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This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic
systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional
(LKF) has been constructed to derive improved delay-dependent robust mean-square exponential
stability criteria, which are forms of linear matrix inequalities (LMIs). By free-weight matrices
method, the usual restriction that the stability conditions only bear slow-varying derivative of the
delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the
proposed method.

1. Introduction
Dynamical systems, such as the distributed networks, electric power systems, and com-
munication systems, can be efficiently modeled by neutral stochastic functional differential
equations, which have been extensively studied in recent years, see [1–8] and references
therein. Basically, sufficient conditions on stability of time delay systems are divided into
two categories: delay-dependent and delay-independent cases. It is well known that the
latter is less conservative than the former, especially when the delay is very small. Therefore,
increasing attention has been focused on delay-dependent stability analysis of delay systems
in recent years, see [1–25].

There are unstable systems without delay that can be stabilized with proper nonzero
delay, see [26]. Therefore, it is of great significance to consider the stability of systems with
interval time-varying delay, it is a time delay that varies in an interval, in which the lower
bound is not restricted to 0. Recently, interval time-varying delay was introduced and
investigated, see [11–17].
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In the past years, as an effective approach of improving the performance of delay-
dependent stability criteria, free-weighting matrices method has attracted much attention,
see [2–5, 10–12]. Themean-square exponential stability was studied for neutral stochastic sys-
tems with fixed delays in [2, 3]. The global asymptotic stability for a class of neutral stochastic
neural networks was studied in [4]. Improved delay-dependent robust stability criteria of
uncertain stochastic systems with interval time-varying delay were proposed in [12].

The usual restriction on derivative of the time-varying delay that τ̇(t) < 1 in [5–7, 18]
brings conservatism, which shows that the resulting conditions can only bear slow-varying
delay. In order to remove this limitation, fast-varying rate condition was studied in [4, 12, 23].

Stability of stochastic differential delay systems with nonlinear impulsive effects is
studied in [24, 25], the equivalent relations are established between the stability of the
stochastic differential delay equations with impulsive effects and that of a corresponding
stochastic differential delay equations without impulses.

To our best knowledge, few works on the robust delay-dependent exponential
stability analysis have been reported for uncertain neutral stochastic distributed system
with fast-varying interval time-varying delay. This paper focuses on the stability analysis
of uncertain neutral stochastic distributed system with interval time-varying delay. By
Lyapunov-Krasovskii functional theory and free-weighting matrices method, a new delay-
dependent mean-square exponential stability criterion is formulated in terms of LMI, and
the usual restriction of τ̇(t) < 1 is removed. Finally, three numerical example are given to
illustrate the effectiveness of the proposed method.

Notation 1. Throughout this paper, the notations are standard. If A is a vector or matrix, its
transpose is denoted by AT . P > 0 means that P is a symmetric positive definite matrix.
∗ denotes the symmetry part of a symmetry matrix. � indicates terms that can be induced
by symmetry, for example, A + AT = A + � and MPMT = MP�. Denote by λM{·} and
λm{·} the maximum and minimum eigenvalue of a matrix, respectively. Let ρ(·) denote the
spectral norm of a matrix, while | · | refers to the Euclidean vector norm. Let (Ω,F,P) be
a complete probability space relative to an increasing family {F}t≥0 of σ algebras Ft ⊂ F
and E{·} the mathematical expectation operator with respect to the probability measure P.
L2[0,∞) denotes the space of square integrable vector functions over [0,∞). Let τ > 0 and
C([−τ, 0],Rn) denote the family of all continuous Rn-valued functions φ on [−τ, 0] with the
norm ‖φ‖ = sup{|φ(θ)| : −τ � θ ≤ 0}. Let L2

F0
([−τ, 0]; Rn) be the family of all F0-measurable

bounded C([−τ, 0],Rn)-valued random variables ϕ = {ϕ(θ) : −τ � θ � 0}.

2. Preliminaries

Consider the following uncertain Itô-type neutral stochastic system with both discrete and
distributed interval time-varying delays

(Σ) : d[x(t) −Dx(tτ)]

=

{
[A0 + ΔA0(t)]x(t) + [A1 + ΔA1(t)]x(tτ) + [A2 + ΔA2(t)]

∫ t

tτ

x(s)ds

}

+

{
[B0 + ΔB0(t)]x(t) + [B1 + ΔB1(t)]x(tτ) + [B2 + ΔB2(t)]

∫ t

tτ

x(s)ds

}
dB(t),

(2.1)

x(t) = φ(t), t ∈ [−τ2, 0], (2.2)
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where x(t) ∈ Rn is the state vector; B(t) is a standard scalar Brownian motion defined on a
complete probability space (Ω,F,P), we assume E{dB(t)} = 0,E{d2B(t)} = dt. φ(t) is any
given initial data in L2

F0
([−τ, 0]; Rn). Denote η(t) = x(t) −Dx(tτ), tτ = t − τ(t), tτ1 = t − τ1, tτ2 =

t − τ2, τ(t) is time-varying delays, satisfying

τ̇(t) � τ < +∞, 0 � τ1 � τ(t) � τ2 < +∞, δ = τ2 − τ1. (2.3)

Remark 2.1. It should be noted that system (2.1)-(2.2) encompasses many state space
models of neutral delay systems, which can be used to represent many important physical
systems such as a large class of distributed networks containing lossless transmission lines,
population ecology, heat exchangers, wind tunnel, and water resources systems (see [27–
29] and the references therein). For example, signal transformation cannot be finished in
time due to the finite signal propagation speed in distributed networks containing lossless
transmission lines, or to the finite switching speed of amplifiers in electronic networks, so the
models only depending on the discrete time delays are not complete, the more exact models
should include the distributed time delays, and the delays are found both in the states and in
the derivatives of the states.

Remark 2.2. It is worth pointing out that, when a time-varying delay appears, it is usually
assumed that τ̇(t) < 1 is satisfied and the lower bound of the delay is restricted to be zero
in the literature [5, 7, 8] and so forth. However, in this paper, we only require τ̇(t) � τ , in
addition, the range of delay may vary in a range for which the lower bound is not restricted
to be zero. Therefore, the time-varying delay in this paper is more general.

Ai, Bj , i, j = 0, 1, 2, are known real constant matrices of appropriate dimensions;
ΔAi,ΔBj , i, j = 0, 1, 2, are unknown matrices representing time-varying parameter uncer-
tainties. For the sake of convenience, we assume that the uncertainties are norm-bounded
and can be described as

(
ΔAi(t) ΔBi(t)

)
= GF(t)

(
Si Ti

)
, (2.4)

where Si, Ti, i = 0, 1, 2, are known real constant matrices, F(t) is an unknown real time-
varying function with appropriate dimension satisfying

FT(t)F(t) � I. (2.5)

It is assumed that the elements of F(t) are Lebesgue measurable. Throughout this paper, the
following assumption, definitions, and lemmas will be used to develop our results.

Assumption 2.3. The difference operator matrix D satisfies ‖D‖ < 1.

Definition 2.4 (see [1]). The neutral stochastic delay system (2.1)-(2.2) is said to be mean-
square exponentially stable if there is a pair of positive constants α, β such that

E

{
xT(t)x(t)

}
� αe−βt sup

−τ2�θ�0
E

{
φ(θ)

}
. (2.6)



4 Journal of Applied Mathematics

Lemma 2.5 (see [30]). If there exists a vector function v(t) : [0, r] → Rn such that∫r
0 v

T(s)Pv(s) ds and
∫ r
0 v(s) ds are well defined, then the following inequality:

[∫ r

0
v(s)ds

]T
P

[∫ r

0
v(s)ds

]
� r

∫ r

0
vT(s)Pv(s)ds (2.7)

holds for any pair of symmetric positive definite matrix P ∈ R n×n and r > 0.

Lemma 2.6 (see [31]). For any vectors x, y ∈ Rn, matrices A,D,E, P , and F are real matrices of
appropriate dimensions with P > 0 and FTF � I, the following inequalities hold:

(1) 2xTDFEy � ε−1xTDDTx + εyTEETy;

(2) for any scalar ε > 0 such that P − εDDT > 0, then (A + DFE)TP−1(A + DFE) �
ε−1ETE +AT(P − εDDT)−1A;

(3) 2xTy � xTP−1x + yTPy.

3. Main Results

In this section, a robustly stochastically exponentially stable criterion for the uncertain linear
neutral stochastic distributed delayed system (Σ)will be established by applying the Lyapun-
ov-Krasovskii theory and free-weighting matrices method.

For convenience, define a new state variable

f(t) = (A0 + ΔA0(t))x(t) + (A1 + ΔA1(t))x(tτ) + (A2 + ΔA2(t))
∫ t

tτ

x(s)ds (3.1)

and a new perturbation variable

g(t) = (B0 + ΔB0(t))x(t) + (B1 + ΔB1(t))x(tτ) + (B2 + ΔB2(t))
∫ t

tτ

x(s)ds. (3.2)

Then, system (2.1) becomes

d[x(t) −Dx(tτ)] = f(t)dt + g(t)dB(t). (3.3)
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Applying Leibniz-Newton formula to (2.1), it yields the following zero equations which will
be used in our main result:

2ξT(t)N

[
x(t) −Dx(tτ) − x(tτ) +Dx(tτ − τ(tτ)) −

∫ t

tτ

f(s)ds −
∫ t

tτ

g(s)dB(s)

]
= 0,

2ξT(t)H

[
x(tτ1) −Dx(tτ1 − τ(tτ1)) − x(tτ) +Dx(tτ − τ(tτ)) −

∫ tτ1

tτ

f(s)ds −
∫ tτ1

tτ

g(s)dB(s)

]
= 0,

2ξT(t)M

[
x(tτ) −Dx(tτ − τ(tτ)) − x(tτ2) +Dx(tτ2 − τ(tτ2)) −

∫ tτ

tτ2

f(s)ds −
∫ tτ

tτ2

g(s)dB(s)

]
= 0,

(3.4)

where N,H, and M are any matrices with appropriate dimensions, and

ξT(t) =

[
xT(t), xT(tτ),

1
τ2

∫ t

tτ

xT(s)ds, xT(tτ1), x
T(tτ2),

xT(tτ1 − τ(tτ1)), x
T(tτ2 − τ(tτ2)), x

T(tτ − τ(tτ))

]
.

(3.5)

With zero equations (3.4) above, we obtain the following theorem.

Theorem 3.1. For given scalars 0 � τ1 � τ2 and τ , system (Σ) is robustly stochastically
exponentially stable for all time-varying delays satisfying (2.3) and for all admissible uncertainties
satisfying (2.4) and (2.5), if there exist symmetric positive definite matrices P > 0, Ri > 0, i =
0, 1, 2, . . . , 10, scalars εj , j = 1, 2, 3 and any matrices N,H,M with appropriate dimensions, such
that the following LMI (3.6) holds:

Φ =
(
Φ1 Φ2

∗ Φ3

)
< 0, (3.6)

where

Φ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Θ PG V T
1 Z 0 V T

2 U 0
∗ −ε1I 0 0 0 0
∗ ∗ −Z ZG 0 0
∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ −U UG
∗ ∗ ∗ ∗ ∗ −ε3I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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Φ2 =
(
N H M N H M

)
,

Φ3 = diag =
{−R7 −R8 −R7 − R8 −R9 −R10 −R9 − R10

}
.

Θ = Γ + Ψ + ΨT, V1 =
[
A0 A1 A2 0 0 0 0 0

]
, V2 =

[
B0 B1 B2 0 0 0 0 0

]
,

P =
[
P −PD 0 0 0 0 0 0

]T
, Z = τ2R7 + δR8, U = P + τ2R9 + δR10,

N =
[
NT, 0, 0, 0, 0, 0

]T
, H =

[
HT, 0, 0, 0, 0, 0

]T
, M =

[
MT, 0, 0, 0, 0, 0

]T
,

(3.7)

with

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ11 Γ12 Γ13 0 0 0 0 0
∗ Γ22 Γ23 0 0 0 0 0
∗ ∗ Γ33 0 0 0 0 0
∗ ∗ ∗ −R1 0 0 0 0
∗ ∗ ∗ ∗ −R3 0 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ψ =
(
N (M −H) −N(D + I) 0 H −M −HD MD (N +H −M)D

)
,

Γ11 = PA0 +AT
0P + R1 + R2 + R3 + τ2R0 + (ε1 + ε2)ST

0S0 + ε3T
T
0 T0,

Γ12 = PA1 −AT
0PD + (ε1 + ε2)ST

0S1 + ε3T
T
0 T1, Γ13 = PA2 + (ε1 + ε2)ST

0S2 + ε3T
T
0 T2,

Γ22 = R4 + R5 + R6 − (1 − τ)R2 −DTPA1 −AT
1PD + (ε1 + ε2)ST

1S1 + ε3T
T
1 T1,

Γ23 = −DTPA2 + (ε1 + ε2)ST
1S2 + ε3T

T
1 T2, Γ33 = −τ2R0 + (ε1 + ε2)ST

2S2 + ε3T
T
2 T2,

Γ66 = R4, Γ77 = R6, Γ88 = (1 − τ)R5.

(3.8)

Proof. Choose a Lyapunov-Krasovskii functional candidate as

V (t, ξt) =
4∑
i=0

Vi(t, ξt), (3.9)

where

V0(t, xt) = [x(t) −Dx(tτ)]TP[x(t) −Dx(tτ)];

V1(t, xt) =
∫ t

tτ1

(
x(s)

x(s − τ(s))

)T(
R1 0
0 R4

)(
x(s)

x(s − τ(s))

)
ds
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+
∫ t

tτ

(
x(s)

x(s − τ(s))

)T(
R2 0
0 R5

)(
x(s)

x(s − τ(s))

)
ds

+
∫ t

tτ2

(
x(s)

x(s − τ(s))

)T(
R3 0
0 R6

)(
x(s)

x(s − τ(s))

)
ds;

V2(t, xt) =
∫ t

tτ2

[s − (t − τ2)]xT(s)R0x(s)ds;

V3(t, xt) = τ2

∫0

−τ2

∫ t

t+θ
fT(s)R7f(s)dsdθ + δ

∫−τ1

−τ2

∫ t

t+θ
fT(s)R8f(s)dsdθ;

V4(t, xt) =
∫0

−τ2

∫ t

t+θ
tr
(
gT(s)R9g(s)

)
dsdθ +

∫−τ1

−τ2

∫ t

t+θ
tr
(
gT(s)R10g(s)

)
dsdθ.

(3.10)

According to Itô’s differential formula [1], the stochastic differential is

dV (t, xt) = LV (t, xt)dt + 2[x(t) −Dx(tτ)]TPg(t)dB(t), (3.11)

where

LV (t, xt)dt = 2[x(t) −Dx(tτ)]TPf(t) + g(t)TPg(t) +
4∑
i=1

V̇i(t, xt). (3.12)

Direct computations give

V̇1(t, xt) � xT(t)(R1 + R2 + R3)x(t) − xT(tτ1)R1x(tτ1) − xT(tτ2)R3x(tτ2)

+ xT(tτ)(R4 + R5 + R6 − (1 − τ)R2)x(tτ)

− xT(tτ1 − τ(tτ1))R4x(tτ1 − τ(tτ1))

− (1 − τ)xT(tτ − τ(tτ))R5x(tτ − τ(tτ))

− xT(tτ2 − τ(tτ2))R6x(tτ2 − τ(tτ2))
{
by τ̇(t) � τ

}
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V̇2(t, xt) � τ2x
T(t)R0x(t) −

∫ t

tτ

xT(s)R0x(s)ds

≤ τ2x
T(t)R0x(t) −

(
1
τ2

∫ t

tτ

x(s)ds

)T

(τ2R0)

(
1
τ2

∫ t

tτ

x(s)ds

)
; by Lemma 2.5,

V̇3(t, xt) = fT(t)T
(
τ22R7 + δ2R8

)
f(t)

− τ2

∫ t

tτ2

fT(s)TR7f(s)ds − δ

∫ tτ1

tτ2

fT(s)TR8f(s)ds;

V̇4(t, xt) = tr
(
gT(t)T(τ2R9 + δR10)g(t)

)

−
∫ t

tτ2

tr
(
gT(s)TR9g(s)

)
ds −

∫ tτ1

tτ2

tr
(
gT(s)TR10g(s)

)
ds.

(3.13)

By (1) of Lemma 2.6, for any scalar ε1 > 0, we have

2[x(t) −Dx(tτ)]TPf(t) = 2ξT(t)PV1ξ(t) + 2ξT(t)PGF(t)V3ξ(t)

≤ 2ξT(t)PV1ξ(t) + ε−11 ξT(t)PG � +ε1ξT(t)V T
3 �,

(3.14)

and by (2) of Lemma 2.6, for any ε2 > 0 satisfying [τ22R7 + δ2R8]
−1 − ε−12 GGT > 0, we have

fT(t)
[
τ22R7 + δ2R8

]
f(t) = ξT(t)(V1 +GF(t)V3)TZ�

≤ ξT(t)V T
1

[
Z−1 − ε−12 GGT

]−1
� +ε2ξT(t)V T

3 � .

(3.15)

For any scalar ε3 > 0 satisfying [τ2R9 + δR10]
−1 − ε−13 GGT > 0, the following inequality holds:

tr
(
gT(t)[P + τ2R9 + δR10]g(t)

)
= gT(t)[P + τ2R9 + δR10]g(t)

= ξT(t)(V2 +GF(t)V4)TU�

≤ ξT(t)V T
2

[
U−1 − ε−13 GGT

]−1
� +ε3ξT(t)V T

4 � .

(3.16)
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In addition, it follows from (3.4), (3) of Lemma 2.6 and Lemma 2.5 that

−2ξT(t)N
∫ t

tτ

f(s)ds � ξT(t)NR−1
7 � +

(∫ t

tτ

f(s)ds

)T

R7�

� ξT(t)NR−1
7 � +τ2

∫ t

tτ

fT(s)R7f(s)ds,

−2ξT(t)H
∫ tτ1

tτ

f(s)ds � ξT(t)HR−1
8 � +

(∫ tτ1

tτ

f(s)ds

)T

R8�

� ξT(t)HR−1
8 � +δ

∫ tτ1

tτ

fT(s)R8f(s)ds,

− 2ξT(t)M
∫ tτ

tτ2

f(s)ds

� ξT(t)M(R7 + R8)−1 � +

(∫ tτ

tτ2

f(s)ds

)T

(R7 + R8)�

≤ ξT(t)M(R7 + R8)−1 � +
∫ tτ

tτ2

fT(s)(τ2R7 + δR8)f(s)ds,

−2ξT(t)N
∫ t

tτ

g(s)dB(s) ≤ ξT(t)NR−1
9 � +

(∫ t

tτ

g(s)dB(s)

)T

R9�,

−2ξT(t)H
∫ tτ1

tτ

g(s)dB(s) ≤ ξT(t)HR−1
10 � +

(∫ tτ1

tτ

g(s)dB(s)

)T

R10�,

−2ξT(t)M
∫ tτ

tτ2

g(s)dB(s) ≤ ξT(t)M(R9 + R10)−1�

+

(∫ tτ

tτ2

g(s)dB(s)

)T

(R9 + R10) � .

(3.17)

Note that

E

⎧⎨
⎩
(∫ t

tτ

g(s)dB(s)

)T

R9�

⎫⎬
⎭ =

∫ t

tτ

tr
(
gT(s)R9g(s)

)
ds,

E

⎧⎨
⎩
(∫ tτ1

tτ

g(s)dB(s)

)T

R10�

⎫⎬
⎭ =

∫ tτ1

tτ

(
gT(s)R10g(s)

)
ds, (3.18)
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E

⎧⎨
⎩
(∫ tτ

tτ2

g(s)dB(s)

)T

(R9 + R10)�

⎫⎬
⎭ =

∫ tτ

tτ2

(
gT(s)(R9 + R10)g(s)

)
ds. (3.19)

Applying inequalities from (3.13) to (3.19) to (3.12), it yields

LωV (t, ξt) � ξT(t)Λξ(t), (3.20)

where

Λ = Θ + ε−11 PG
(
PG
)T

+ V T
1

[
Z−1 − ε−12 GGT

]−1
V1 + V T

2

[
U−1 − ε−13 GGT

]−1
V2

+N
(
R−1

7 + R−1
9

)
NT +H

(
R−1

8 + R−1
10

)
HT +M

(
(R7 + R8)−1 + (R9 + R10)−1

)
MT

(3.21)

with Θ being defined in Theorem 3.1.
By applying the Schur complement to (3.6) results in Λ < 0, which implies

LV (t, xt) � ξT(t)Λξ(t) < 0 (3.22)

therefore,

LV (t, xt) � −νξ(t)ξ(t) � −νxT(t)x(t), (3.23)

where ν = λm{−Λ}. Now, integrating both sides of (3.23) from 0 to t > 0, and then taking the
expectation, we obtain

E

{
V (s, xs) |s=ts=0

}
= E

{∫ t

0
LV (s, xs)ds

}
� −ν

∫ t

0
E

{
xT(s)x(s)

}
ds. (3.24)

On the other hand, it follows from (3.9) that

E{V (t, xt)} ≥ E

{
ηT(t)Pη(t)

}
≥ λm{P}E

{
ηT(t)η(t)

}
. (3.25)

Therefore, by (3.24) and (3.25)

λm{P}E
{
ηT(t)η(t)

}
� E{V (0, x0)} − ν

∫ t

0
E

{
xT(s)x(s)

}
ds. (3.26)
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Since ρ(D) < 1, choose ε > 0 such that eτ2ερ2(D) < 1, which implies ρ2(D) < e−τ2ε < 1, denote
ε0 = e−τ2ε. Let σ be any nonnegative real number. For all 0 � t � σ, it follows from (1) of
Lemma 2.6 that

E

{
ηT(t)η(t)

}
≥ ExT(t)x(t) − 2E

{
xT(t)Dx(tτ)

}
+ ExT(tτ)DTDx(tτ)

≥ (1 − ε0)ExT(t)x(t) −
(
ε−10 − 1

)
ExT(tτ)DTDx(tτ).

(3.27)

Hence

ExT(t)x(t) � 1
1 − ε0

E

{
ηT(t)η(t)

}
+

1
ε0

E

{
xT(tτ)DTDx(tτ)

}
. (3.28)

By (3.25), (3.27), and (3.28), we then derive that for all 0 � t � σ,

ExT(t)x(t) � 1
1 − ε0

sup
0�t�σ

E

{
ηT(t)η(t)

}
+

1
ε0

sup
0�t�σ

E

{
xT(tτ)DTDx(tτ)

}

� 1
(1 − ε0)

sup
0�t�σ

E

{
ηT(t)η(t)

}
+
λM{D′D}

ε0
sup

−τ2�t�σ

E

{
xT(t)x(t)

}

=
1

(1 − ε0)
sup
0�t�σ

E

{
ηT(t)η(t)

}
+
‖D‖2
ε0

sup
−τ2�t�σ

E

{
xT(t)x(t)

}
.

(3.29)

However, this holds for all −τ � t � 0 as well. Therefore,

sup
−τ2�t�σ

E

{
xT(t)x(t)

}
� 1

(1 − ε0)
sup
0�t�σ

E

{
ηT(t)η(t)

}
+
ρ2(D)
ε0

sup
−τ2�t�σ

E

{
xT(t)x(t)

}
. (3.30)

Since ρ2(D) < ε0 and P > 0, we obtain that

(1 − ε0)
(
ε0 − ρ2(D)

)
ε0

sup
−τ2�t�σ

E

{
xT(t)x(t)

}
� sup

0�t�σ

E

{
ηT(t)η(t)

}
. (3.31)

By supremum property,

sup
−τ2�t�σ

E

{
xT(t)x(t)

}
≥ sup

0�t�σ

E

{
xT(t)x(t)

}
. (3.32)

By (3.31) and (3.32),

(1 − ε0)
(
ε0 − ρ2(D)

)
ε0

sup
0�t�σ

E

{
xT(t)x(t)

}
� sup

0�t�σ

E

{
ηT(t)η(t)

}
. (3.33)
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For any t ≥ 0, it follows from (3.26), (3.33) and σ being an arbitrary nonnegative real number
that

sup
t≥0

E

{
xT(t)x(t)

}
� μE{V (0, x0)} − νμ

∫ t

0
E

{
xT(s)x(s)

}
ds. (3.34)

Since σ is an arbitrary nonnegative number, we have

E

{
xT(t)x(t)

}
� μE{V (0, x0)} − νμ

∫ t

0
E

{
xT(s)x(s)

}
ds, ∀t ≥ 0. (3.35)

Then, applying Gronwall-Bellman lemma to (3.35), it yields

E

{
xT(t)x(t)

}
� μE{V (0, x0)}e−νμt. (3.36)

Note that there exists a scalar α > 0 such that

μE{V (0, x0)} � α sup
−τ2�θ�0

E
{
φ(θ)

}
. (3.37)

Denote μ = ε0[(1 − ε0)(ε0 − ρ2(D))λm{P}]−1 > 0, β = νμ > 0, then we have

E

{
xT(t)x(t)

}
� αe−βt sup

−τ2�θ�0
E
{
φ(θ)

}
. (3.38)

By Definition 2.4, system (Σ) is robustly stochastically mean-square exponentially stable.

Remark 3.2. Theorem 3.1 provides a delay-dependent condition with a new Lyapunov-
Krasovskii functional, whichmakes full use of the relationship among the time-varying delay,
its upper and lower bounds, and their difference. It is noted that this condition is obtained by
free-weighting matrices techniques; model transformation is not resorted to in the derivation
of Theorem 3.1. Thus, the conservatism caused by model transformation will be reduced.

If τ1 = τ2 = τ0, then τ = 0, τ(t) = τ0. Applying Leibniz-Newton formula to (2.1), it
yields the following zero equations:

2ζT(t)L

[
x(t) −Dx(t − τ0) − x(t − τ0) +Dx(t − 2τ0) −

∫ t

tτ0

f(s)ds −
∫ t

tτ0

g(s)dB(s)

]
= 0,

(3.39)

where L is any matrices with appropriate dimension, and

ζT(t) =

[
xT(t), xT(t − τ0),

1
τ0

∫ t

t−τ0
xT(s)ds, xT(t − 2τ0)

]
. (3.40)

With zero equations (3.39) above, we obtain the following corollary.
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Corollary 3.3. For given constant delay τ0, system (Σ) is robustly stochastically exponentially stable
for all admissible uncertainties satisfying (2.4) and (2.5), if there exist symmetric positive definite
matrices P0 > 0, Z0 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Z4 > 0, scalars εi, i = 1, 2, 3 and any matrices L
with appropriate dimensions such that the following LMI (3.41) holds:

Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ P 0G τ20W
T
1 Z3 0 τ0W

T
2 Z4 0 L L

∗ −ε1I 0 0 0 0 0 0
∗ ∗ −τ20Z3 τ20Z3G 0 0 0 0
∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ −τ0Z4 τ0Z4G 0 0
∗ ∗ ∗ ∗ ∗ −ε3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z3 0
∗ ∗ ∗ ∗ ∗ ∗I 0 −Z4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.41)

where

Ξ = Π + Υ + ΥT, W1 =
[
A0 A1 A2 0

]
, W2 =

[
B0 B1 B2 0

]
,

P 0 =
[
P0 −DP0 0 0

]T
, L =

[
LT 0 0 0

]T
,

(3.42)

with

Π =

⎛
⎜⎜⎝

Π11 Π12 Π13 0
∗ Π22 Π23 0
∗ ∗ Π33 0
∗ ∗ ∗ −Z2

⎞
⎟⎟⎠, Υ =

(
L −L(D + I) 0 LD

)
,

Π11 = P0A0 +AT
0P0 + Z1 + Z2 + τ0Z0 + (ε1 + ε2)ST

0S0 + ε3T
T
0 T0,

Π12 = P0A1 −AT
0DP0 + (ε1 + ε2)ST

0S1 + ε3T
T
0 T1,

Π13 = P0A2 + (ε1 + ε2)ST
0S2 + ε3T

T
0 T2,

Π22 = − Z1 − P0D
TA1 −AT

1DP0 + (ε1 + ε2)ST
1S1 + ε3T

T
1 T1,

Π23 = − P0D
TA2 + (ε1 + ε2)ST

1S2 + ε3T
T
1 T2, Π33 = −τ0Z0 + (ε1 + ε2)ST

2S2 + ε3T
T
2 T2.

(3.43)

If A2 = B2 = 0,ΔA2(t) = ΔB2(t) = 0, D = 0, then, system (2.1) becomes

dx(t) = f(t)dt + g(t)dB(t), (3.44)

where

f(t) = (A0 + ΔA0(t))x(t) + (A1 + ΔA1(t))x(tτ),

g(t) = (B0 + ΔB0(t))x(t) + (B1 + ΔB1(t))x(tτ).
(3.45)



14 Journal of Applied Mathematics

Applying Leibniz-Newton formula to (3.44), it yields the following zero equations which will
be used in our main result

2ξ̃T(t)N̂

[
x(t) − x(tτ) −

∫ t

tτ

f(s)ds −
∫ t

tτ

g(s)dB(s)

]
= 0,

2ξ̃T(t)Ĥ

[
x(tτ1) − x(tτ) −

∫ tτ1

tτ

f(s)ds −
∫ tτ1

tτ

g(s)dB(s)

]
= 0,

2ξ̃T(t)M̂

[
x(tτ) − x(tτ2) −

∫ tτ

tτ2

f(s)ds −
∫ tτ

tτ2

g(s)dB(s)

]
= 0,

(3.46)

where N,H, and M are any matrices with appropriate dimensions, and

ξ̃T(t) =
[
xT(t), xT(tτ), xT(tτ1), x

T(tτ2)
]
. (3.47)

With zero equation (3.46) above, we obtain the following corollary.

Corollary 3.4. For given scalars 0 � τ1 � τ2 and τ , system (3.44) is robustly stochastically
exponentially stable for all time-varying delays satisfying (2.3) and for all admissible uncertainties
satisfying (2.4) and (2.5), if there exist symmetric positive definite matrices P > 0, Ri > 0, i =
1, 2, . . . , 10, scalars εj , j = 1, 2, 3 and any matrices N̂, Ĥ, M̂ with appropriate dimensions, such that
the following LMI (3.48) holds:

Φ̃ =

(
Φ̃1 Φ̃2

∗ Φ̃3

)
< 0, (3.48)

where

Φ̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Θ P̃G Ṽ T
1 Z 0 Ṽ T

2 U 0
∗ −ε1I 0 0 0 0
∗ ∗ −Z ZG 0 0
∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ −U UG
∗ ∗ ∗ ∗ ∗ −ε3I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Φ̃2 =
(
Ñ H̃ M̃ Ñ H̃ M̃

)
,

Φ̃3 = diag =
{−R7 −R8 −R7 −R8 −R9 −R10 −R9 −R10

}
,

Θ̃ = Γ̃ + Ψ̃ + Ψ̃T, Ṽ1 =
[
A0 A1 0 0

]
, Ṽ2 =

[
B0 B1 0 0

]
,

P̃ =
[
P 0 0 0

]T
, Z = τ2R7 + δR8, U = P + τ2R9 + δR10,

Ñ =
[
N̂T, 0, 0, 0, 0, 0

]T
, H̃ =

[
ĤT, 0, 0, 0, 0, 0

]T
, M̃ =

[
M̂T, 0, 0, 0, 0, 0

]T
,

(3.49)



Journal of Applied Mathematics 15

with

Γ̃ =

⎛
⎜⎜⎜⎝

Γ̃11 Γ̃12 0 0
∗ Γ̃22 0 0
∗ ∗ −R1 0
∗ ∗ ∗ −R3

⎞
⎟⎟⎟⎠,

Ψ̃ =
(
N̂ M̂ − Ĥ − N̂ Ĥ −M̂

)
,

Γ̃11 = PA0 +AT
0P + R1 + R2 + R3 + (ε1 + ε2)ST

0S0 + ε3T
T
0 T0,

Γ̃12 = PA1 + (ε1 + ε2)ST
0S1 + ε3T

T
0 T1, Γ̃22 = −(1 − τ)R2 + (ε1 + ε2)ST

1S1 + ε3T
T
1 T1.

(3.50)

If τ1 = τ2 = τ0, A2 = B2 = 0,ΔAi(t) = ΔBi(t) = 0, i = 0, 1, 2, then τ = 0, τ(t) = τ0 and
(2.1) becomes

d[x(t) −Dx(t − τ0)] = f̂(t)dt + ĝ(t)dB(t), (3.51)

where

f̂(t) = A0x(t) +A1x(t − τ0), ĝ(t) = B0x(t) + B1x(t − τ0). (3.52)

Applying Leibniz-Newton formula to (3.51), it yields the following zero equations

2ςT(t)L̂

[
x(t) −Dx(t − τ0) − x(t − τ0) +Dx(t − 2τ0) −

∫ t

tτ0

f̂(s)ds −
∫ t

tτ0

ĝ(s)dB(s)

]
= 0,

(3.53)

where L̂ is any matrices with appropriate dimension, and

ςT(t) =
[
xT(t), xT(t − τ0), xT(t − 2τ0)

]
. (3.54)

With zero equations (3.53) above, we obtain the following corollary.

Corollary 3.5. For given constant delay τ0, system (3.51) is robustly stochastically exponentially
stable, if there exist symmetric positive definite matrices P0 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Z4 > 0, any
matrices L̂ with appropriate dimensions, such that the following LMI (3.41) holds:

Ω̃ =

⎛
⎜⎜⎜⎜⎜⎝

Ξ̃ τ20W̃
T
1 Z3 τ0W̃

T
2 Z4 L̃ L̃

∗ −τ20Z3 0 0 0
∗ ∗ −τ0Z4 0 0
∗ ∗ ∗ −Z3 0
∗ ∗ ∗ ∗ −Z4

⎞
⎟⎟⎟⎟⎟⎠ < 0, (3.55)
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where

Ξ̃ = Π̃ + Υ̃ + Υ̃T, W̃1 =
[
A0 A1 0

]
, W̃2 =

[
B0 B1 0

]
, L̃ =

[
L̂T 0 0

]T
, (3.56)

with

Π̃ =

⎛
⎜⎝Π̃11 Π̃12 0

∗ Π̃22 0
∗ ∗ −Z2

⎞
⎟⎠, Υ̃ =

(
L̂ −L̂(D + I) L̂D

)
,

Π̃11 = P0A0 +AT
0P0 + Z1 + Z2, Π̃12 = P0A1 −AT

0DP0,

Π̃22 = −Z1 − P0D
TA1 −AT

1DP0.

(3.57)

Deterministic systems may be regarded as special class of stochastic systems, let Bi =
0,ΔBi = 0, i = 0, 1, 2, then system (2.1)-(2.2) becomes the following uncertain neutral system
with both discrete and distributed interval time-varying delays

(Σ0) : ẋ(t) −Dẋ(tτ) = [A0 + ΔA0(t)]x(t) + [A1 + ΔA1(t)]x(tτ) + [A2 + ΔA2(t)]
∫ t

tτ

x(s)ds,

(3.58)

x(t) = φ(t), t ∈ [−τ2, 0]. (3.59)

Applying Leibniz-Newton formula to (3.58), it yields the following zero equations which will
be used in our main result:

2ξT(t)N

[
x(t) −Dx(tτ) − x(tτ) +Dx(tτ − τ(tτ)) −

∫ t

tτ

f(s)ds

]
= 0,

2ξT(t)H

[
x(tτ1) −Dx(tτ1 − τ(tτ1)) − x(tτ) +Dx(tτ − τ(tτ)) −

∫ tτ1

tτ

f(s)ds

]
= 0,

2ξT(t)M

[
x(tτ) −Dx(tτ − τ(tτ)) − x(tτ2) +Dx(tτ2 − τ(tτ2)) −

∫ tτ

tτ2

f(s)ds

]
= 0,

(3.60)

where N, H, and M are any matrices with appropriate dimensions, and ξ(t) is defined in
(3.5). With zero equations (3.60) above, we obtain

Corollary 3.6. For given scalars 0 � τ1 � τ2 and τ , system (Σ0) is robustly stochastically
exponentially stable for all time-varying delays satisfying (2.3) and for all admissible uncertainties
satisfying (2.4) and (2.5), if there exist symmetric positive definite matrices P > 0, Ri > 0,
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i = 0, 1, 2, . . . , 8, scalars εj , j = 1, 2, 3 and any matrices N,H,M with appropriate dimensions, such
that the following LMI (3.61) holds:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ PG V T
1 Z 0 N H M

∗ −ε1I 0 0 0 0 0
∗ ∗ −Z ZG 0 0 0
∗ ∗ ∗ −ε2I 0 0 0
∗ ∗ ∗ ∗ −R7 0 0
∗ ∗ ∗ ∗ ∗ −R8 0
∗ ∗ ∗ ∗ ∗ ∗ −R7 − R8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.61)

where

Θ = Γ + Ψ + ΨT, V1 =
[
A0 A1 A2 0 0 0 0 0

]
, V2 =

[
B0 B1 B2 0 0 0 0 0

]
,

P =
[
P −PD 0 0 0 0 0 0

]T
, Z = τ2R7 + δR8, U = P + τ2R9 + δR10,

(3.62)

with

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ11 Γ12 Γ13 0 0 0 0 0
∗ Γ22 Γ23 0 0 0 0 0
∗ ∗ Γ33 0 0 0 0 0
∗ ∗ ∗ −R1 0 0 0 0
∗ ∗ ∗ ∗ −R3 0 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ψ =
(
N (M −H) −N(D + I) 0 H −M −HD MD (N +H −M)D

)
,

Γ11 = PA0 +AT
0P + R1 + R2 + R3 + τ2R0 + (ε1 + ε2)ST

0S0 + ε3T
T
0 T0,

Γ12 = PA1 −AT
0PD + (ε1 + ε2)ST

0S1 + ε3T
T
0 T1, Γ13 = PA2 + (ε1 + ε2)ST

0S2 + ε3T
T
0 T2,

Γ22 = R4 + R5 + R6 − (1 − τ)R2 −DTPA1 −AT
1PD + (ε1 + ε2)ST

1S1 + ε3T
T
1 T1,

Γ23 = −DTPA2 + (ε1 + ε2)ST
1S2 + ε3T

T
1 T2, Γ33 = −τ2R0 + (ε1 + ε2)ST

2S2 + ε3T
T
2 T2,

Γ66 = − R4, Γ77 = −R6, Γ88 = −(1 − τ) R5.

(3.63)

Proof. Choose a Lyapunov-Krasovskii functional candidate as

V (t, ξt) =
3∑
i=0

Vi(t, ξt), (3.64)

where Vi(t, ξt), i = 0, 1, 2, 3 are defined in (3.9). It can be concluded from Theorem 3.1.
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If τ1 = τ2 = τ0, A2 = 0, Bi = ΔAi(t) = ΔBi(t) = 0, i = 0, 1, 2, then τ = 0, τ(t) = τ0 and
(2.1) becomes

ẋ(t) −Dẋ(t − τ0) = A0x(t) +A1x(t − τ0). (3.65)

Applying Leibniz-Newton formula to (3.65), it yields the following zero equations:

2ςT(t)L̂

[
x(t) −Dx(t − τ0) − x(t − τ0) +Dx(t − 2τ0) −

∫ t

tτ0

f̂(s)ds

]
= 0, (3.66)

where L̂ is any matrices with appropriate dimension, f̂(t) = A0x(t) +A1x(t − τ0), and

ςT(t) =
[
xT(t), xT(t − τ0), xT(t − 2τ0)

]
. (3.67)

With zero equations (3.66) above, we obtain the following corollary.

Corollary 3.7. For given constant delay τ0, system (3.65) is robustly stochastically exponentially
stable, if there exist symmetric positive definite matrices P0 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Z4 > 0, and
any matrices L̂ with appropriate dimensions, such that the following LMI (3.68) holds:

Ω̃ =

⎛
⎜⎜⎜⎝

Ξ̃ τ20W̃
T
1 Z3 Ľ Ľ

∗ −τ20Z3 0 0
∗ ∗ −Z3 0
∗ ∗ ∗ −Z4

⎞
⎟⎟⎟⎠ < 0, (3.68)

where

Ξ̃ = Π̃ + Υ̃ + Υ̃T, W̃1 =
[
A0 A1 0

]
, Ľ =

[
L̂T 0 0

]T
, (3.69)

with

Π̃ =

⎛
⎜⎝Π̃11 Π̃12 0

∗ Π̃22 0
∗ ∗ −Z2

⎞
⎟⎠, Υ̃ =

(
L̂ −L̂(D + I) L̂D

)
,

Π̃11 = P0A0 +AT
0P0 + Z1 + Z2, Π̃12 = P0A1 −AT

0DP0,

Π̃22 = −Z1 − P0D
TA1 −AT

1DP0.

(3.70)
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Figure 1: Mean-square exponential stability of the neutral stochastic system with interval time-varying
delay.

Table 1: Allowable lower bounds and upper bounds for different τ .

τ 0.3 0.6 1.0 1.2 1.5 1.52
τ2 1.5970 1.6724 1.8719 1.9717 2.1215 2.1315
τ1 0.1500 0.3000 0.5000 0.6000 0.7500 0.7600
δ 1.4470 1.3724 1.3719 1.3717 1.3715 1.3715

4. Numerical Examples

Example 4.1. Consider the uncertain neutral linear stochastic time-varying delay system (Σ)
with

A0 =
[−2.0 0.0
0.0 −1.9

]
, A1 =

[−1.0 0.0
−1.0 −1.0

]
, A2 = −I, D = −0.5I,

B0 = −0.1 I, B1 = 0.2I, B2 = 0.1I, G = 0.1I, Si = Ti = 0.1I, i = 0, 1, 2,

(4.1)

and τ(t) = α exp(−1/(1 + t)2), 0 � α � 2.1315, set α = 1, in this situation, τ1 = 0.3679, τ2 =
1, τ = 0.7358, δ = 0.6321. Set φ(θ) = [xT

1 (θ), x
T
2 (θ)]

T, where x1(θ), x2(θ) are random initial
values with zero mean and variance 1.0, and F(t) = sin(t), the trajectories of x1(t) and x2(t)
are shown in Figure 1. According to Theorem 3.1, the lower bounds and the upper bounds on
the time delay to guarantee the system is robustly stochastically mean-square exponentially
stable are listed in Table 1.

Example 4.2. Consider the uncertain linear stochastic system (3.44) with

A0 =
[−2.0 0.0
0.0 −0.9

]
, A1 =

[−1.0 0.0
−1.0 −1.0

]
,

B0 = B1 = 0, G = 0.2I, Si = Ti = I, i = 0, 1, 2.

(4.2)
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Table 2: Allowable upper bounds of τ2 for different τ .

τ 0.3 0.5 0.9
Yan et al. [15] 0.7288 0.5252 0.1489
Corollary 3.4 0.9012 0.7498 0.5640

Table 3: Allowable upper bounds of τ2 for different c.

c 0 0.1 0.3 0.5 0.7 0.9
Fridman and Shaked [19] 4.47 3.49 2.06 1.14 0.54 0.13
Corollary 3.7 4.47 4.05 3.29 2.58 1.85 0.92

According to Corollary 3.4, for τ1 = 0, the upper bounds on the time delay to guarantee the
system is robustly stochastically mean-square exponentially stable are listed in Table 2. At the
same time, Table 2 also lists the upper bounds obtained from the criterion in [15].

Example 4.3. Consider the uncertain neutral linear stochastic system (3.51)with

A0 =
[
0.5 0.0
0.0 0.3

]
, A1 =

[−1.0 0.0
−1.0 −1.0

]
,

D =
[ −0.2 0.0
−0.95 0.2

]
, B0 = 0.2I, B1 = 0.3I.

(4.3)

If Corollary 3.5 in this paper is applied, the maximal admissible delay τM of this example is
τM = 0.6001.

Example 4.4. Consider the uncertain neutral linear stochastic system (3.65)with

A0 =
[−2.0 0.0
0.0 −0.9

]
, A1 =

[−1.0 0.0
−1.0 −1.0

]
, D =

[
c 0
0 c

]
, 0 � c < 1. (4.4)

Themaximumupper bound τM for this system in case of different cs is listed in Table 3, which
shows that the results obtained by the methods proposed in this paper are less conservative
than that in [19].

5. Conclusion

The mean-square exponential stability for uncertain neutral stochastic system with both
discrete and distributed time-varying delays has been investigated in this paper. Sufficient
conditions have been established without ignoring any terms in the weak infinitesimal
operator of Lyapunov-Krasovskii functional by considering the relationship among the time-
varying delay, its upper bounds, and their difference. The usual restriction that τ̇(t) < 1 has
been removed by free-weight matrices method. According to the numerical examples, it has
been shown that the proposed results improve some existing ones.
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