
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 594701, 29 pages
doi:10.1155/2012/594701

Research Article
A Finite Element Study of Double Diffusive
Mixed Convection in a Concentration Stratified
Darcian Fluid Saturated Porous Enclosure under
Injection/Suction Effect

B. V. Rathish Kumar1 and S. V. S. S. N. V. G. Krishna Murthy2

1 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
2 Department of Applied Mathematics, Defence Institute of Advanced Technology, Pune 411025, India

Correspondence should be addressed to B. V. Rathish Kumar, drbvrk@gmail.com

Received 9 April 2012; Accepted 23 April 2012

Academic Editor: Mehmet Sezer

Copyright q 2012 B. V. R. Kumar and S. V. S. S. N. V. G. Krishna Murthy. This is an open access
article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Numerical investigation of mixed convection flow in a concentration-stratified fluid-saturated
vertical square porous enclosure is investigated by Galerkin finite element method. The forced
flow conditions are imposed by providing an inlet at the bottom wall and an outlet with a suction
on the top wall. The free convection is induced by introducing a hot but isothermal temperature
on the left vertical wall together with Boussinesq approximation on density. Numerical results are
presented by tracing the cumulative heat and mass fluxes, streamline and isotherms of the fluid
for a wide range of governing parameters such as suction/injection velocity “a”, suction/injection
width (D/H), mass stratification parameters (SC), Rayleigh number “Ra”, buoyancy ratio “B”,
and Lewis number “Le”.

1. Introduction

A wide range of scientific and engineering applications such as packed bed reactors, porous
insulation, beds of fossil fuels, nuclear waste disposal, usage of porous conical bearings in
lubrication technology, fibrous insulation systems, grain storage, chemical catalytic reactors,
solar collectors, heat exchangers, food processing, energy efficient drying process, geophysics
and energy related problems, requires a detailed understanding of convective heat transfer
process in a fluid-saturated porous media. These applications are reviewed in recent books by
[1–6], provided a detailed coverage of research works related to convective heat transfer in
Porous media. In particular applications such as cooling of radioactive waste containers, solar
power collectors, electronic equipment cooling, thermal insulation of buildings, have drawn
considerable attention in last several years onto flow through porous enclosures. Some of the
industrial technical processes like solar central receivers exposed to wind currents, electronic
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devices cooled by fans, heat exchangers, microelectronic devices packed with micro-pin-fin,
vented enclosures filled with microspheres require a detailed study of mixed convection
process in porous enclosures under different conditions.

Mixed convection is a fundamentally significant heat transfer mechanism that occurs
in a selection of industrial and technological applications. For example, it is of great interest
to thermal designers in the field of electronic cooling. Given that its occurrence is frequent,
there is a necessity to understand the physics of this fundamental mechanism at board level.
It is motivated both by a desire to gain an understanding the fundamental physics of mixed
convection and to solve design problems in scientific and electronic applications where mixed
convection often occurs. Apart from this situation there are many more industrial and natural
problems like microwave heating of dielectric materials using a rectangular wave guide,
sintered porous heat sink for cooling of high-powered microprocessors for its applications,
biomass growth on the hydraulic properties of saturated porous media, that is, bioclogging
and so forth, where a thorough understanding of mixed convection process is essential.
Experimental studies need to be supplemented by theoretical support. This certainly calls
for a complete theoretical investigation of mixed convection process in porous media.

A comprehensive review of several analytical, numerical, and experimental results
has been published on mixed convection process in porous enclosures that are reported in
the literature. Reference [7] has numerically studied mixed convection in a vented enclosure
with continuum fluid and isothermal vertical surface. Bansod and Jadhav [8] presented the
mixed convection heat and mass transfer near a vertical surface in a stratified porous medium
using an integral method. Chamkha [9, 10] in his mathematical model had additionally
included transverse magnetic effects too. W. J. Chang and W. L. Chang [11] looked at mixed
convection in a vertical tube partially filled with porous medium. Chen [12], Chou and
Chung [13], and Prasad et al. [14] have analytically analyzed mixed convection with the
free convection induced by either a horizontal or a vertical hot plate enclosed in a semi-
infinite porous medium under boundary layer assumptions. C. K. Chen and C. H. Chen
[15] have analyzed the non-Darcian and nonuniform porosity effects on conjugate mixed
convection heat transfer from a plate fin in porous media under boundary layer assumptions,
employing one-dimensional heat conduction equation for closing the conjugate heat transfer
model. El-Amin et al. [16] numerically investigated the interaction of mixed convection with
thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded
in a porous medium with Rossel and diffusion approximation incorporating the variation
of permeability and thermal conductivity. Elbashbeshy [17] solved the problem of mixed
convection along a vertical plate embedded in a non-Darcian porous medium with suction
and injection under boundary layer assumptions using similar variables defined based on
scale analysis.

Hassanien and Al-arabi [18] have simplified the boundary layer equations using scale
analysis and numerically solved the problem of non-Darcian unsteady mixed convection flow
near the stagnation point on heated vertical surface embedded in a porous medium with
thermal radiation, and variable viscosity has been considered. Jayanthi and Kumari [19] have
analytically studied the effect of variable viscosity on non-Darcian free or mixed convection
flow on a vertical surface in a non-Newtonian fluid saturated porous medium. Khanafer and
Vafai [20] investigated the double diffusive mixed convection in a square enclosure filled with
a porous medium in the presence of moving boundary which was formulated and solved
numerically by finite-volume approach along with the alternating direction implicit scheme.
Recently, Wong and Saied [21] have studied numerically the non-Darcian effects, based on
Brinkman-Forchheimer-extended Darcy model, on jet impingement cooling in a horizontal
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porous layer in a mixed convection regime. They have employed finite volume method in
conjunction with power-law scheme for convection-diffusion model. Lai [22] explained in
detail about the mixed convection in saturated porous media. Kumar et al. [23] have studied
mixed convection flow in a vertical square enclosure filled with a non-Darcian fluid saturated
homogeneous porous medium by providing an inlet at the bottom wall and an outlet with a
suction on the top wall numerically by using the Galerkin finite element method. Nazar et al.
[24] analyzed mixed convection boundary layer flow past a horizontal circular cylinder in a
porous medium based on Brinkman model.

Singh et al. [25] reported on mixed convection process in a flow past a porous vertical
plate bounded by a porous medium in a rotating system in the presence of magnetic filed.
Shohel Mahmud and Pop [26] have numerically extended the study of [7] to Darcian porous
square vented enclosure using finite volume approach. Srinivasacharya and RamReddy
[27] have analysed the effects of thermal and solutal stratification on mixed convection
along a vertical plate embedded in a micropolar fluid saturated non-Darcy porous medium.
kurdyumov and Linan [28] presented an analysis for the steady, two-dimensional, free
convection around line sources of heat and heated cylinders in unbounded saturated porous
media. Vafai and Hadim [29] have presented an overview on the computational studies of
heat transfer in porous media both under natural and mixed convection processes. Waheed
et al. [30] have studied numerically the buoyancy- and the shear-driven flow induced by
a hot plate moving through the horizontal midplane of a rectangular enclosure filled with
fluid-saturated porous medium.

So far not much work has been reported on Darcian mixed convection in vertical
square porous enclosure. In particular mixed convection in a vertical porous enclosure under
simultaneous suction/injection effects on opposite walls, which becomes very relevant in
the context of electronic devices, environmental chamber for bacterial culture preservation,
and so forth, has not been considered so far. In the present study, attention will be focused
on a new problem of steady mixed convection heat and mass transfer with concentration
stratification inside a vertical square fluid saturated porous enclosure with fluid injection
at the bottom wall and a suction at the top wall. Thus forced convection is imposed by
this combination of suction/injection flow conditions. The free convection is induced by
the hot and isothermal left vertical wall. Detailed numerical simulations are carried out by
Galerkin finite element method for a wide range of parameters such as Rayleigh number
“Ra”, suction/injection flow speed “a”, suction/injction width (D/H), mass stratification
parameters (SC), buoyancy ratio “B”, Lewis number “Le”. Flow and temperature distribution
is analyzed by tracing streamlines, isotherms, local/cumulative heat fluxes.

2. Mathematical Formulation

We consider a two-dimensional square enclosure filled with a fluid saturated porous medium
with the left vertical wall at the uniform temperature tw and the surface concentration
as cw which are assumed to be higher than the ambient temperature and concentration,
respectively, and the right vertical wall is kept at uniform ambient temperature t0 and with
the ambient species concentration as c∞,y is defined as and shown in Figure 1:

c∞, y = c∞, 0 + scy; where sc =
dc∞, y

dy
(2.1)

other two walls are adiabatic, excluding the inlet/outlet portion at the bottom/top wall.
The other two walls are excluding the suction/injection windows, which are permeable
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Figure 1: Model with concentration stratification.
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Figure 2: Schematic diagram of the porous enclosure with prescribed boundary conditions.

with zero normal thermal gradients. Here the forced flow conditions are brought in by the
combination of suction and injection effects on bottom and top walls, respectively. The inflow
is considered to be at ambient temperature. D is the width of the inlet and outlet and H is
the height of the cavity. The porous medium is assumed to be isotropic with permeability
K, and Boussinesq approximation is valid in the momentum equation for the density term.
Dispersion effect has been neglected. x and y are the horizontal and vertical components,
respectively. The physical configuration and the coordinate system used in the current study
are shown in Figure 2. The equations governing the steady-state double diffusive Darcy
mixed convection flow along a heated vertical wall under concentration stratification with
the above mentioned assumptions, nondimensional equations [31–35], governing the flow,



Journal of Applied Mathematics 5

heat, and mass transport in a fluid saturated porous media, can be written in terms of the
following Ψ − T − C nondimensional governing equations:

∂2Ψ
∂X2

+
∂2Ψ
∂Y 2

=
∂T

∂X
+ B

∂C

∂X
,

∂Ψ
∂Y
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∂T

∂Y
=

1
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(
∂2T
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+
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∂Y 2

)
,

∂Ψ
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∂X
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∂X

∂C

∂Y
=

1
Ra Le

(
∂2C

∂X2
+
∂2C

∂Y 2

)
,

(2.2)

with the following boundary conditions:

left wall: Ψ = 0, T = 1, C = 1 − SCY on X = 0, 0 ≤ Y ≤ 1,

right wall: Ψ = 0, T = 0, C = 0 on X = 1, 0 ≤ Y ≤ 1,

permeable bottom wall:

∂Ψ
∂Y

= 0,
∂T

∂Y
= 0,

∂C

∂Y
= 0 at 0 ≤ X ≤ X1, X1 +

(
D

H

)
≤ X ≤ 1, on Y = 0,

permeable top wall:

∂Ψ
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= 0,
∂T

∂Y
= 0,

∂C
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= 0 at 0 ≤ X ≤ X2, X2 +

(
D

H

)
≤ X ≤ 1, on Y = 1,
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(
D
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)
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∂Y
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∂C

∂Y
= 0 at X2 ≤ X ≤ X2 +

(
D

H

)
, on Y = 1.

(2.3)

The nondimensional variables are defined as follows:

X =
x

H
, Y =

y

H
, U =

u

Vc
, V =

v

Vc
, a =

V0

Vc
,

where Vc =
KgβΔt

ν
, SC =

1
Δc

dc∞, y

dY
,

C =
c − c∞, x

cw − c∞, 0
, B =

βc(cw − c∞, 0)
βt(tw − t0)

, Le =
α

d
, T =

t − t0
tw − t0

, Ra =
KgβHΔt

να
,

where Δt = tw − t0.

(2.4)
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The nondimensional stream function Ψ is defined as

U =
∂Ψ
∂Y

, V = −∂Ψ
∂X

. (2.5)

The local and cumulative heat flux (QHx) along the left vertical wall is computed by the
relation for Darcy model:

NuX =
(
− ∂T

∂X

)
X=0

, CHFLX = Qξ =
∫ ξ

0

(
− ∂T

∂X

)
X=0

dY, 0 ≤ ξ ≤ 1. (2.6)

Similarly, the local and cumulative mass flux (QMX) along the vertical wall is given by the
relation for Darcy model:

QmX =
(
−∂C

∂X

)
X=0

, CMFLX = Qξ =
∫ ξ

0

(
−∂C
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X=0

dY, 0 ≤ ξ ≤ 1, (2.7)

where ξ is the running coordinate in Y direction and the upper limits of the integration, that
is, ξ = 1 in the above two expressions, give the global heat flux or Nusselt number (Nu) and
global mass flux or Sherwood number (Sh), respectively.

3. Solution Methodology: Finite Element Formulation

Governing equations (2.2) together with boundary conditions (2.3) has been solved using
Galerkin finite element method. Following is the outline of finite element formulation used
in the current study. Let Ω denote the domain of interest and Γ let be the boundary of the
domain. The discretized representation of Ω is given by Ω =

⋃NEL
e=1 Ωe, where Ωe denotes

a typical bilinear element of the discretized domain and NEL is the total number of such
elements. The discretized elements are fully disjoint, that is,

⋂
e Ω
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e
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where Ne
i denotes the standard bilinear interpolation function on a typical element Ωe.

Consider the Galerkin weighted residual forms of governing equation (2.2) on Ωe:
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Here, W is the weight function that is chosen as Ni equal to the interpolation function. Rewrit-
ing (3.2) in the weak form and on introducing the element-level discretized representation
for the field variables, that is, (3.1), one would arrive at the following element level matrix
equation:

Meae = fe, (3.3)

where
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Here, n denotes the normal to the boundary of the porous cavity. The nonlinear global system
obtained by assembling the local element matrix (3.3) is solved iteratively using frontal
method for nonlinear systems to an accuracy of ε = 10−4 on the relative error of nodal field
variables from successive iterations, that is, |ξs+1

i − ξsi | ≤ ε, where ξsi = Ψs
i or Ts

i or Cs
i . Here the
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Figure 3: Grid selection results on different grid systems ((1) 21×21, (2) 31×31, (3) 41×41, (4) 51×51) for
(a) stream function, (b) temperature, and (c) concentration values when a = 0.5, Ra = 100, (D/H) = SC =
0.1, Le = 1, B = 1 along X-axis at fixed Y = 0.5, and the corresponding plots along Y -axis at fixed X = 0.5
are in (d–f), respectively.

superscript s refers to the iteration level and i refers to the nodal point index. To accelerate
the convergence, we underrelax the results from successive iteration by a factor of 0.25.

4. Results and Discussion

The parameters which influence the double diffusive natural convection process in the
present study are—buoyancy ratio “B”, Lewis number “Le”, mass stratification parameters
(SC), injection/suction (I/S) velocity parameter “a”, I/S window width (D/H), and
Rayleigh number “Ra”. Grid selection tests have been carried out on five different grid
systems consisting of 21 × 21, 31 × 31, 41 × 41, 51 × 51, and 61 × 61 elements. On these five
grid systems simulations have been carried out for various combinations of above-mentioned
parameters, and obtained stream function, temperature, and concentration values are
compared. Few of these comparison plots are presented in Figure 3. In Figures 3(a)–3(c) Ψ,
T , C values are plotted along X-axis at fixed Y = 0.5 for a = 0.5, Ra = 100, (D/H) = SC = 0.1,
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Figure 4: Cumulative heat flux plots along the left vertical wall while fixing Le = 1, B = 1, (D/H) = 0.1,
Ra = 100, SC = 0.1 for different values of “a”.

Table 1: Nusselt number values for grid validation.

Grid size Nusselt number
21 × 21 2.184652
31 × 31 2.1899673
41 × 41 2.19294511
51 × 51 2.19305301
61 × 61 2.19305101

Le = 1, B = 1, and the corresponding plots along Y -axis at fixed X = 0.5 are in Figures 3(d)–
3(f), respectively. It is observed from these plots and the corresponding Nu data (Table 1)
that as one moves from 51 × 51 to higher grid systems, there is only a marginal change in the
solutions. Hence 51 × 51 grid system has been chosen for extensive numerical simulations.
Details of the study showing the influence of various parameters on heat and mass transfer
process in the presence of concentration stratification are given in the following subsections.

4.1. Influence of I/S Parameter “a”

The influence of I/S velocity parameter “a” on the heat transfer process in the presence
of concentration stratification has been analyzed by comparing the cumulative heat fluxes
(CHFLXs) along the left vertical wall of the porous enclosure. In Figure 4 CHFLXs along the
left vertical wall are presented for 0 ≤ a ≤ 0.5, Le = 1, B = 1, (D/H) = 0.1, Ra = 100, SC =
0.1. At all values of “a”, CHFLXs are seen to increase as one moves along left vertical wall,
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(a) (b)

(c) (d)

Figure 5: Isotherm contours along the left vertical wall while fixing Le = 1, B = 1, (D/H) = 0.1, Ra = 100,
SC = 0.1 for (a) a = 0.0, (b) a = 0.1, (c) a = 0.25, (d) a = 0.5.

that is, 0 ≤ Y ≤ 1. This increase is relatively sharp along the leading half portion of the
left vertical wall, that is, 0 ≤ Y ≤ 0.65. In this region CHFLXs are seen to increase with
increasing values of “a”. However along 0.65 ≤ Y ≤ 1, CHFLXs are seen to decrease with
increasing “a”. Consequently the global heat flux (GHFLX) or Nusselt number (Nu) is seen
to decrease with increasing values of “a”. To explain these observations one has to investigate
the temperature and flow fields. In Figures 5(a)–5(d) and Figures 6(a)–6(d) isotherms and
streamlines corresponding to the above set of parameters are traced.

From the isotherm plots in Figures 5(a)–5(d) one can notice the manifestation of sharp
thermal boundary layer (TBL) along the left vertical wall. While, for the case a = 0, the TBLs
continue to remain sharp all along the left wall, those corresponding to a > 0 tend to get
increasing blunt for Y > 0.65 as “a” increases. From the isotherm values one can clearly
notice that the introduction of forced convection has led to greater transfer into the core of
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(a) (b)

(c) (d)

Figure 6: Streamline contours along the left vertical wall while fixing Le = 1, B = 1, (D/H) = 0.1, Ra = 100,
SC = 0.1 for (a) a = 0.0, (b) a = 0.1, (c) a = 0.25, (d) a = 0.5.

the domain. Clearly it indicates a raise in average temperature in the porous enclosure with
increasing values of I/S velocity. With increasing “a” one can also notice an increase in the
transverse temperature gradients in the core of the domain.

The streamline plots in Figures 6(a)–6(d) depict the manifestation of a dominant
primary circulation zone in the core of the domain and secondary circulation patterns
centered on the I/S windows. On increasing the I/S velocity while the primary circulation
zone undergoes a dominant longitudinal stretch, which nearly touches both the vertical walls,
the secondary zones are seen to increasingly swell and dominantly impinge onto the primary
circulation zone. Clearly the longitudinal stretch in primary circulation zone leads to better
mixing of hot and cold fluids thereby leading to better heat transfer from the hot left vertical
wall into the porous enclosure. Clearly the increase in the forced convection component
leads to better heating in the porous enclosure and an overall raise in temperature of the
porous enclosure. Hence the observed fall in the global cumulative heat flux (GCHLX) with
increasing “a” turns out to be natural consequence.
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Figure 7: Cumulative mass flux plots along the left vertical wall while fixing Le = 1, B = 1, (D/H) = 0.1,
Ra = 100, SC = 0.1 for different values of “a”.

In Figure 7 the cumulative mass fluxes (CMFLXs) along the left vertical wall are
presented. At all values of “a” similar to CHFLXs, the CMFLXs increase along the left vertical
wall. With increasing “a” along the leading part of the left vertical wall a raise in CMFLXs
are noticed. However, owing to the presence of concentration stratification, the extent of the
stretch along the left vertical wall wherein such a raise is noticed decreases from 0 ≤ Y < 0.5
to 0 ≤ Y < 0.4.

Again owing to the presence of concentration stratification, the variation in CMFLXs
along the upper portion of the left vertical wall (i.e., 0.5 < Y ≤ 1) gets complex. An initial
raise in “a”, 0.0 to 0.1 leads to a fall in CMFLXs, corresponding to 0.5 < Y ≤ 1, and thereby a
fall in global cumulative mass flux (GCMFLX) or Sherwood number (Sh). A further increase
in “a” from 0.1 to 0.25 leads to shoot-up in CMFLXs and GCMFLX and on further increasing
“a” to 0.5 a significant fall in CMFLXs and GCMFLX is noticed. To understand such a trend
in mass fluxes the concentration distribution in the whole domain for different values of “a”
is traced and presented in Figures 8(a)–8(d).

The isoconcentration contour pattern depicted by plots clearly indicates the additional
dimension to the complexity of interaction between various forces responsible for concentra-
tion transport in the porous enclosure. One can notice the presence of concentration boundary
layers, whose characteristics are sensitive to I/S velocity, along the left vertical wall. The plots
clearly depict an overall increase in the concentration transport with increasing values of “a”
that is, I/S velocity. With the increase in “a” circular packets of concentric concentration are
seen to manifest on the I/S windows.
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(a) (b)

(c) (d)

Figure 8: Isoconcentration contours along the left vertical wall while fixing Le = 1, B = 1, (D/H) = 0.1,
Ra = 100, SC = 0.1 for (a) a = 0.0, (b) a = 0.1, (c) a = 0.25, (d) a = 0.5.

4.2. Influence of I/S Window Width (D/H)

The influence of size of I/S window on the flow, temperature, and concentration fields is
analyzed and presented in Figures 9(a) and 9(b) and Figures 10(a)–10(i). In Figures 9(a) and
9(b) CHFLX and CMFLX along the left vertical wall are presented for 0 ≤ (D/H) ≤ 0.3,
Le = 1, B = 1, Ra = 100, a = 0.1, SC = 0.1. At all values of D/H both CHFLX and CMFLX
increase as one gradually moves along the vertical wall. All along the left vertical wall both
local heat and mass fluxes increase with increasing values of D/H. Both Nusselt number
and Sherwood number are seen to increase with increasing values of D/H. In Figures 10(a)–
10(i) streamlines, isotherms, isoconcentration contours corresponding to (D/H) = 0.1, 0.2,
0.3, B = 1, Le = 1, Ra = 100 and a = 0.1, SC = 0.1. From the streamlines in Figures
10(a)–10(c) one can notice the manifestation of a prominent primary circulation zone in the
core of the domain and two secondary circulations centered on the I/S window slits at all
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Figure 9: (a) Cumulative heat flux and (b) cumulative mass flux plots along the left vertical wall while
fixing Le = 1, B = 1, a = 0.1, Ra = 100, SC = 0.1 for different values of D/H.

values of D/H. Increasing the I/S window slit size leads to overall enlargement of both the
primary and secondary circulation zones. From the isotherm plots in Figures 10(d)–10(f) one
can notice the presence of TBLs along the left vertical walls. These TBLs get sharper with
increasing values of D/H. The change in the isotherm pattern and magnitudes of isotherms
suggests an overall enhancement in heat transfer in the enclosure with increasing D/H. From
Figures 10(g)–10(i) similar variation is noticed in concentration fields, with the increase in
D/H. Concentration boundary layers (CBLs) noticed along the left vertical wall get sharper
with increasing values of D/H.

4.3. Influence of Buoyancy Ratio “B”

To analyze the influence of buoyancy ratio “B”, which denotes the relative strengths of two
buoyancy forces, namely, mass and thermal buoyancy forces, simulations are carried out for
a wide range of “B”, covering −1.5 ≤ B ≤ 1.5. Here it can be noted that the algebraic sign
of “B” denotes the effective direction of these buoyancy forces. Thermal buoyancy forces act
vertically upward, and the species buoyancy may act in either direction depending on the
molecular weight relative to the fluid. A heavier species contributes to a buoyant force that
acts vertically downward, thereby opposing the vertically upward thermal buoyancy, and
is negative in sign. If B = 0, the flow is driven by buoyancy alone. Simulations have been
carried out with different degrees of mass stratifications. In Figure 11(a), CHFLXs along the
left vertical wall are plotted for different values of “B” when Le = 1, D/H = 0.1, a = 0.1,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Streamline contours along the left vertical wall while fixing Le = 1, B = 1, a = 0.1, Ra = 100,
SC = 0.1 for streamline plots (a) (D/H) = 0.1, (b) (D/H) = 0.2, (c) (D/H) = 0.3. Corresponding isotherm
and isoconcentration contours are in (d–f) and (g–i), respectively.

Ra = 100, SC = 0.1. From Figure 11(a) one can see that CHFLXs increase with increasing
values of “B”. All along the left vertical wall local heat fluxes (LHFLXs) are in a raise as “B”
is raised. At all values of “B” a sharp raise in CHFLXs is noticed along the leading edge of
the left vertical wall, that is, 0 ≤ Y ≤ 0.4. To understand this behavior, flow and temperature
fields are traced and presented in Figure 12.

The streamlines in Figures 12(a)–12(g) clearly depict that the flow field is highly sensi-
tive both to the sign and magnitude of “B”. When the downward oriented species buoyancy
forces are dominantly opposing the upward oriented thermal buoyancy forces (i.e., when B =
−1.5), the flow is primarily covered by the elongated semicircular pattern, emanating from
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Figure 11: (a) Cumulative heat flux and (b) cumulative mass flux plots along the left vertical wall while
fixing Le = 1, D/H = 0.1, a = 0.1, Ra = 100, SC = 0.1 for different values of “B”.

the I/S window located on the top horizontal wall, between two vertical flow fields which
are adjacent to the vertical walls of the enclosure. As the “B” is raised to −1, where in the
downward facing species buoyancy forces are opposing but are equal to the upward facing
thermal buoyancy forces, the semicircular flow fields manifest on I/S windows located
on bottom horizontal wall and thereby reduce the dominance of downward protruding
semicircular pattern that emanates from top I/S window slit. A further increase in “B”
gradually leads to the dominance of the thermal buoyancy forces. As thermal buoyancy
forces get dominant, a primary circular zone manifests between the two semicircular patterns
centered on the I/S window slits. With a further raise in “B” to 0.5, where in both the
buoyancy forces are upward oriented, the primary circulation zone prominently falls major
part of the enclosure, except the region close to the I/S window slits. As the “B” is raised
to 1.5 one can notice that semicircular flow patterns again tend to get severe and the
primary circulation zone begins to shrink in size. With a further increase in “B”, the primary
circulation zone completely vanishes allowing the two semicircular patterns to elongate and
cover whole of the enclosure.

The corresponding isotherms and isoconcentration contours are presented in Figures
13(a)–13(g) and Figures 14(a)–14(g). The majority of isotherms which are vertically oriented
when B = −1.5 gradually undergo a clockwise diagonal twist as “B” is raised to −1.0. When
“B” is raised to −0.5, the diagonally oriented isotherms which emanate from the lower left
corner begin to turn towards the horizontal walls, especially while they are being traced in
the core of the domain. On increasing “B” in steps to 1.5 while the isotherms close to the
vertical wall tend to get vertical, they take a horizontal path with increasingly sharp bends
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 12: Streamline contours along the left vertical wall while fixing Le = 1, D/H = 0.1, (a) = 0.1,
Ra = 100, SC = 0.1 for (a) B = −1.5, (b) B = −1, (c) B = −0.5, (d) B = 0, (e) B = 0.5, (f) B = 1, (g) B = 1.5.

near the vertical walls. The raise in the sharpness of TBLS clearly supports the observed
increase in Nu with increasing values of “B”.

Features observed in the isoconcentration contours are nearly similar to those
observed in isotherm plots especially when −1.5 ≤ B ≤ 0. The deviation in the iso-concen-
tration contours from the corresponding isotherms when 0 ≤ B ≤ 1.5 can be attributed to
the presence of species stratification in the porous enclosure. Like in isotherm plots, here too
one can notice the manifestation of CBLs along the vertical walls. The increase in Sherwood
numbers with increasing “B” (Figure 11(b)) is clearly supported by the increasingly
sharpening CBLs with increasing “B”. Both the isotherm and isoconcentration patterns depict
an enhanced heat and species transportation in the enclosure with increasing values of “B”.
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(d) (e) (f)

(g)

Figure 13: Isotherm contours along the left vertical wall while fixing Le = 1, D/H = 0.1, (a) = 0.1, Ra = 100,
SC = 0.1 for (a) B = −1.5, (b) B = −1, (c) B = −0.5, (d) B = 0, (e) B = 0.5, (f) B = 1, (g) B = 1.5.

4.4. Influence of Lewis Number “Le”

In Figure 15(a) influence of Le on CHFLX along the left vertical wall is presented. Along the
leading edge of the left vertical wall (i.e., for 0 ≤ Y ≤ 0.25) CHFLXs remain insensitive to the
differences in thermal and mass diffusivities. However along 0.25 ≤ Y ≤ 1 one can notice a
fall in CHFLX all along the wall with increasing values of Le. Consequently GCHFLX or Nu
decreases with increasing “Le”. It is also to be noticed that at all values of Le, there is a gradual
increase in CHFLX as one traverses along the left vertical wall (i.e., 0 ≤ Y ≤ 1). When the
mass diffusivity is larger than thermal diffusivity, the corresponding heat fluxes and Nu are
larger. This indicates the possibility of greater mixing of hot and cold fluids with increasing
“Le” and thereby leading to an overall raise in the temperature in the porous enclosure. To
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(d) (e) (f)

(g)

Figure 14: Isoconcentration contours along the left vertical wall while fixing Le = 1, D/H = 0.1, (a) = 0.1,
Ra = 100, SC = 0.1 for (a) B = −1.5, (b) B = −1, (c) B = −0.5, (d) B = 0, (e) B = 0.5, (f) B = 1, (g) B = 1.5.

further investigate such a happening, flow and temperature fields are traced in the form of
streamlines and isotherms in Figures 16 and 17.

From the streamline plots in Figures 16(a)–16(d) firstly one can notice the manifesta-
tion of prominent primary circulation centered in the core of the domain, also the presence
of secondary semi-circular zones centered on the I/S window slits on the horizontal walls.
The increase in the diagonal stretch in the primary zone and the swelling of the secondary
zones leading to the corner elongation/stretching of the primary circulation zones clearly
depict the increase in the mixing of hot and cold fluids with increase in “Le”. Also from
the isotherm plots in Figures 17(a)–17(d) one can see the presence of TBLS along the left
vertical wall. The effect of increasing thermal diffusivities is clear from the increase in the
slope of isotherms, especially in the core of the domain. The semi-circular isotherm pattern
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Figure 15: (a) Cumulative heat flux plots and (b) cumulative mass flux plots along the left vertical wall
while fixing B = 1, (D/H) = 0.1, a = 0.1, Ra = 100, SC = 0.1 for different values of “Le”.

seen in the leading portion of the lower horizontal wall is due to injection of fluid at ambient
temperature through the I/S window. In Figure 15(b) CMFLXs, corresponding to above set
of parameters, along the left vertical wall are presented for different values of “Le”. All
along the wall CMFLXs increase with increasing values of “Le”. Consequently GCMFLX or
Sherwood number (Sh) increases with increasing “Le”. It is also to be noted that while the
magnitudes of Sh are lower than Nu, their relative raise with increasing “Le” is considerably
larger than the relative fall in Nu. From Figure 15(b) one can also notice that there is sharp
raise in CMFLXs along the leading edge of the left vertical wall, that is, 0 ≤ Y ≤ 0.4, and
thereby CMFLXs are seen to increase gradually. To further investigate the concentration
contours are traced in Figures 18(a)–18(d). From the iso-concentration plots in Figures 18(a)–
18(d) one can notice the manifestation of sharp concentration boundary layer (CBL) along
the left vertical wall. These CBLs tend to get blunt as one moves beyond Y = 0.4. From
the contour magnitudes one can also notice overall increase in the concentration level in the
core of the enclosure with increasing “Le”. Clearly increase in thermal diffusivities favors the
concentration transport.

4.5. Influence of Rayleigh Number “Ra”

In Figure 19(a) influence of “Ra” on CHFLX along the left vertical wall is presented for 10 ≤
Ra ≤ 150, B = 1, (D/H) = 0.1, a = 0.1, Le = 1, SC = 0.1. Clearly CHFLX increases as one
traverses the left vertical wall starting from the lower left corner. Also all along the left vertical
wall LHFLXs are seen to increase with increasing values of “Ra”. GHFLX or Nu increases
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(a) (b)

(c) (d)

Figure 16: Streamline contours along the left vertical wall while fixing B = 1, D/H = 0.1, a = 0.1, Ra = 100,
SC = 0.1 for (a) Le = 0.25, (b) Le = 0.5, (c) Le = 0.75, (d) Le = 1.0.

with “Ra”. In Figure 19(b) CMFLXs along the left vertical wall are presented for the above set
of parameters. Clearly CMFLX increases as one marches along the left vertical wall, with a
relatively sharp raise when 0 ≤ Y ≤ 0.5. At any point along the left vertical wall LHFLX is seen
to increase with increasing “Ra”. Owing to the presence of mass stratification in the porous
enclosure, while the GMFLX or Sherwood number undergoes a considerable enhancement
for 10 ≤ Ra ≤ 75, it changes marginally when 75 < Ra < 150. To further analyze the situation
the flow, temperature, and concentration fields are analyzed as streamlines, isotherms, and
iso-concentration contours in Figures 20, 21 and 22.

In Figures 20(a)–20(f) streamlines corresponding to B = 1, (D/H) = 0.1, a = 0.1, Ra =
100, SC = 0.1, 10 ≤ Ra ≤ 150 are provided. In the range 10 ≤ Ra ≤ 75 there is a considerable
variation in streamline pattern as “Ra” is increasing. At all values of “Ra” one can notice the
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(a) (b)

(c) (d)

Figure 17: Isotherm contours along the left vertical wall while fixing B = 1, D/H = 0.1, a = 0.1, Ra = 100,
SC = 0.1 for (a) Le = 0.25, (b) Le = 0.5, (c) Le = 0.75, (d) Le = 1.0.

presence of both the primary circulation zone centered in the middle of the enclosure and two
secondary circulation zones centered on the I/S window slits. The primary circulation zone
which is vertically oriented and is squeezed between the vertical flows due to injection and
suction effects gradually undergoes diagonal bulging as “Ra” is increased. With the increase
in “Ra”, the breath of the two vertical flow patterns adjacent to the vertical wall tends to
decrease. For 150 ≥ Ra ≥ 75 relatively a small variation is noticed in streamline pattern.
The enlargement in the primary circulation for 10 ≤ Ra < 75 suggests a better mixing of
hot and cold fluid suggesting a possibility of sustained increase in the sharpness of TBLs in
corresponding isotherms.

Now in Figures 21(a)–21(f) isotherms corresponding to the above set of parameters are
provided. From the isotherm pattern and the magnitude one can notice the presence of TBLs
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(a) (b)

(c) (d)

Figure 18: Isoconcentration contours along the left vertical wall while fixing B = 1, D/H = 0.1, a = 0.1,
Ra = 100, SC = 0.1 for (a) Le = 0.25, (b) Le = 0.5, (c) Le = 0.75, (d) Le = 1.0.

with increasing sharpness as “Ra” is gradually increased from 10 to 150. On the isotherm
magnitudes one can clearly notice an overall enhancement in the temperature distribution
in the enclosure. In Figures 22(a)–22(f) one can notice the presence of CBLs along the left
vertical wall. While the CBLs corresponding 10 ≤ Ra ≤ 75 get sharpened, those corresponding
to Ra > 75 undergo only a little variation especially when Y > 0.85, that is, towards at the end
of the left vertical wall. This can be attributed to the presence of concentration stratification
in the enclosure. The overall concentration distribution in the enclosure is on the raise with
increasing “Ra”.

5. Conclusions

Numerical computations have been carried out on Darcian double diffusive mixed con-
vection process in a in a fluid saturated porous enclosure under I/S effect with mass
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Figure 19: (a) Cumulative heat flux plots and (b) cumulative mass flux plots along the left vertical wall
while fixing B = 1, (D/H) = 0.1, a = 0.1, Le = 1, SC = 0.1 for different values of “Ra”.

(a) (b) (c)

(d) (e) (f)

Figure 20: Streamline contours along the left vertical wall while fixing B = 1, (D/H) = 0.1, a = 0.1,
Ra = 100, SC = 0.1 for (a) Ra = 10, (b) Ra = 25, (c) Ra = 50, (d) Ra = 75, (e) Ra = 100, (f) Ra = 150.
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(a) (b) (c)

(d) (e) (f)
Figure 21: Isotherm contours along the left vertical wall while fixing B = 1, (D/H) = 0.1, a = 0.1, Ra = 100,
SC = 0.1 for (a) Ra = 10, (b) Ra = 25, (c) Ra = 50, (d) Ra = 75, (e) Ra = 100, (f) Ra = 150.

(a) (b) (c)

(d) (e) (f)
Figure 22: Isoconcentration contours along the left vertical wall while fixing B = 1, (D/H) = 0.1, a = 0.1,
Ra = 100, SC = 0.1 for (a) Ra = 10, (b) Ra = 25, (c) Ra = 50, (d) Ra = 75, (e) Ra = 100, (f) Ra = 150.
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stratification by finite element method. Flow, temperature, and concentration fields are
analyzed through streamline, isotherm, iso-concentration tracing and local and cumulative
heat flux, cumulative concentration heat flux calculations. Following are the conclusions
based on the results obtained from the present study.

(i) While Nu decreases with increasing I/S velocity, Sh is found to initially decrease
but later increase. Prominent primary circulation pattern with secondary circulation
zones that stretch on increasing I/S velocity manifests in flow field. TBLs and CBLs,
thermal and mass gradients highly sensitive to the I/S velocity are noticed in the
temperature and concentration fields.

(ii) Both Nu and Sh increase with increasing size of I/S window (D/H). Increasing
(D/H) enlarges both primary and secondary circulation zones and sharpens the
TBLs and CBLs.

(iii) Flow pattern undergoes significant pattern variation as the opposing thermal
and mass buoyancy forces turn to favor each other. Semicircular flow pattern is
transformed to a multicellular flow with a prominent primary circulation zone.
Both Nu and Sh increase with increasing values of “B”.

(iv) While Nu decreases with increasing Le, it increases with increasing “Ra”. Sh
is found to increase both with increasing Le and Sh. Flow, temperature, and
concentration fields are sensitive both to “Le” and “Ra”.

(v) Darcy case of an increase in the levels of concentration stratification leads to a fall
in Nu and Sh values.

Nomenclature

a: Suction/injection velocity (= V0/Vc)
B: Buoyancy ratio
c: Dimensionless species concentration
C: Nondimensional species concentration
d: Mass diffusivity
D: Width of the inlet
D/H: Dimensionless width of the inlet
e: Typical element in finite element formulation
g: Gravitational acceleration
H: Height of the cavity
k: Thermal conductivity
K: Permeability of the porous medium
n: Outward unit normal to the surface
Ni: Quadratic interpolation function
Nu: Nusselt number
Ra: Rayleigh number (= KgβH(Tw − T0)/αν)
sc: Dimensional mass stratification parameter
Sc: Nondimensional mass stratification parameter
T : Nondimensional temperature
t0: Temperature of the flow through at the inlet
tw: Temperature of the left vertical wall
u, v: Dimensional velocity components in x and y directions
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U,V : Nondimensional velocity components in X and Y directions (U = u/Vc, V = v/Vc)
Vc: Convective velocity (= gβK(Tw − T0)/ν)
V0: Absolute value of the velocity of the forced flow at the inlet
W : Galerkin weight function used in the finite element formulation
x, y: Dimensional cartesian coordinates
X,Y : Nondimensional cartesian coordinates (X = x/H, Y = y/H)
(X1, 0): Coordinates of the suction/injection starting point on the bottom wall
(X2, 1): Coordinates of the suction/injection starting point on the top wall.

Greek Symbols

α: Thermal diffusivity
βt: Thermal expansion coefficient (= −(1/ρ)(∂ρ/∂t)P,c)
βc: Concentration expansion coefficient (= −(1/ρ)(∂ρ/∂c)P,t)
Γ: Boundary of the domain
Ψ: Nondimensional stream function
ν: Kinematic viscosity of fluid
Ω: Domain considered in the problem
ρ: Fluid density (= ρ0[1 − β(T − T0)]
θ: Dimensionless temperature.

Subscripts

0,∞: Ambient points
P : Pressure
w: Evaluated at wall temperature
x: Evaluated at point x.
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