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We investigate the global existence and boundedness of solutions to a second-order nonlinear
differential system.

1. Introduction

In this paper, we study the nonlinear system

x′ =
1

a(x)
[
c
(
y
) − b(x)

]
,

y′ = − a(x)[h(x) − e(t)],

(1.1)

where a : R → (0,∞), b, c, h : R → R, and e : R → R are continuous.
As a particular case of (1.1) we have well-known Liẽnard equation as follows:

x′′ + f(x)x′ + h(x) = e(t). (1.2)
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with a(x) = 1, b(x) =
∫x
0 f(s)ds, c(x) = x, x ∈ R and the second-order nonlinear differential

equation as follows:

x′′ +
(
f(x) + g(x)x′)x′ + h(x) = e(t) (1.3)

for a(x) = exp(
∫x
0 g(s)ds), b(x) =

∫x
0 a(s)f(s)ds, c(x) = x, x ∈ R.

System (1.1) can be regarded as amathematical model formany phenomena in applied
sciences (theory of feedback electronic circuits, motion of a mass-spring system). It has been
investigated by several authors, compare [1–4] and the citations therein.

The purpose of this paper is to present new results on the global existence and
boundedness of solutions for the system (1.1). The obtained results improve the recent results
in [1, 5]. Our paper is divided into two section. In Section 2, we prove the global existence of
solutions for (1.1). In Section 3, we get some new results on boundedness of solutions for the
system (1.1).

2. Global Existence

In this section, we will present new results on the global existence of solutions to system (1.1)
under general conditions on the nonlinearities.

Let us first define

C
(
y
)
=
∫y

0
c(s)ds, H(x) =

∫x

0
a2(s)h(s)ds. (2.1)

Then, we have the following.

Theorem 2.1. Assume that

(i) there exists some K ≥ 0, such that

sgn(x)H(x) +K ≥ 0, x ∈ R,

sgn
(
y
)
C
(
y
)
+K ≥ 0, y ∈ R,

(2.2)

(ii) there exist someN ≥ 0 and Q > 0, such that

|H(x)| < Q, |x| > N,
∣∣C

(
y
)∣∣ < Q,

∣∣y
∣∣ > N,

(2.3)

(iii) lim|y|→∞ sgn(y)C(y) = Q, lim|x|→∞[1/(Q − sgn(x)H(x)) + sgn(x)b(x)] = ∞,

(iv) there exist two positive functions μ,ω ∈ C([0, K +Q), (0,∞)) such that

a(x)
∣∣c
(
y
)∣∣ ≤ min

{
μ
(
sgn(x)H(x) +K

)
+ω

(
sgn(x)H(x) +K

)
,

μ
(
sgn

(
y
)
C
(
y
)
+K

)
+ω

(
sgn

(
y
)
C
(
y
)
+K

)}
,

|x| > N,
∣∣y

∣∣ > N,

(2.4)
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(v) sgn(x)a(x)b(x)h(x) ≥ −[μ(sgn(x)H(x) + K) + ω(sgn(x)H(x) + K)], |x| > N and
|h(x)| ≤ M < ∞, x ∈ R.

If

∫K+Q

0

ds

μ(s) +ω(s)
= ∞, (2.5)

then every solution of (1.1) exists globally.

Proof. Due that a : R → (0,∞), b, c, h : R → R and e : R → R are continuous, by Peano’s
Existence Theorem [6], we have that the system (1.1) with any initial data (x0, y0) possesses
a solution (x(t), y(t)) on [0, T) for some maximal T > 0. If T < ∞, one has

lim
t→ T

(|x(t)| + ∣∣y(t)
∣∣) = ∞. (2.6)

First, assume that limt→ T |y(t)| = ∞.
Since y(t) is continuous, there exists 0 ≤ T0 < T such that

∣∣y(t)
∣∣ > N, t ∈ [T0, T). (2.7)

Take V1(t, x, y) = sgn(y)C(y) +K, t ∈ R+, x, y ∈ R. Differentiating V1(t, x, y)with respect to
t along solution (x(t), y(t)) of (1.1), we have

dV1

dt
= sgn

(
y
)[−a(x)c(y)h(x) + a(x)c

(
y
)
e(t)

]

≤ (|h(x)| + |e(t)|)a(x)∣∣c(y)∣∣

≤ (M + |e(t)|)[μ(sgn(y)C(y) +K
)
+ω

(
sgn

(
y
)
C
(
y
)
+K

)]
,

t ∈ [T0, T).

(2.8)

Since 0 ≤ sgn(y(t))C(y(t)) +K < Q +K, t ∈ [T0, T), we obtain

dV1(t)
μ(V1(t)) +ω(V1(t))

≤ (M + |e(t)|)dt, t ∈ [T0, T). (2.9)

We denote that V1(t) = V1(t, x(t), y(t)).
Since lim|y|→∞ sgn(y)C(y) = Q,

∫K+Q
0 (ds/(μ(s) +ω(s))) = ∞, y(t), C(y) are contin-

uous, there exists T0 ≤ t1 < t2 < T such that

∫V1(t2)

V1(t1)

ds

μ(s) +ω(s)
> M

∫T

0
dt +

∫T

0
|e(t)|dt. (2.10)
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Integrating (2.9) on [t1, t2] with respect to t and using the above relation, we obtain the
following contradiction:

M

∫T

0
dt +

∫T

0
|e(t)|dt <

∫V1(t2)

V1(t1)

ds

μ(s) +ω(s)
=
∫ t2

t1

dV1(t)
μ(V1(t)) +ω(V1(t))

≤
∫ t2

t1

(M + |e(t)|)dt ≤ M

∫T

0
dt +

∫T

0
|e(t)|dt.

(2.11)

Thus, there exists an M > 0 such that

∣∣y(t)
∣∣ ≤ M, t ∈ [0, T). (2.12)

Second, by the result above, we have limt→ T |x(t)| = ∞.
If lim|x|→∞(1/(Q − sgn(x)H(x))) = ∞, that is, lim|x|→∞ sgn(x)H(x) = Q, we set

V2
(
t, x, y

)
= sgn(x)H(x) +K, t ∈ R+, x, y ∈ R. (2.13)

Since x(t) is continuous, there exists 0 ≤ T1 < T such that

|x(t)| > N, t ∈ [T1, T). (2.14)

Differentiating V2(t, x, y) with respect to t along solution (x(t), y(t)) of (1.1), we have

dV2

dt
= sgn(x)

[
a(x)c

(
y
)
h(x) − a(x)b(x)h(x)

]

≤ (M + 1)
[
μ
(
sgn(x)H(x) +K

)
+ω

(
sgn(x)H(x) +K

)]
,

t ∈ [T1, T).

(2.15)

Since 0 ≤ sgn(x(t))H(x(t)) +K < Q +K, t ∈ [T1, T), we obtain

dV2(t)
μ(V2(t)) +ω(V2(t))

≤ (M + 1)dt, t ∈ [T1, T). (2.16)

We denote V2(t) = V2(t, x(t), y(t)).
Since lim|x|→∞ sgn(x)H(x) = Q,

∫K+Q
0 (ds/(μ(s) + ω(s))) = ∞, x(t),H(x) are contin-

uous, there exists T1 ≤ t3 < t4 < T such that

∫V2(t4)

V2(t3)

ds

μ(s) +ω(s)
> (M + 1)

∫T

0
dt. (2.17)
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Integrating (2.16) on [t3, t4] with respect to t and using the above relation, we obtain the
contradiction as follows:

(M + 1)
∫T

0
dt <

∫V2(t4)

V2(t3)

ds

μ(s) +ω(s)
=
∫ t4

t3

dV2(t)
μ(V2(t)) +ω(V2(t))

≤
∫ t4

t3

(M + 1)dt ≤ (M + 1)
∫T

0
dt.

(2.18)

So consider lim|x|→∞(1/(Q − sgn(x)H(x))) < ∞.
By (iii), we have lim|x|→∞ sgn(x)b(x) = ∞.
Set

W
(
t, x, y

)
= x, t ∈ R+, x, y ∈ R. (2.19)

Then, along solutions to (1.1)we have

dW

dt
=

1
a(x)

[
c
(
y
) − b(x)

]
. (2.20)

If limt→ Tx(t) = ∞, we deduce that there exist x1 and x2 such that x0 < x1 < x2 and

dW

dt
< 0, x1 ≤ x ≤ x2,

∣∣y
∣∣ ≤ M. (2.21)

Then, by the continuity of the solution, there exist 0 < t1 < t2 < T such that x(t1) = x1,
x(t2) = x2. Integrating (2.21) on [t1, t2], we have

W
(
t1, x(t1), y(t1)

)
= x1 > x2 = W

(
t2, x(t2), y(t2)

)
. (2.22)

This contradicts x1 < x2. Hence x(t) is bounded from above.
Similarly, if limt→ Tx(t) = −∞, we can obtain a contradiction by settingW(t, x, y) = −x.

Thus, it follows that x(t) is also bounded from above. This forces T = ∞ and completes the
proof of Theorem 2.1.

Example 2.2. Consider the following nonlinear system:

x′ =

√
1 + x2

1 + y2
,

y′ = − 1√
1 + x2

+
t2√
1 + x2

.

(2.23)

Set a(x) = 1/
√
1 + x2, b(x) = 0, c(y) = 1/(1 + y2), h(x) = 1, e(t) = t2. Then we have

C
(
y
)
= arctany, H(x) = arctanx. (2.24)
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Take K = N = 0, Q = π/2, and μ(θ) = ω(θ) = cos θ/2, θ ∈ [0, π/2). Note that

a(x)
∣∣c
(
y
)∣∣ =

1√
1 + x2

· 1
1 + y2

≤ min

⎧
⎪⎨

⎪⎩

1√
1 + x2

,
1

√
1 + y2

⎫
⎪⎬

⎪⎭

= min
{
μ
(
sgn(x) arctanx +K

)
+ω

(
sgn(x) arctanx +K

)
,

μ
(
sgn

(
y
)
arctany +K

)
+ω

(
sgn

(
y
)
arctan y +K

)}

(2.25)

sgn(x)a(x)b(x)h(x) = 0, |h(x)| = 1 and

∫π/2

0

dθ

μ(θ) +ω(θ)
=
∫π/2

0

dθ

cos θ
≥ 1

2

∫1

0

dx

1 − x
= ∞. (2.26)

Applying Theorem 2.1, we know that every solution of (2.23) exists globally. Observe that the
theorem and corollary in [5] cannot be used in the present case.

Theorem 2.3. Assume that
(i) there exists some K ≥ 0, such that

H(x) +K ≥ 0, x ∈ R,

C
(
y
)
+K ≥ 0, y ∈ R,

(2.27)

(ii) there exist someN ≥ 0 and Q > 0, such that

|H(x)| < Q, |x| > N,

|C(y)| < Q, |y| > N,
(2.28)

(iii) lim|y|→∞C(y) = Q, lim|x|→∞[1/(Q −H(x)) + sgn(x)b(x)] = ∞,
(iv) there exist two positive functions μ,ω ∈ C([0, K +Q), (0,∞)) such that

a(x)
∣∣c
(
y
)∣∣ ≤ min

{
μ(H(x) +K) +ω(H(x) +K),

μ
(
C
(
y
)
+K

)
+ω

(
C
(
y
)
+K

)}
,

|x| > N,
∣∣y

∣∣ > N,

(2.29)

(v) a(x)b(x)h(x) ≥ −[μ(H(x)+K)+ω(H(x)+K)], |x| > N and |h(x)| ≤ M < ∞, x ∈ R.
If

∫K+Q

0

ds

μ(s) +ω(s)
= ∞, (2.30)

then every solution of (1.1) exists globally.
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Proof. The proof of Theorem 2.3 is similar to that of Theorem 2.1, so we omit it.

Example 2.4. Consider the following nonlinear system:

x′ =
2y

(
1 + y2

)2 +
2y ln

(
1 + x2)

(
1 + y2

)2 ,

y′ = − 2x
(1 + x2)[1 + ln(1 + x2)]

+
t3

1 + ln(1 + x2)
.

(2.31)

Set a(x) = 1/(1+ ln(1+ x2)), b(x) = 0, c(y) = 2y/(1+y2)2, h(x) = 2x/(1+ x2), e(t) = t3. Then
we have C(y) = 1 − (1/(1 + y2)), H(x) = 1 − (1/(1 + ln(1 + x2))). Take K = N = 0, Q = 1 and
μ(t) = ω(t) = (1 − t)/2, t ∈ [0, 1). Note that

a(x)
∣∣c
(
y
)∣∣ =

1
1 + ln(1 + x2)

· 2
∣∣y

∣∣
(
1 + y2

)2 ≤ min
{

1
1 + ln(1 + x2)

,
1

1 + y2

}

= min
{
μ(H(x) +K) +ω(H(x) +K), μ

(
C
(
y
)
+K

)
+ω

(
C
(
y
)
+K

)}
.

(2.32)

a(x)b(x)h(x) = 0, |h(x)| = 2|x|/(1 + x2) ≤ 1 and

∫1

0

ds

μ(s) +ω(s)
=
∫1

0

ds

1 − s
= ∞. (2.33)

Applying Theorem 2.3, we know that every solution of (2.31) exists globally. Observe that the
theorem and corollary in [5] cannot be uses in the present case.

3. Boundedness

In this section, we will present some results on the boundedness of solutions to (1.1) under
general conditions on the nonlinearities.

Theorem 3.1. Assume that
(i) there exist functions f1, f2 ∈ C(R+, R) such that

f1(t) ≤ y′(t) = −a(x)[h(x) − e(t)] ≤ f2(t), x ∈ R, t ∈ R+, (3.1)

and | ∫∞0 f1(t)dt| < ∞, | ∫∞0 f2(t)dt| < ∞,
(ii) lim|x|→∞ sgn(x)b(x) = ∞.
If the solution (x(t), y(t)) of (1.1) exists globally, then (x(t), y(t)) is bounded.

Proof. By (i), we have

f1(t) ≤ y′(t) ≤ f2(t), x ∈ R, t ∈ R+. (3.2)
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Integrating (3.2) on [0, t] with respect to t, we have

∫ t

0
f1(s)ds ≤ y(t) − y0 ≤

∫ t

0
f2(s)ds. (3.3)

Since | ∫∞0 f1(t)dt| < ∞, | ∫∞0 f2(t)dt| < ∞. Thus, there exists a Y > 0 such that

∣∣y(t)
∣∣ ≤ Y, t ≥ 0. (3.4)

Set

W
(
t, x, y

)
= −x, t ∈ R+, x, y ∈ R. (3.5)

Then, along solutions to (1.1), we have

dW

dt
= − 1

a(x)
[
c
(
y
) − b(x)

]
. (3.6)

If limt→∞x(t) = −∞, we deduce that there exist x1 and x2 such that x(0) > x1 > x2 and

dW

dt
< 0, x2 ≤ x ≤ x1,

∣∣y
∣∣ ≤ Y. (3.7)

Then, by the continuity of the solution, we have that there exist 0 < t1 < t2 < ∞ such that
x(t1) = x1 and x(t2) = x2. Integrating (3.7) on [t1, t2], we get

W
(
t1, x(t1), y(t1)

)
= −x1 > −x2 = W

(
t2, x(t2), y(t2)

)
. (3.8)

This contradicts x1 > x2. Hence x(t) is bounded from below.
Similarly, if limt→ Tx(t) = ∞, we can obtain a contradiction by setting W(t, x, y) =

x. Thus, it follows that x(t) is also bounded from above. This completes the proof of
Theorem 3.1.

Example 3.2. Consider the following nonlinear system:

x′ =

√
1 + x2

1 + y2
− x

√
1 + x2,

y′ =
1√

1 + x2
· 1
1 + t2

.

(3.9)

Set a(x) = 1/
√
1 + x2, b(x) = x, c(y) = 1/(1 + y2), h(x) = 1, e(t) = 1 + (1/(1 + t2)). Then

we have C(y) = arctan y and H(x) = arctan x. Take K = N = 0, Q = π/2 and μ(θ) =
ω(θ) = cos θ/2, θ ∈ [0, π/2). Applying Theorem 2.1, we know that every solution of (3.9)
exists globally.



Journal of Applied Mathematics 9

Take f1(t) = 0, f2(t) = 1/(1 + t2), we have

f1(t) = 0 ≤ y′(t) ≤ f2(t) =
1

1 + t2
, x ∈ R, t ∈ R+ (3.10)

and | ∫∞0 f2(t)dt| = π/2 < ∞, lim|x|→∞ sgn(x)b(x) = lim|x|→∞x sgn(x) = ∞. Applying
Theorem 3.1, we know that every solution of (3.9) is bounded.

Theorem 3.3. Assume that
(i) there exists some K ≥ 0, such that

sgn(x)H(x) +K ≥ 0, x ∈ R,

sgn
(
y
)
C
(
y
)
+K ≥ 0, y ∈ R,

(3.11)

(ii) there exist someN ≥ 0 and Q > 0, such that

|H(x)| < Q, |x| > N,
∣∣C

(
y
)∣∣ < Q,

∣∣y
∣∣ > N,

(3.12)

(iii) lim|y|→∞ sgn(y)C(y) = Q, lim|x|→∞[1/(Q − sgn(x)H(x)) + sgn(x)b(x)] = ∞,
(iv) there exist two positive functions μ,ω ∈ C([0, K +Q), (0,∞)) such that

a(x)
∣∣c
(
y
)∣∣ ≤ min

{
μ
(
sgn(x)H(x) +K

)
+ω

(
sgn(x)H(x) +K

)
,

μ
(
sgn

(
y
)
C
(
y
)
+K

)
+ω

(
sgn

(
y
)
C
(
y
)
+K

)}
,

|x| > N,
∣∣y

∣∣ > N,

(3.13)

(v) sgn(x)a(x)b(x)h(x) ≥ 0, |x| > N and |h(x)| ≤ M < ∞, x ∈ R,
(vi) E =

∫∞
0 |e(t)|dt < ∞, and

∫K+Q
0 (ds/(μ(s) +ω(s))) = ∞.

If there exists g(x) such that

0 <
a(x)

∣∣c
(
y
) − b(x)

∣∣ ≤ g(x), x, y ∈ R (3.14)

and G =
∫∞
−∞ g(x)|h(x)|dx < ∞, then every solution of (1.1) is bounded.

Proof. Let (x(t), y(t)) be a solution to (1.1) with initial data (x0, y0). By Theorem 2.1, we have
that (x(t), y(t)) exists globally. If (x(t), y(t)) is unbounded, we have

lim
t→∞

|x(t)| = ∞ or lim
t→∞

∣∣y(t)
∣∣ = ∞. (3.15)

First, assume that limt→ T |y(t)| = ∞.
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Since y(t) is continuous, there exists T1 ≥ 0 such that

∣∣y(t)
∣∣ > N, t ∈ [T1,∞). (3.16)

Take V1(t, x, y) = sgn(y)C(y) +K, t ∈ R+, x, y ∈ R. Differentiating V1(t, x, y) with respect to t
along solution (x(t), y(t)) of (1.1), we have

dV1

dt
= sgn

(
y
)[−a(x)c(y)h(x) + a(x)c

(
y
)
e(t)

]

≤ (|h(x)| + |e(t)|)a(x)∣∣c(y)∣∣

≤ (|h(x)| + |e(t)|)[μ(sgn(y)C(y) +K
)
+ω

(
sgn

(
y
)
C
(
y
)
+K

)]
,

t ∈ [T1,∞).

(3.17)

Since 0 ≤ sgn(y(t))C(y(t)) +K < Q +K, t ∈ [T1,∞), we obtain

dV1(t)
μ(V1(t)) +ω(V1(t))

≤ (|h[x(t)]| + |e(t)|)dt, t ∈ [T1,∞). (3.18)

We denote V1(t) = V1(t, x(t), y(t)).
By (vi), there exists T1 ≤ t1 < t2 < ∞ such that

∫V1(t2)

V1(t1)

ds

μ(s) +ω(s)
> G + E. (3.19)

Integrating (3.18) on [t1, t2] with respect to t and using the above relation, we obtain the
contradiction as follows:

G + E <

∫V1(t2)

V1(t1)

ds

μ(s) +ω(s)
=
∫V1(t2)

V1(t1)

dV1(t)
μ(V1(t)) +ω(V1(t))

≤
∫ t2

t1

|h(x(t))|dt +
∫ t2

t1

|e(t)|dt ≤
∫x(t2)

x(t1)
|h(x)| dx

x′(t)
+ E

≤
∫∞

−∞
g(x)|h(x)|dx + E = G + E.

(3.20)

Thus, there exists a Y > 0 such that

∣∣y(t)
∣∣ ≤ Y, t ∈ [0,∞). (3.21)

Second assume that limt→ T |x(t)| = ∞.
If lim|x|→∞(1/(Q − sgn(x)H(x))) = ∞, that is, lim|x|→∞ sgn(x)H(x) = Q, we set

V2
(
t, x, y

)
= sgn(x)H(x) +K, t ∈ R+, x, y ∈ R. (3.22)
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Since x(t) is continuous, there exists 0 ≤ T2 < ∞ such that

|x(t)| > N, t ∈ [T2,∞). (3.23)

Differentiating V2(t, x, y) with respect to t along solution (x(t), y(t)) of (1.1), we have

dV2

dt
= sgn(x)

[
a(x)c

(
y
)
h(x) − a(x)b(x)h(x)

]

≤ |h(x)|[μ(sgn(x)H(x) +K
)
+ω

(
sgn(x)H(x) +K

)]
,

t ∈ [T2,∞).

(3.24)

Since 0 ≤ sgn(x(t))H(x(t)) +K < Q +K, t ∈ [T2,∞), we obtain

dV2(t)
μ(V2(t)) +ω(V2(t))

≤ |h[x(t)]|dt, t ∈ [T2,∞). (3.25)

We denote that V2(t) = V2(t, x(t), y(t)).
By (vi), there exists T2 ≤ t3 < t4 < T such that

∫V2(t4)

V2(t3)

ds

μ(s) +ω(s)
> G. (3.26)

Integrating (3.25) on [t3, t4] with respect to t and using the above relation, we obtain the
contradiction as follows:

G <

∫V2(t4)

V2(t3)

ds

μ(s) +ω(s)
=
∫ t4

t3

dV2(t)
μ(V2(t)) +ω(V2(t))

≤
∫ t4

t3

|h(x(t))|dt

=
∫x(t4)

x(t3)
|h(x)| dx

x′(t)
≤
∫∞

−∞
g(x)|h(x)|dx = G.

(3.27)

So consider lim|x|→∞(1/((Q − sgn(x)H(x)))) < ∞.
By (iii), we have lim|x|→∞ sgn(x)b(x) = ∞. The proof of this condition is similar to

that of Theorem 3.1, so we omit it. Thus, it follows that x(t) is also bounded from above.
Then every solution of (1.1) is bounded. This completes the proof of Theorem 3.3.

Theorem 3.4. Assume that
(i) there exists some K ≥ 0, such that

H(x) +K ≥ 0, x ∈ R,

C
(
y
)
+K ≥ 0, y ∈ R,

(3.28)
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(ii) there exist someN ≥ 0 and Q > 0, such that

|H(x)| < Q, |x| > N,
∣∣C

(
y
)∣∣ < Q,

∣∣y
∣∣ > N,

(3.29)

(iii) lim|y|→∞C(y) = Q, lim|x|→∞[1/(Q −H(x)) + sgn(x)b(x)] = ∞,
(iv) there exist two positive functions μ,ω ∈ C([0, K +Q), (0,∞)) such that

a(x)
∣∣c
(
y
)∣∣ ≤ min

{
μ(H(x) +K) +ω(H(x) +K),

μ
(
C
(
y
)
+K

)
+ω

(
C
(
y
)
+K

)}
,

|x| > N,
∣∣y

∣∣ > N,

(3.30)

(v) sgn(x)a(x)b(x)h(x) ≥ 0, |x| > N and |h(x)| ≤ M < ∞, x ∈ R,
(vi) E =

∫∞
0 |e(t)|dt < ∞, and

∫K+Q
0 (ds/(μ(s) +ω(s))) = ∞.

If there exists g(x) such that

0 <
a(x)

∣∣c
(
y
) − b(x)

∣∣ ≤ g(x), x, y ∈ R (3.31)

and G =
∫∞
−∞ g(x)|h(x)|dx < ∞, then every solution of (1.1) is bounded.

Proof. The proof of Theorem 3.4 is similar to that of Theorem 3.3, so we omit it.
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