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We consider the problems of minimizing a DC function under a cone-convex constraint and a set
constraint. By using the infimal convolution of the conjugate functions, we present a new constraint
qualification which completely characterizes the Farkas-type lemma and the stable zero Lagrange
duality gap property for DC conical programming problems in locally convex spaces.

1. Introduction

Let X and Y be real locally convex Hausdorff topological vector spaces and C ⊆ X be a
nonempty convex set. Let S ⊆ Y be a closed convex cone and S⊕ the positive dual cone of S.
Let ϕ : X → R := R ∪ {+∞} be a proper function and h : X → Y be an S-convex mapping
with respect to the cone S. Consider the conic programming problem

(P)
Min
s.t.

ϕ(x),
x ∈ C, h(x) ∈ −S. (1.1)

Its Lagrange dual problem can be expressed as

(D) sup
λ∈S⊕

inf
x∈C

{
ϕ(x) + (λh)(x)

}
. (1.2)

It is well know that the optimal values of these problems, v(P), and v(D) respectively,
satisfy the so-called weak duality, that is, v(P) ≥ v(D), but a duality gap may occur, that
is, we may have v(P) > v(D). A challenge in convex analysis has been to give sufficient
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conditions which guarantee the strong duality, that is, v(P) = v(D) and the dual problem (D)
has at least an optimal solution. In the case when ϕ is a proper convex function, numerous
conditions have been given in the literature ensuring the strong duality (see, e.g., [1–8] and
the other references therein).

Recently, the zero duality, that is, only the situation when v(P) = v(D), has received
much attention (e.g., see [9–13] and references therein). Obviously, the strong duality implies
the zero duality. However, the converse implication does not always hold. As mentioned in
[10], the question of finding condition, which ensures the zero duality, is not only important
for understanding the fundamental feature of convex programming but also for the efficient
development of numerical schemes. Some sufficient conditions and characterizations in terms
of the optimal value function of (P) for the zero duality have been given in [12], and
some convex programming problems which enjoy zero duality have been studied in [13].
Especially, in the case when ϕ is lower semicontinuous (lsc in brief) convex, h is star lsc
and C is closed; Jeyakumar and Li in [10] presented some constraint qualifications which
completely characterize the zero duality for convex programming problems in Banach spaces;
they established necessary and sufficient dual conditions for the stable zero duality in [11]
under the assumptions that C = X and h is continuous.

Observe that most works dealing with problem (1.1) in the literature mentioned above
were done under the assumptions that the involved functions are convex and lsc. In this
paper, we consider the following DC conical programming:

(P)
Min
s.t.

f(x) − g(x),
x ∈ C, h(x) ∈ −S, (1.3)

and its dual problem

(D) inf
u∗∈dom g∗

sup
λ∈S⊕

{
g∗(u∗) − (

f + δC + λg
)∗(u∗)

}
, (1.4)

where f, g : X → R are proper convex functions. As pointed out in [14], problems of
DC programming are highly important from both viewpoints of optimization theory and
applications, and they have been extensively studied in the literature (cf. [14–21] and the
references therein). Here and throughout the whole paper, following [22, page 39], we adopt
the convention that (+∞) + (−∞) = (+∞)− (+∞) = +∞, 0 · (+∞) = +∞ and 0 · (−∞) = 0. Then,
for any two proper convex functions h1, h2 : X → R, we have that

h1(x) − h2(x)

⎧
⎪⎪⎨

⎪⎪⎩

∈ R, x ∈ dom h1 ∩ dom h2,

= −∞, x ∈ dom h1 \ dom h2,

= +∞, x /∈ dom h1;

(1.5)

hence,

h1 − h2 is proper ⇐⇒ dom h1 ⊆ dom h2. (1.6)

The purpose of this paper is to study the stable zero duality. Our main contribution is
to provide complete characterizations for the stable zero duality between (P) and (D) via the



Journal of Applied Mathematics 3

newly constraint qualifications. In general, we only assume that f, g are proper convex and h
is S-convex (not necessarily lsc).

The paper is organized as follows. The next section contains some necessary notations
and preliminary results. The Farkas-type lemma and the stable zero duality between (P) and
(D) are considered in Section 3.

2. Notations and Preliminary Results

The notation used in the present paper is standard (cf. [22]). In particular, we assume
throughout the whole paper thatX and Y are real locally convexHausdorff topological vector
spaces, and let X∗ denote the dual space, endowed with the weak∗-topology w∗(X∗, X). By
〈x∗, x〉, we will denote the value of the functional x∗ ∈ X∗ at x ∈ X, that is, 〈x∗, x〉 = x∗(x).
Let Z be a set in X. The closure of Z is denoted by clZ. If W ⊆ X∗, then clW denotes the
weak∗-closure of W . For the whole paper, we endow X∗ × R with the product topology of
w∗(X∗, X) and the usual Euclidean topology.

The indicator function δZ of the nonempty set Z is defined by

δZ(x) :=

{
0 x ∈ Z,

+∞ otherwise.
(2.1)

Let f : X → R be a proper convex function. The effective domain, the conjugate function,
and the epigraph of f are denoted by dom f , f∗ and epi f , respectively; they are defined by

dom f :=
{
x ∈ X : f(x) < +∞}

,

f∗(x∗) := sup
{〈x∗, x〉 − f(x) : x ∈ X

}
for each x∗ ∈ X∗,

epi f :=
{
(x, r) ∈ X × R : f(x) ≤ r

}
.

(2.2)

It is well known and easy to verify that epi f∗ is weak∗-closed. The lsc hull of f , denoted by
cl f , is defined by

epi
(
cl f

)
= cl

(
epi f

)
. (2.3)

Then (cf. [22, Theorems 2.3.1]),

f∗ =
(
cl f

)∗
. (2.4)

By definition, the Young-Fenchel inequality below holds:

f(x) + f∗(x∗) ≥ 〈x, x∗〉 for each pair (x, x∗) ∈ X ×X∗. (2.5)



4 Journal of Applied Mathematics

If g, h are proper, then

epi g∗ + epih∗ ⊆ epi
(
g + h

)∗
, (2.6)

g ≤ h =⇒ g∗ ≥ h∗ ⇐⇒ epi g∗ ⊆ epih∗. (2.7)

Moreover, if g is convex and lsc on domh, then the same argument for the proof of [21,
Lemma 2.3] shows that

epi
(
h − g

)∗ =
⋂

x∗∈dom g∗

(
epih∗ − (

x∗, g∗(x∗)
))
. (2.8)

Furthermore, we define the infimal convolution of g and h as the function g�h : X → R ∪
{±∞} given by

(
g�h

)
(x) := inf

z∈X
{
g(z) + h(x − z)

}
. (2.9)

If g and h are lsc and dom g ∩ domh/= ∅, then by [22], we have that

(
g�h

)∗ = g∗ + h∗,
(
g + h

)∗ = cl
(
g∗�h∗). (2.10)

Moreover, we also have

epi g∗ + epih∗ ⊆ epi
(
g∗�h∗) ⊆ cl

(
epi g∗ + epih∗). (2.11)

Note that an element p ∈ X∗ can be naturally regarded as a function on X in such a way that

p(x) :=
〈
p, x

〉
for each x ∈ X. (2.12)

Thus, the following facts are clear for any a ∈ R and any function h : X → R:

(
h + p + a

)∗(x∗) = h∗(x∗ − p
) − a for each x∗ ∈ X∗; (2.13)

epi
(
h + p + a

)∗ = epih∗ +
(
p,−a). (2.14)

We end this section with a lemma, which is known in [3, 22].

Lemma 2.1. Let g, h : X → R be proper convex functions satisfying dom g ∩ domh/= ∅.
(i) If g, h are lsc, then

epi
(
g + h

)∗ = cl
(
epi g∗ + epih∗). (2.15)

(ii) If either g or h is continuous at some point of dom g ∩ domh, then

epi
(
g + h

)∗ = epi g∗ + epih∗. (2.16)
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3. Characterizations for the Stable Zero Duality

Throughout this section, let X,Y be locally convex spaces and C ⊆ X be a nonempty convex
set. Let S ⊆ Y be a closed convex cone. Its dual cone S⊕ is defined by

S⊕ :=
{
y∗ ∈ Y ∗ :

〈
y∗, y

〉 ≥ 0 for each y ∈ S
}
. (3.1)

Define an order on Y by saying that y ≤S x if y −x ∈ −S. We attach a greatest element∞with
respect to ≤S and denote Y • := Y ∪{+∞}. The following operations are defined on Y •: for any
y ∈ Y , y + ∞ = ∞ + y = ∞ and t∞ = ∞ for any t ≥ 0. Let f, g : X → R be proper convex
functions such that cl g and f − g are proper, and h : X → Y • be S-convex in the sense that
for every u, v ∈ domG and every t ∈ [0, 1],

h(tu + (1 − t)v)≤S th(u) + (1 − t)h(v), (3.2)

(see [6]). Let λ ∈ S⊕ and let domh := {x ∈ X : h(x) ∈ Y}/= ∅. As in [3], we define for each
λ ∈ S⊕,

(λh)(x) :=

{
〈λ, h(x)〉 if x ∈ domh,

+∞ otherwise.
(3.3)

It is easy to see that h is S-convex if and only if (λh)(·) : X → R is a convex function for each
λ ∈ S⊕. Following [10], we define the function h� : X∗ → R by

h�(x∗) = inf
λ∈S⊕

(λh)∗(x∗) for each x∗ ∈ X∗. (3.4)

Let h−1(−S) := {x ∈ dom g : h(x) ∈ −S}. Recall from [19, 23] that G is said to be star lsc if λG
is lsc on X for each λ ∈ S⊕ and to be S-epi-closed if epiS(G) is closed, where

epiS(G) :=
{(

x, y
) ∈ X × Y : y ∈ G(x) + S

}
. (3.5)

It is known (cf. [23]) that if G is star lsc, then it is S-epi-closed. Let A denote the solution set
of the system {x ∈ C;h(x) ∈ −S}, that is,

A := {x ∈ C : h(x) ∈ −S}. (3.6)

To avoid trivially, we always assume that A/= ∅.
The following lemma, which is taken from [10, Theorem 3.1], will be useful in our

study.
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Lemma 3.1. Suppose that h is a proper star lsc and S-convex mapping with h−1(S)/= ∅. Then

(i) h� is a proper convex function on X∗.

(ii) epih� is a convex cone.

(iii) epi δ∗
h−1(−S) = cl(epih�) and epi δ∗

A = cl(epi δ∗
C + epih�).

Let p ∈ X∗. Consider the primal problem

(
Pp

) Min
s.t.

f(x) − g(x) − 〈
p, x

〉
,

x ∈ C, h(x) ∈ −S (3.7)

and its dual problem of (Pp)

(
Dp

)
inf

u∗∈dom g∗
sup
λ∈S⊕

{
g∗(u∗) − (

f + δC + λh
)∗(

p + u∗)}. (3.8)

In the case when p = 0, problem (Pp) and its dual problem (Dp) are reduced to problem (P)
and its dual problem (D) defined in (1.1) and (1.2), respectively. Let v(Pp) and v(Dp) denote
the optimal values of (Pp) and (Dp), respectively. Let r ∈ R, then by the definition of conjugate
function, one has that

(
p, r

) ∈ epi
(
f − g + δA

)∗ ⇐⇒ v
(
Pp

) ≥ −r. (3.9)

Moreover, in the case when g is lsc, then for each x ∈ X,

g(x) = g∗∗(x) = sup
x∗∈dom g∗

{〈x∗, x〉 − g∗(x∗)
}
; (3.10)

thus, it is easy to see that the following inequality holds:

v
(
Dp

) ≤ v
(
Pp

)
for each p ∈ X∗, (3.11)

that is, the stable weak Lagrange duality holds. However, (3.11) does not necessarily hold in
general as showed in the following example.

Example 3.2. LetX = Y = C := R and S = [0,+∞). Define f, g, h, p : R → R by f = h := δ(−∞,0],
p = 0 and for each x ∈ R,

g(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 x < 0,
2 x = 0,
+∞ x > 0,

(3.12)
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(note that g is not lsc at x = 0). Then A = (−∞, 0] and v(P) = −2. Note that for each S⊕ =
[0,+∞),

(
f + δC + λh

)∗ = g∗ = δ[0,+∞). (3.13)

Then v(D) = 0 > v(P). This means that (3.11) does not hold.

Below we give a sufficient condition to ensure that (3.11) holds.

Lemma 3.3. Suppose that the following condition holds:

epi
(
f − g + δA

)∗ = epi
(
f − cl g + δA

)∗
. (3.14)

Then (3.11) holds.

Proof. Let p ∈ X∗. Then for each u∗ ∈ dom g∗ and λ ∈ S⊕, one has by (2.5) that for each x ∈ X,

g∗(u∗) − (
f + δC + λg

)∗(
p + u∗) ≤ g∗(u∗) − 〈

p + u∗, x
〉
+
(
f + δC + λg

)
(x)

≤ g∗(u∗) − 〈u∗, x〉 + (
f + δA − p

)
(x),

(3.15)

where the last inequality holds because δC + λg ≤ δA for each λ ∈ S⊕. Note that the above
inequalities hold for each u∗ ∈ dom g∗. Then for each x ∈ X,

v
(
Dp

) ≤ inf
u∗∈dom g∗

{
g∗(u∗) − 〈u∗, x〉} + (

f + δA − p
)
(x) =

(
f − cl g + δA − p

)
(x), (3.16)

where the last equality holds by (3.10). Hence,

v
(
Dp

) ≤ inf
x∈X

{(
f − cl g + δA − p

)
(x)

}
, (3.17)

which implies that (p,−v(Dp)) ∈ epi(f−cl g+δA)∗ and (p,−v(Dp)) ∈ epi(f−g+δA)∗ by (3.14).
Hence, by (3.9), one has v(Pp) ≥ v(Dp). Therefore, (3.11) holds by the arbitrary of p ∈ X∗. The
proof is complete.

Remark 3.4. Condition (3.14) was introduced in [21] and was called (LSC) there. Obviously,
if g is lsc on A, then (3.14) holds. But the converse is not true in general as showed by [21,
Example 4.1].

This section is devoted to the study of the zero dualities between (P) and (D), which
is defined as follows.

Definition 3.5. We say that

(a) the zero duality holds between (P) and (D) if v(P) = v(D);

(b) the stable zero duality holds between (P) and (D) if for each p ∈ X∗, the zero duality
holds between (Pp) and (Dp).
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Definition 3.6. We say the family {f, g, δC, h} satisfies the constraint qualification (CQ) if

epi
(
f − g + δA

)∗ =
⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

))
. (3.18)

The following proposition provides an equivalent condition for (CQ) to hold.

Proposition 3.7. Suppose that (3.14) holds (e.g., g is lsc) and that

f is lsc, h is star lsc, C is closed. (3.19)

Then the family {f, g, δC, h} satisfies (CQ) if and only if

epi
(
f − g + δA

)∗ ⊆
⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

))
. (3.20)

Proof. To show the equivalence of (CQ) and (3.20), we only need to show that

⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

)) ⊆ epi
(
f − g + δA

)∗
. (3.21)

To do this, by (3.19) and the fact (2.11), it is easy to see that the following inclusion holds:

epi
(
f∗�δ∗

C�h�) ⊆ cl
(
epi f∗ + epi δ∗

C + epih�). (3.22)

Note that A is closed and so δA is lsc. Then by Lemma 3.1(c), one has that

epi
(
f∗�δ∗

C�h�) ⊆ cl
(
epi f∗ + epi δ∗

A

)
= epi

(
f + δA

)∗
, (3.23)

where the last inclusion holds by Lemma 2.1(i). Therefore,

⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

)) ⊆
⋂

u∗∈dom g∗

(
epi

(
f + δA

)∗ − (
u∗, g∗(u∗)

))

= epi
(
f − cl g + δA

)∗

= epi
(
f − g + δA

)∗
,

(3.24)

where the first equality holds by (2.8) and the last equality holds by (3.14). Hence, (3.21)
holds and the proof is complete.

Below we give another sufficient conditions ensuring (CQ). For the study of the
Lagrange duality and the Fenchel-Lagrange duality, the authors in [3] introduced the
following condition:

C1
(
f,A

)
epi

(
f + δA

)∗ = epi f∗ + epi δ∗
C +

⋃

λ∈S⊕
epi (λh)∗. (3.25)
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This condition was also introduced independently but with different terminologies
“C1(f,A)” and “(CC)” in [24], under the assumptions

f is lsc, C is closed, h is S-epi-closed, (3.26)

and [19, 20] (under the assumptions (3.26) together with the star lsc of h), respectively.

Proposition 3.8. Suppose that (3.14) and (3.19) hold. Then

C1
(
f,A

)
=⇒ (CQ). (3.27)

Proof. Suppose that C1(f,A) holds. Note by the definition h� that (λh)∗ ≥ h� for each λ ∈ S⊕.
Then ∪λ∈S⊕ epi(λh)∗ ⊆ epih� and

epi f∗ + epi δ∗
C +

⋃

λ∈S⊕
epi (λh)∗ ⊆ epi f∗ + epi δ∗

C + epih�. (3.28)

Hence, by (2.11), one has that

epi f∗ + epi δ∗
C +

⋃

λ∈S⊕
epi (λh)∗ ⊆ epi f∗ + epi

(
δ∗
C�h�) ⊆ epi

(
f∗�δ∗

C�h�). (3.29)

This together with the C1(f,A) implies that

epi
(
f + δA

)∗ ⊆ epi
(
f∗�δ∗

C�h�). (3.30)

Thus, by (2.8) and (3.14), we can obtain that

epi
(
f − g + δA

)∗ = epi
(
f − cl g + δA

)∗

=
⋂

u∗∈dom g∗

(
epi

(
f + δA

)∗ − (
u∗, g∗(u∗)

))

⊆
⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

))
.

(3.31)

Hence, by Proposition 3.7, (CQ) holds and the proof is complete.

The converse of Proposition 3.8 does not necessarily hold, even in the case when g = 0,
as showed in the following example.

Example 3.9. Let X = Y = C := R and S = [0,+∞). Let f, g, h : R → R be defined by
f := δ[0,+∞), g := 0 and h(x) = x2 for each x ∈ R. Then epi f∗ = (−∞, 0] × [0,+∞) and
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A := {x ∈ C : h(x) ∈ −S} = {0}. Hence, epi(f + δA)
∗ = R × [0,+∞). Moreover, it is easy to see

that for each x∗ ∈ R,

(λh)∗(x∗) :=

⎧
⎨

⎩

(x∗)2

4λ
, λ > 0,

δ{0}(x∗), λ = 0.
(3.32)

Then, h� = 0. This implies that epih� = R × [0,+∞). Hence,

epi
(
f∗�δ∗

C�h�) = R × [0,+∞) = epi
(
f + δA

)∗
, (3.33)

This means that (CQ) holds (noting that dom g∗ = {0}). However, note that

⋂

λ≥0
epi (λh)∗ = R × (0,+∞) ∪ {(0, 0)}. (3.34)

Then

epi f∗ + epi δ∗
C +

⋃

λ≥0
epi (λh)∗ = R × (0,+∞) ∪ {(0, 0)}/= epi

(
f + δA

)∗
(3.35)

and so the C1(f,A) does not hold.

Proposition 3.10. Let g = 0. Suppose that (3.19) holds. Then the family {f, g, δC, h} satisfies (CQ)
if and only if epi(f∗�δ∗

C�h�) is weak∗-closed.

Proof. Since f is lsc and A is closed, it follows from Lemma 2.1(i) that

epi
(
f + δA

)∗ = cl
(
epi f∗ + epi δ∗

A

)
= cl

(
epi f∗ + epi δ∗

C + epih�), (3.36)

while the last equality holds by Lemma 3.1(c). Note by (2.11) that

epi f∗ + epi δ∗
C + epih� ⊆ epi

(
f∗�δ∗

C�h�). (3.37)

Hence, by (3.36), one has that

epi
(
f + δA

)∗ ⊆ cl
(
epi

(
f∗�δ∗

C�h�)). (3.38)

This together with (3.23) implies that

epi
(
f + δA

)∗ = cl
(
epi

(
f∗�δ∗

C�h�)). (3.39)

Thus, the result is seen to hold.

The following theorem provides a Farkas-type lemma for the DC optimization prob-
lem (3.7) in terms of the condition (CQ).
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Theorem 3.11. Let p ∈ X∗ and r ∈ R. Suppose that the family {f, g, δC, h} satisfies (CQ). Consider
the following statements.

(i) For each x ∈ A, f(x) − g(x) − 〈p, x〉 ≥ −r.
(ii) (p, r) + epi g∗ ⊆ epi(f∗�δ∗

C�h�).

(iii) For each ε > 0 and for each u∗ ∈ dom g∗, there exists λ ∈ S⊕ such that

g∗(u∗) − (
f + δC + λg

)∗(
p + u∗) ≥ −r − ε. (3.40)

Then (i)⇒ (ii)⇒ (iii). Furthermore, if (3.14) holds, then (i) ⇔ (ii) ⇔ (iii).

Proof. Consider (i)⇒(ii). Suppose that (i) holds. Then for each x ∈ A, f(x) + δA(x) ≥ g(x) +
〈p, x〉 − r. Thus, by (2.7) and the assumed (CQ),

epi
(
g + p − r

)∗ ⊆ epi
(
f + δA

)∗ ⊆ epi
(
f∗�δ∗

C�h�); (3.41)

while by (2.14), one has that

epi
(
g + p − r

)∗ = epi g∗ +
(
p, r

)
. (3.42)

Hence, (ii) holds.
Consider (ii)⇒(iii). Suppose that (ii) holds. Let u∗ ∈ dom g∗ be arbitrary. Then,

(
p + u∗, r + g∗(u∗)

) ∈ epi
(
f∗�δ∗

C�h�), (3.43)

that is,

inf
x∗
1,x

∗
2∈X∗

{
f∗(x∗

1

)
+ δ∗

C

(
x∗
2
)
+ h�(p + u∗ − x∗

1 − x∗
2
)} ≤ r + g∗(u∗). (3.44)

This means that for each ε > 0, there exist x∗
1, x

∗
2 ∈ X∗ such that

f∗(x∗
1

)
+ δ∗

C

(
x∗
2
)
+ h�(p + u∗ − x∗

1 − x∗
2
) ≤ r + g∗(u∗) +

ε

2
. (3.45)

Moreover, by the definition of the function h�, there exists λ ∈ S⊕ such that

(λh)∗
(
p + u∗ − x∗

1 − x∗
2
) ≤ h�(p + u∗ − x∗

1 − x∗
2
)
+
ε

2
. (3.46)

Hence,

f∗(x∗
1

)
+ δ∗

C

(
x∗
2
)
+ (λh)∗

(
p + u∗ − x∗

1 − x∗
2
) ≤ r + g∗(u∗) + ε. (3.47)
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Therefore, by the Young-Fenchel inequality (2.5), one sees that for each x ∈ X,

−r − ε ≤ g∗(u∗) − f∗(x∗
1

) − δ∗
C

(
x∗
2
) − (λh)∗

(
p + u∗ − x∗

1 − x∗
2
)

≤ g∗(u∗) − 〈
x∗
1, x

〉
+ f(x) − 〈

x∗
2, x

〉
+ δC(x) −

〈
p + u∗ − x∗

1 − x∗
2, x

〉
+ (λh)(x)

= g∗(u∗) − 〈
p + u∗, x

〉
+
(
f + δC + λh

)
(x).

(3.48)

Note that the above inequalities and the equality hold for each x ∈ X, it follows that

−r − ε ≤ g∗(u∗) − sup
x∈X

{〈
p + u∗, x

〉 − (
f + δC + λh

)
(x)

}
= g∗(u∗) − (

f + δC + λh
)(
p + u∗).

(3.49)

Hence, (ii) holds.
Furthermore, suppose that (3.14) holds. Then theweak duality holds between (Pp) and

(Dp), that is, v(Dp) ≤ v(Pp). Below we show that (iii)⇒(i). To do this, assume that (iii) holds.
Then by the definition of v(Dp), one has that v(Dp) ≥ −r − ε and v(Dp) ≥ −r by the arbitrary
of ε. Thus, by the weak duality holds between (Pp) and (Dp), one has that v(Pp) ≥ −r. Hence,
(i) holds and the proof is complete.

Let conth denote the set of all points at which h is continuous, that is,

conth = {x ∈ X : h is continuous at x}. (3.50)

The following theorem shows that the condition (CQ) is equivalent to the stable zero duality.

Theorem 3.12. Suppose that (3.14) holds. Consider the following statements.

(i) The family {f, g, δC, h} satisfies (CQ).

(ii) The stable zero duality holds between (P) and (D).

Then (i)⇒ (ii). Furthermore, (i)⇔ (ii) if (3.19) holds and one of the following conditions holds:

(a) cont f ∩A/= ∅ and conth ∩A/= ∅;
(b) conth ∩A ∩ intC/= ∅.

Proof. Consider (i)⇒ (ii). Suppose that (i) holds. Let p ∈ X∗. If v(Pp) = −∞, then the stable
zero duality holds between (P) and (D) trivially. Belowwe assume that −r := v(Pp) ∈ R. Then
by the implication (i)⇒(ii) of Theorem 3.11, one has that v(Dp) ≥ −r. Hence, v(Dp) ≥ v(Pp)
and, by Lemma 3.3, v(Pp) = v(Dp). Thus, (ii) holds.

Furthermore, suppose that (3.19) holds and one of the conditions (a) and (b) holds.
Then, by Lemma 2.1(b), one has that

⋃

λ∈S⊕
epi

(
f + δC + λh

)∗ = epi f∗ + epi δ∗
C +

⋃

λ∈S⊕
epi (λh)∗. (3.51)
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To show (i), by Proposition 3.7, it suffices to show that (3.20) holds. To do this, let (p, r) ∈
epi(f − g + δA)

∗. Then, by (3.9), v(Pp) ≥ −r and hence v(Dp) ≥ −r by the stable zero duality
between (P) and (D). Let ε > 0 and u∗ ∈ dom g∗, then there exists λ ∈ S⊕ such that

g∗(u∗) −
(
f + δC + λg

)∗(
p + u∗) ≥ −r − ε. (3.52)

This implies that (f + δC + λh)∗(p + u∗) ≤ r + ε + g∗(u∗). Hence,

(
p + u∗, r + ε + g∗(u∗)

) ∈ epi
(
f + δC + λh

)∗ ⊆
⋃

λ∈S⊕

(
f + δC + λh

)∗
, (3.53)

and by the arbitrary of ε, one has that

(
p + u∗, r + g∗(u∗)

) ∈
⋃

λ∈S⊕
epi

(
f + δC + λh

)∗ = epi f∗ + epi δ∗
C +

⋃

λ∈S⊕
epi (λh)∗, (3.54)

where the equality holds by (3.51). This together with (3.29) and (2.11) implies that

(
p + u∗, r + g∗(u∗)

) ∈ epi
(
f∗�δ∗

C�h�), (3.55)

that is,

(
p, r

) ∈ epi
(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

)
. (3.56)

Hence, by the arbitrary of u∗, we have that

(
p, r

) ∈
⋂

u∗∈dom g∗

(
epi

(
f∗�δ∗

C�h�) − (
u∗, g∗(u∗)

))
. (3.57)

Therefore, (3.20) holds and the proof is complete.

Recall that in the case when C = X and g = 0, under the assumptions that f is lsc and
h is continuous, the authors establish in [11, Theorem 3.1] the equivalence between the stable
zero duality and the following regularity condition:

epi
(
f∗�h�) is weak∗ closed. (CQ2)

In this case, by Proposition 3.10, the following equivalence holds:

(CQ) ⇐⇒ (CQ2). (3.58)

Hence, the following corollary, which follows from Theorem 3.12, improves the result in [11,
Theorem 3.1].



14 Journal of Applied Mathematics

Corollary 3.13. Suppose that

epi
(
f − g + δg−1(−S)

)∗ = epi
(
f − cl g + δg−1(−S)

)∗
. (3.59)

Consider the following statements.

(i) The family {f, g, h} satisfies (CQ), that is,

epi
(
f − g + δg−1(−S)

)∗ =
⋂

u∗∈dom g∗

(
epi

(
f∗�h�) − (

u∗, g∗(u∗)
))
. (3.60)

(ii) For each p ∈ X∗,

inf
x∈g−1(−S)

{
f(x) − g(x) − 〈

p, x
〉}

= sup
λ∈S⊕

inf
x∈X

{
f(x) − g(x) + (λh)(x) − 〈

p, x
〉}
. (3.61)

Then (i) ⇒ (ii). Furthermore, if (3.19) holds and cont g ∩A/= ∅, then (i) ⇔ (ii).

In the case when g = 0, the authors introduce in [10] the following condition:

cl
(
epi δ∗

C + epih�) = epi
(
δ∗
C�h�) (CQ1)

to study the zero duality between (P) and (D). Under the assumptions that (3.19) holds and
int(dom f)∩A/= ∅, the authors in [10] establish the zero duality using the regularity condition
(CQ1). In this case, by Lemma 2.1(b) and Lemma 3.1, we have that

epi
(
f + δA

)∗ = epi f∗ + epi δ∗
A = epi f∗ + cl

(
epi δ∗

C + epih�). (3.62)

This together with Proposition 3.7 implies that

(CQ1) =⇒ (CQ). (3.63)

By Theorem 3.12, we get the following corollary straightforwardly, which improves the
corresponding result in [10, Theorem 4.1], since we do not need to assume that (3.19) holds
and int(dom f) ∩A/= ∅.

Corollary 3.14. Suppose that the family {f, g, δC, h} satisfies (CQ). Then the zero duality holds
between (P) and (D).

By Theorem 3.12, we have the following result, where the equivalences of (i), (iii), and
(iv) are given in [10, Theorem 4.1].
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Corollary 3.15. Suppose that C is closed, h is star lsc and that conth ∩ A/= ∅. Then the following
statements are equivalent.

(i) The condition (CQ1) holds.

(ii) If the proper lsc convex function ϕ is such that

epi
(
ϕ + δA

)∗ = epiϕ∗ + epi δ∗
A, (3.64)

then

inf
x∈A

ϕ(x) = sup
λ∈S⊕

inf
x∈C

{
ϕ(x) + (λh)(x)

}
. (3.65)

(iii) If the proper lsc convex function ϕ is continuous at some point in A, then (3.65) holds.

(iv) If p ∈ X∗, then

inf
x∈A

p(x) = sup
λ∈S⊕

inf
x∈C

{
p(x) + (λh)(x)

}
. (3.66)

Proof. Consider (i)⇒(ii). Suppose that (i) holds and let ϕ be such that (3.64) is satisfied. Then,
it follows from Lemma 3.1(c) that

epi
(
ϕ + δA

)∗ = epiϕ∗ + cl
(
epi δ∗

C + epih�) = epiϕ∗ + epi
(
δ∗
C�h�) ⊆ epi

(
ϕ∗�δ∗

C�h�), (3.67)

where the second equality holds by the condition (CQ1) and the last inclusion holds by (2.11).
Hence, by Proposition 3.7(a) (note that g = 0), the (CQ) holds. Applying Corollary 3.14 to ϕ
in place of f , we complete the proof of the implication (i)⇒(ii).

Consider (ii)⇒(iii). Note that (3.64) is satisfied if ϕ is continuous at some point in A
(see Lemma 2.1(ii)). Thus, it is immediate that (ii)⇒(iii).

Consider (iii)⇒(iv). It is trivial.
Consider (iv)⇒(i). Suppose that (iv) holds. Then applying Theorem 3.12 to f = 0, one

has that

epi δ∗
A = epi

(
δ∗
C�h�). (3.68)

Hence, by Lemma 3.1(c), we obtain that

epi
(
δ∗
C�h�) = cl

(
epi δ∗

C + epih�), (3.69)

that is, the (CQ1) holds.

Using the same argument, one can obtain a sufficient and necessary condition to
ensure the zero duality between the primal problem and the Fenchel-Lagrange duality.
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Theorem 3.16. Suppose that (3.14) holds. Consider the following statements.

(i) The family {f, g, δC, h} satisfies the following condition:

epi
(
f − g + δA

)∗ =
⋂

u∗∈dom g∗

(
epi f∗ + epi

(
δ∗
C�h�) − (

u∗, g∗(u∗)
))
. (3.70)

(ii) For p ∈ X∗, the following equality holds:

v
(
Pp

)
= inf

u∗∈dom g∗
sup

λ∈S⊕,x∗∈dom g∗

{
g∗(u∗) − f∗(x∗) − (δC + λh)∗

(
p + u∗ − x∗)}. (3.71)

Then (i)⇒ (ii). Furthermore, if (3.19) holds and either cont g ∩ C/= ∅ or dom g ∩ intC/= ∅, then
(i) ⇔ (ii).
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