥∥(xn+1(t), yn+1(t)) − (a(t), b(t))
∥∥+ + ‖(a(t), b(t)) − (Sn(t), Tn(t))‖+

≤ ∥∥(xn+1(t), yn+1(t)) − (a(t), b(t))
∥∥+ + θ(t)

∥∥(xn(t), yn(t)) − (a(t), b(t))
∥∥+

(4.16)
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for all t ∈ Ω. Consequently, if for each t ∈ Ω we assume limn→∞(xn(t), yn(t)) = (a(t), b(t)),
we will have limn→∞δn(t) = 0. This completes the proof.

Remark 4.3. Theorem 4.2 shows that the iterative sequence {(an, bn)}, which has constructed
in Theorem 3.3, is Q-stable.

5. Conclusion

We have introduced a new system of set-valued random variational inclusions involving
(A,m, η)-monotone operator and random relaxed cocoercive operators in Hilbert space. By
using the resolvent operator technique, we have constructed an iterative algorithm and
then the approximation solvability of a aforesaid problem is examined. Moreover, we have
considered the stability of such iterative algorithm. It is worth noting that for a suitable
and appropriate choice of the operators, as F,G,M, η,A, one can obtain a large number of
various classes of variational inequalities; this means that problem (2.2) is quite general and
unifying. Consequently, the results presented in this paper are very interesting and improve
some known corresponding results in the literature.
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