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This paper is concerned with the finite-time synchronization problem for two different chaotic
systems with parameter uncertainties. Using finite-time control approach and robust control
method, an adaptive synchronization scheme is proposed to make the synchronization errors of
the systems with parameter uncertainties zero in a finite time. On the basis of Lyapunov stability
theory, appropriate adaptive laws are derived to deal with the unknown parameters of the systems.
And the convergence of the parameter errors is guaranteed in a finite time. The proposed method
can be applied to a variety of chaos systems. Numerical simulations are given to demonstrate the
efficiency of the proposed control scheme.

1. Introduction

In the past few decades, chaos synchronization has gained much attention from various
fields [1–3], since Pecora and carroll [4] introduced a method to synchronize two identical
chaotic systems with different initial conditions in 1990. Most of the works on chaos
synchronization have focused on two identical chaotic systems [5–11]. However, in many
real world applications, there are no exactly two identical chaotic systems. Therefore, the
problem of chaos synchronization between two different chaotic systems with uncertainties
is an important research issue [12]. Different synchronization control methods for two
different chaotic systems, such as adaptive control [13–21], nonlinear feedback control [22],
backstepping [23, 24], fuzzy technique [25–27], and sliding mode control [28–30], have been
proposed to solve the synchronization problem.

Since some systems’ parameters cannot be exactly known in advance, many
efforts have been devoted to adaptive synchronization. In [18, 31], Huang discussed the



2 Journal of Applied Mathematics

synchronizations between Lorenz-Stenflo (LS) system and CYQY system, and between LS
system and hyperchaotic Chen system with fully uncertain parameters. Wang et al. [15]
designed a general adaptive robust controller and parameter update laws which made
the drive-response systems with different structures asymptotically synchronized. In [16],
the sufficient conditions for achieving synchronization between generalized Henon-Heiles
system and hyperchaotic Chen system with unknown parameters were derived based
on Lyapunov stability theory. A new adaptive synchronization scheme by pragmatical
asymptotically stability theorem was proposed for two different uncertain chaotic systems
[17], but the unknown signals were used in the controller. Chaos synchronization between
two different chaotic systems with uncertainties in both master and slave chaotic systems
remains a challenging problem [30].

Most methods only guarantee the asymptotic stability of the synchronization error
dynamics, namely, the trajectories of the slave system approach the trajectories of the master
system as t → ∞. From a practical point of view, however, it is more valuable that the
synchronization objective is realized in a finite time [28]. In recent years, some researchers
have applied finite-time control techniques, such as nonsingular terminal sliding mode
control method [32], CLF-based method [33, 34], sliding mode control method [28–30], and
the finite-time stability theory-based method [28, 35, 36], to realize synchronization.

Compared with the existing results in the literature, there are three advantages which
make our approach attractive. First, based on the finite-time control technique, adaptive
control, and robust control, a new synchronization method is presented for a wide class of
nonlinear systems. Second, it guarantees that all the errors are driven to zero in a finite time
even for the systems with parameter uncertainties. Third, it guarantees that all the parameter
errors converge to zero in a finite time.

In this paper, an adaptive finite-time synchronization scheme is proposed for a class of
chaotic systems. The rest of the paper is organized as follows. In Section 2, we introduce the
chaotic systems considered in this paper and preliminary lemmas. In Section 3, the proposed
finite-time controller is designed to synchronize two different chaotic systems. We give the
simulation results and the conclusions in Sections 4 and 5, respectively.

2. System Description

Consider the following master chaotic system:

ẋ = (A1 + ΔA1)x + (B1 + ΔB1)f1(x), (2.1)

where x = [x1, x2, . . . , xn]
T ∈ Rn denotes a state vector, f1 is a nonlinear continuous vector

function, A1 and B1 are n × n nominal coefficient matrices, ΔA1 and ΔB1 are unknown parts
of n × n coefficient matrices.

The slave system is given with

ẏ = (A2 + ΔA2)y + (B2 + ΔB2)f2
(
y
)
+ u, (2.2)

where y = [y1, y2, . . . , yn]
T ∈ Rn denotes a state vector, f2 is a nonlinear continuous vector

function, A2 and B2 are n × n nominal coefficient matrices, ΔA2 and ΔB2 are unknown parts
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of n × n coefficient matrices, and u = [u1(t), u2(t), . . . , un(t)]
T ∈ Rn is a control input vector to

be designed.
Subtracting (2.1) from (2.2) yields the error dynamical system as follows:

ė = (A2 + ΔA2)y + (B2 + ΔB2)f2
(
y
) − (A1 + ΔA1)x − (B1 + ΔB1)f1(x) + u, (2.3)

where e = y − x. Note that only a part of elements of the coefficient matrices unknown,
without loss of generality, we assume that the number of the unknown elements of the ith
row of ΔA1 is NA1i, that of ΔA2 is NA2i, that of ΔB1 is NB1i, and that of ΔB2 is NB2i. Then
(2.3) can be rewritten as

ė = A2y + B2f2
(
y
) −A1x − B1f1(x) + u

+

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

NA21∑

i=1

δa21iy1i

...
NA2n∑

i=1

δa2niyni

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

NB21∑

i=1

δb21if21i

...
NB2n∑

i=1

δb2nif2ni

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

NA11∑

i=1

δa11ix1i

...
NA1n∑

i=1

δa1nixni

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

NB11∑

i=1

δb11if11i

...
NB1n∑

i=1

δb1nif1ni

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,
(2.4)

where δa∗ji are nonzero elements of the jth row of ΔA∗, yji are corresponding elements of y,

δb∗ji are nonzero elements of the jth row of ΔB∗ and f∗ji are corresponding elements of f∗,
j = 1, . . . , n.

Assumption 2.1. The unknown parameters are norm-bounded, that is,

∣∣δa∗ji
∣∣ ≤ da∗ji,

∣∣δb∗ji
∣∣ ≤ db∗ji, (2.5)

where da∗ji and db∗ji are known positive constants.

Definition 2.2 (see [28]). Consider the master and slave chaotic systems described by (2.1)
and (2.2), respectively. If there exists a constant T = T(e(0)) > 0, such that

lim
t→ T

‖e(t)‖ = 0 (2.6)

and ‖e(t)‖ ≡ 0, if t ≥ T , then the chaos synchronization between the systems (2.1) and (2.2) is
achieved in a finite time.

Lemma 2.3 (see [28]). Consider the system

ẋ = f(x), f(0) = 0, x ∈ Rn, (2.7)

where f : D → Rn is continuous on an open neighborhood D ∈ Rn.
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Suppose there exists a continuous differential positive-definite function V (x) : D →
R, real numbers p > 0, 0 < η < 1, such that

V̇ (x) + pV η(x) ≤ 0, ∀x ∈ D. (2.8)

Then, the origin of system (2.7) is a locally finite-time stable equilibrium, and the
settling time, depending on the initial state x(0) = x0, satisfies

T(x0) ≤ V 1−η(x0)
p
(
1 − η

) . (2.9)

In addition, if D = Rn and V (x) is also radially unbounded (i.e., V (x) → +∞ as
‖x‖ → +∞), then the origin is a globally finite-time stable equilibrium of system (2.7).

Lemma 2.4 (see [28]). Suppose a1, a2, . . . , an, and 0 < q < 2 are all real numbers, then the following
inequality holds:

|a1|q + |a2|q + · · · + |an|q ≥
(
a21 + a22 + · · · + a2n

)q/2
. (2.10)

3. Synchronization of Two Different Chaotic Systems with
Parameter Uncertainties

Consider two different chaotic systems (2.1) and (2.2) from different initial states. The aim of
controller design is to determine appropriate u such that

lim
t→ T

e = 0. (3.1)

Now we are ready to give the design steps.
Define Lyapunov function

V =
1
2
eTe +

1
2

n∑

j=1

NA2j∑

i=1

(
1 + kdj

)−1
γ−1a2jiδã

2
2ji +

1
2

n∑

j=1

NA1j∑

i=1

(
1 + kdj

)−1
γ−1a1jiδã

2
1ji

+
1
2

n∑

j=1

NB2j∑

i=1

(
1 + kdj

)−1
γ−1b2jiδb̃

2
2ji +

1
2

n∑

j=1

NB1j∑

i=1

(
1 + kdj

)−1
γ−1b1jiδb̃

2
1ji,

(3.2)

where δã2ji = δâ2ji − δa2ji, δã1ji = δâ1ji − δa1ji, δb̃2ji = δb̂2ji − δb2ji, δb̃1ji = δb̂1ji − δb1ji, and
δâ2ji, δâ1ji, δb̂2ji, δb̂1ji are estimation values of δa2ji, δa1ji, δb2ji, δb1ji, respectively, and γ−1a2ji,
γ−1a1ji, γ

−1
b2ji, γ

−1
b1ji, kdj are constants greater than zero.
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Taking the time derivative of (3.2) gives

V̇ = eT ė +
n∑

j=1

NA2j∑

i=1

(
1 + kdj

)−1
γ−1a2jiδã2jiδ ˙̂a2ji +

n∑

j=1

NA1j∑

i=1

(
1 + kdj

)−1
γ−1a1jiδã1jiδ ˙̂a1ji

+
n∑

j=1

NB2j∑

i=1

(
1 + kdj

)−1
γ−1b2jiδb̃2jiδ

˙̂b2ji +
n∑

j=1

NB1j∑

i=1

(
1 + kdj

)−1
γ−1b1jiδb̃1jiδ

˙̂b1ji.

(3.3)

Design the control law as

u = −Ke −KDė + αs −
[
c1 sgn(e1)|e1|α, . . . , cn sgn(en)|en|α

]T

− μ

⎡

⎣
n∑

j=1

NA2j∑

i=1

(∣∣δâ2ji
∣∣ + da2ji

)1+α +
n∑

j=1

NA1j∑

i=1

(∣∣δâ1ji
∣∣ + da1ji

)1+α

+
n∑

j=1

NB2j∑

i=1

(∣∣∣δb̂2ji
∣∣∣ + db2ji

)1+α
+

n∑

j=1

NB1j∑

i=1

(∣∣∣δb̂1ji
∣∣∣ + db1ji

)1+α

⎤

⎦αe

+

[
NA11∑

i=1

δâ11iy1i, . . . ,
NA1n∑

i=1

δâ1niyni

]T

−
[
NB21∑

i=1

δb̂21if21i, . . . ,
NA1n∑

i=1

δb̂2nif2ni

]T

−
[
NA21∑

i=1

δâ21iy1i, . . . ,
NA2n∑

i=1

δâ2niyni

]T

+

[
NB11∑

i=1

δb̂11if11i, . . . ,
NB1n∑

i=1

δb̂1nif1ni

]T

,

(3.4)

where K = diag{k1, k2, . . . , kn}, ki > 0, KD = diag{kd1, kd2, . . . , kdn}, kdi > 0, and ci > 0 are
constants, 0 < α < 1 is a constant, αs = [αs1 ... αsn ]T and αsi is given in (3.5)

αsi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
(∂VA)/(∂ei)fAi +KAi

√(
(∂VA)/(∂ei)fAi

)2 + ((∂VA)/(∂ei))
4

(∂VA)/(∂ei)
, if

∂VA

∂ei
/= 0

0, if
∂VA

∂ei
= 0, i = 1, . . . , n,

(3.5)

where VA = (1/2)eTe, fA = −A2y −B2f2(y) +A1x+B1f1(x) andKAi > 0. And αe = [ αe1 ... αen ]T

and αei is given in

αei =

⎧
⎪⎪⎨

⎪⎪⎩

1
ei
, if |ei| ≥ eσ

sgn(ei)
eσ

, if |ei| < eσ,
(3.6)

where eσ > 0 is a small constant.
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Substituting (3.4) into (2.4) gives

ė = −K(I +KD)−1e −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

NA21∑

i=1

(1 + kd1)
−1δã21iy1i

...
NA2n∑

i=1

(1 + kdn)
−1δã2niyni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

NB21∑

i=1

(1 + kd1)
−1δb̃21if21i

...
NB2n∑

i=1

(1 + kdn)
−1δb̃2nif2ni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ fA + αs +

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

NA11∑

i=1

(1 + kd1)
−1δã11ix1i

...
NA1n∑

i=1

(1 + kdn)
−1δã1nixni

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

NB11∑

i=1

(1 + kd1)
−1δb̃11if11i

...
NB1n∑

i=1

(1 + kdn)
−1δb̃1nif1ni

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

− μ(I +KD)−1
⎡

⎣
n∑

j=1

NA2j∑

i=1

(∣∣δâ2ji
∣∣ + da2ji

)1+α +
n∑

j=1

NA1j∑

i=1

(∣∣δâ1ji
∣∣ + da1ji

)1+α

+
n∑

j=1

NB2j∑

i=1

(∣∣∣δb̂2ji
∣∣∣ + db2ji

)1+α
+

n∑

j=1

NB1j∑

i=1

(∣∣∣δb̂1ji
∣∣∣ + db1ji

)1+α

⎤

⎦αe

− (I +KD)−1
[
c1 sgn(e1)|e1|α, . . . , cn sgn(en)|en|α

]T
.

(3.7)

Case 1 ( |ei| ≥ eσ). Substituting (3.7) into (3.3) yields

V̇ ≤ −eTK(I +KD)−1e −
n∑

i=1

ci(1 + kdi)
−1|ei|1+α

− μkd

⎡

⎣
n∑

j=1

NA2j∑

i=1

(∣∣δâ2ji
∣∣ + da2ji

)1+α +
n∑

j=1

NA1j∑

i=1

(∣∣δâ1ji
∣∣ + da1ji

)1+α

+
n∑

j=1

NB2j∑

i=1

(∣∣∣δb̂2ji
∣∣∣ + db2ji

)1+α
+

n∑

j=1

NB1j∑

i=1

(∣∣∣δb̂1ji
∣∣∣ + db1ji

)1+α

⎤

⎦

−
n∑

j=1

ej

NA2j∑

i=1

(
1 + kdj

)−1
δã2jiyji +

n∑

j=1

ej

NA1j∑

i=1

(
1 + kdj

)−1
δã1jixji

−
n∑

j=1

ej

NB2j∑

i=1

(
1 + kdj

)−1
δb̃2jif2ji +

n∑

j=1

ej

NB1j∑

i=1

(
1 + kdj

)−1
δb̃1jif1ji
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+
n∑

j=1

NA2j∑

i=1

(
1 + kdj

)−1
γ−1a2jiδã2jiδ ˙̂a2ji +

n∑

j=1

NA1j∑

i=1

(
1 + kdj

)−1
γ−1a1jiδã1jiδ ˙̂a1ji

+
n∑

j=1

NB2j∑

i=1

(
1 + kdj

)−1
γ−1b2jiδb̃2jiδ

˙̂b2ji +
n∑

j=1

NB1j∑

i=1

(
1 + kdj

)−1
γ−1b1jiδb̃1jiδ

˙̂b1ji,

(3.8)

where kd = min{(1 + kd1)
−1, (1 + kd2)

−1, . . . , (1 + kdn)
−1}. Choosing the updating law as

δ ˙̂a2ji =

{
γa2jiejyji, if

∣
∣â2ji

∣
∣ < da2ji

0, otherwise,

δ ˙̂a1ji =

{
−γa1jiejxji, if

∣∣â1ji
∣∣ < da1ji

0, otherwise,

δ ˙̂b2ji =

⎧
⎨

⎩
γb2jiejf2ji, if

∣∣∣b̂2ji
∣∣∣ < db2ji

0, otherwise,

δ ˙̂b1ji =

⎧
⎨

⎩
−γb1jiejf1ji, if

∣∣∣b̂1ji
∣∣∣ < db1ji

0, otherwise.

(3.9)

Substituting (3.9) into (3.8) yields

V̇ ≤ − eTK(I +KD)−1e −
n∑

i=1

ci(1 + kdi)
−1|ei|1+α

− μkd

⎡

⎣
n∑

j=1

NA2j∑

i=1

(∣∣δâ2ji
∣∣ + da2ji

)1+α +
n∑

j=1

NA1j∑

i=1

(∣∣δâ1ji
∣∣ + da1ji

)1+α

+
n∑

j=1

NB2j∑

i=1

(∣∣∣δb̂2ji
∣∣∣ + db2ji

)1+α
+

n∑

j=1

NB1j∑

i=1

(∣∣∣δb̂1ji
∣∣∣ + db1ji

)1+α

⎤

⎦.

(3.10)

Since

∣∣δâ2ji − δa2ji
∣∣ ≤ ∣∣δâ2ji

∣∣ +
∣∣δa2ji

∣∣ ≤ ∣∣δâ2ji
∣∣ + da2ji,

∣∣δâ1ji − δa1ji
∣∣ ≤ ∣∣δâ1ji

∣∣ +
∣∣δa1ji

∣∣ ≤ ∣∣δâ1ji
∣∣ + da1ji,

∣∣∣δb̂2ji − δb2ji
∣∣∣ ≤

∣∣∣δb̂2ji
∣∣∣ +

∣∣δb2ji
∣∣ ≤

∣∣∣δb̂2ji
∣∣∣ + db2ji,

∣∣∣δb̂1ji − δb1ji
∣∣∣ ≤

∣∣∣δb̂1ji
∣∣∣ +

∣∣δb1ji
∣∣ ≤

∣∣∣δb̂1ji
∣∣∣ + db1ji

(3.11)
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hold, one can conclude that −(|δâ2ji| + da2ji)
1+α ≤ −|δâ2ji − δa2ji|1+α,

− (∣∣δâ1ji
∣
∣ + da1ji

)1+α ≤ −∣∣δâ1ji − δa1ji
∣
∣1+α,

−
(∣∣
∣δb̂2ji

∣
∣
∣ + db2ji

)1+α ≤ −
∣
∣
∣δb̂2ji − δb2ji

∣
∣
∣
1+α

,
(3.12)

and −(|δb̂1ji| + db1ji)
1+α ≤ −|δb̂1ji − δb1ji|

1+α
. Therefore, the inequality (3.10) can be rewritten

as

V̇ ≤ − eTK(I +KD)−1e −
n∑

i=1

ci(1 + kdi)
−1|ei|1+α

− μkd

⎡

⎣
n∑

j=1

NA2j∑

i=1

∣
∣δâ2ji − δa2ji

∣
∣1+α +

n∑

j=1

NA1j∑

i=1

∣
∣δâ1ji − δa1ji

∣
∣1+α

+
n∑

j=1

NB2j∑

i=1

∣∣∣δb̂2ji − δb2ji
∣∣∣
1+α

+
n∑

j=1

NB1j∑

i=1

∣∣∣δb̂1ji − δb1ji
∣∣∣
1+α

⎤

⎦

≤ − cμ

⎡

⎣
n∑

i=1

|ei|2 +
n∑

j=1

NA2j∑

i=1

∣∣δâ2ji − δa2ji
∣∣2 +

n∑

j=1

NA1j∑

i=1

∣∣δâ1ji − δa1ji
∣∣2

+
n∑

j=1

NB2j∑

i=1

∣∣∣δb̂2ji − δb2ji
∣∣∣
2
+

n∑

j=1

NB1j∑

i=1

∣∣∣δb̂1ji − δb1ji
∣∣∣
2

⎤

⎦

(1+α)/2

≤ − cμV
(1+α)/2,

(3.13)

where cμ = min{ci(1 + kdi)
−1, ki(1 + kdi)

−1, μkd, i = 1, . . . , n}. According to Lemma 2.3, e →
Beσ in a finite time, where Beσ � {e||ei| ≤ eσ, i = 1, . . . , n}.

Case 2 (|ei| < eσ). Using (3.3)–(3.7) and (3.9), it is easy to show that

V̇ ≤ −eTK(I +KD)−1e −
n∑

i=1

ci(1 + kdi)
−1|ei|1+α (3.14)

holds. According to Barbalat’s lemma [37], we can conclude that e → 0 as t → ∞.

From the discussion above, we have the following result.

Theorem 3.1. For the systems (2.1) and (2.2), under Assumption 2.1, if the control law is designed
as (3.4), updating laws are chosen as (3.9), then e will converge to Beσ in finite time, e → 0 as t → ∞,
and δã2ji, δã1ji, δb̃2ji, and δb̃1ji remain bounded.

Remark 3.2. Since the control signal (3.4) contains the discontinuous sign functions, as a hard
switcher, it may cause undesirable chattering. In order to avoid the chattering, the “sgn”
function can be replaced by a continuous function (tanh) to remove discontinuity.



Journal of Applied Mathematics 9

4. Numerical Simulation

In this section, we present numerical results to verify the proposed synchronization approach.
Consider the following master chaotic system:

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
a(x2 − x1)
bx1 − cx1x3

−gx3 + hx2
1

⎤

⎦ =

⎡

⎣
−a a 0
b 0 0
0 0 −g

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ +

⎡

⎣
0 0 0
0 −c 0
0 0 h

⎤

⎦

⎡

⎣
0

x1x3

x2
1

⎤

⎦

=

⎡

⎣
−a0 a0 0
b0 0 0
0 0 −g0

⎤

⎦

︸ ︷︷ ︸
A1

⎡

⎣
x1

x2

x2

⎤

⎦

︸︷︷︸
x

+

⎡

⎣
−δa0 δa0 0
δb0 0 0
0 0 −δg0

⎤

⎦

︸ ︷︷ ︸
ΔA1

⎡

⎣
x1

x2

x3

⎤

⎦

︸︷︷︸
x

+

⎡

⎣
0 0 0
0 −c0 0
0 0 h0

⎤

⎦

︸ ︷︷ ︸
B1

⎡

⎣
0

x1x3

x2
1

⎤

⎦

︸ ︷︷ ︸
f1(x)

+

⎡

⎣
0 0 0
0 −δc0 0
0 0 δh0

⎤

⎦

︸ ︷︷ ︸
ΔB1

⎡

⎣
0

x1x3

x2
1

⎤

⎦

︸ ︷︷ ︸
f1(x)

,

(4.1)

where a = a0 +δa0, b = b0 +δb0, c = c0 +δc0, g = g0 +δg0, h = h0 +hg0, a0 = 8, δa0 = 2, b0 = 35,
δb0 = 5, c0 = 0.7, δc0 = 0.3, g0 = 2.0, δg0 = 0.5, h0 = 0.8, and δh0 = 0.2.

The slave system is given with

⎡

⎣
ẏ1

ẏ2

ẏ3

⎤

⎦ =

⎡

⎣
a1

(
y2 − y1 + y2y3

)

b1y2 − c1y1y3

g1y2 − h1y3

⎤

⎦ =

⎡

⎣
−a1 a1 0
0 b1 0
0 g1 −h1

⎤

⎦

⎡

⎣
y1

y2

y3

⎤

⎦ +

⎡

⎣
a1 0 0
0 −c1 0
0 0 0

⎤

⎦

⎡

⎣
y2y3

y1y3

0

⎤

⎦

=

⎡

⎣
−a10 a10 0
0 b10 0
0 g10 −h10

⎤

⎦

︸ ︷︷ ︸
A2

⎡

⎣
y1

y2

y3

⎤

⎦

︸︷︷︸
y

+

⎡

⎣
−δa10 δa10 0

0 δb10 0
0 δg10 −δh10

⎤

⎦

︸ ︷︷ ︸
ΔA2

⎡

⎣
y1

y2

y3

⎤

⎦

︸︷︷︸
y

+

⎡

⎣
a10 0 0
0 −c10 0
0 0 0

⎤

⎦

︸ ︷︷ ︸
B2

⎡

⎣
y2y3

y1y3

0

⎤

⎦

︸ ︷︷ ︸
f2(y)

+

⎡

⎣
δa10 0 0
0 −δc10 0
0 0 0

⎤

⎦

︸ ︷︷ ︸
ΔB2

⎡

⎣
y2y3

y1y3

0

⎤

⎦

︸ ︷︷ ︸
f2(y)

+

⎡

⎣
u1

u2

u3

⎤

⎦,

(4.2)

where a1 = a10 + δa10, b1 = b10 + δb10, c1 = c10 + δc10, g1 = g10 + δg10, h1 = h10 + hg10, a10 = 0.8,
δa10 = 0.2, b10 = 2.0, δb10 = 0.5, c10 = 0.7, δc10 = 0.3, g10 = 0.7, δg10 = 0.3, h10 = 3.0, δh10 = 1.0.
x(0) = 1.8, y(0) = −1.2, and z(0) = 1.5.

The initial states in master system (4.1) are x1(0) = 1.8, x2(0) = −1.2, x3(0) = 1.5. The
initial states in slave system (4.2) are y1(0) = 1.5, y2(0) = 1.2, y3(0) = 1.1. The initial parameter
estimation values of the systems (2.1) and (2.2) are δâ0 = 0, δb̂0 = 0, δĉ0 = 0, δĝ0 = 0, δĥ0 = 0,
δâ10 = 0, δb̂10 = 0, δĉ10 = 0, δĝ10 = 0, and δĥ10 = 0.
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Figure 1: Chaotic behavior of the master chaotic system under the proposed parameters.

According to Remark 3.2, the control law (3.4) is modified as follows:

u = −Ke −KDė + αs − CA2 − CB2 + CA1 + CB1

− μ

[
2(|δâ0| + da0)

1+α +
(∣∣∣δb̂0

∣∣∣ + db0

)1+α
+ (|δĉ0| + dc0)

1+α

+
(∣∣δĝ0

∣∣ + dg0
)1+α +

(∣∣∣δĥ0

∣∣∣ + dh0

)1+α
+ 3(|δâ10| + da10)

1+α +
(∣∣∣δb̂10

∣∣∣ + db10

)1+α

+(|δĉ10| + dc10)
1+α +

(∣∣δĝ10
∣∣ + dg10

)1+α +
(∣∣∣δĥ10

∣∣∣ + dh10

)1+α
]
αe

− [
c1 tanh(εe1)|e1|α, . . . , cn tanh(εen)|en|α

]T
,

(4.3)

where

CA2 =
[
δâ10

(
y2 − y1

)
, δb̂10y2, δĝ10y2 − δĥ10y3

]T
,

CB2 =
[
δâ10y2y3,−δĉ10y1y3, 0

]T
, CA1 =

[
δâ0(x2 − x1), δb̂0x1,−δĝ0x3

]T
,

CB1 =
[
0,−δĉ0x1x3, δĥ0x

2
1

]T
, K = diag{70, 54, 30},

KD = diag{0.93, 0.75, 0.1}, μ = diag{1, 0.2, 0.01},
KA = diag{2.3, 2.1, 2.3}da0 = 2, db0 = 10, dc0 = 1, dg0 = 1, dh0 = 2,

da10 = 1, db10 = 2, dc10 = 2, dg10 = 2, dh10 = 2, ε = 40, c1 = 1, c2 = 3, c3 = 1.
(4.4)
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Figure 2: Chaotic behavior of the slave chaotic system under the proposed parameters.

Choosing the updating law as

δ ˙̂a0 =

{
0.30e1(x1 − x2), if |â0| < da0

0, otherwise
, δ ˙̂b0 =

⎧
⎨

⎩
−0.90e2x1, if

∣∣∣b̂0
∣∣∣ < db0

0, otherwise,

δ ˙̂c0 =

{
−0.001e2x1x3, if |ĉ0| < dc0

0, otherwise
, δ ˙̂g0 =

{
0.002e3x3, if

∣∣ĝ0
∣∣ < dg0

0, otherwise,

δ ˙̂h0 =

⎧
⎨

⎩
−0.018e3x2

1, if
∣∣∣ĥ0

∣∣∣ < dh0

0, otherwise
, δ ˙̂a10 =

{
0.0006e1

(−y1 + y2 + y2y3
)
, if |â10| < da10

0, otherwise,

δ ˙̂b10 =

⎧
⎨

⎩
−0.08e2y2, if

∣∣∣b̂10
∣∣∣ < db10

0, otherwise
, δ ˙̂c10 =

{
−0.0015e2y1y3, if |ĉ10| < dc10

0, otherwise,

δ ˙̂g0 =

{
0.1e3y2, if

∣∣ĝ10
∣∣ < dg10

0, otherwise
, δ ˙̂h10 =

⎧
⎨

⎩
−0.017e3y3, if

∣∣∣ĥ10

∣∣∣ < dh10

0, otherwise.

(4.5)

Chaotic behavior of the master chaotic system under the proposed parameters is
shown in Figure 1. Chaotic behavior of the slave chaotic system under the proposed
parameters is shown in Figure 2. From Figures 1 and 2, we know that the two systems are
still chaotic under adopted uncertain parameters. The synchronization errors between two
different chaotic systems are illustrated in Figures 3, 4, and 5, where the control inputs are
activated at t = 1s. One can see that the synchronization errors converge to the zero in a finite
time, which implies that the chaos synchronization between the two different chaotic systems
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is realized. The time responses of parameter estimations â0, b̂0, ĉ0, ĝ0, and ĥ0 are depicted in
Figure 6. The time responses of parameter estimations â10, b̂10, ĉ10, ĝ10, and ĥ10 are depicted
in Figure 7.

According to the simulations, it has been shown that the proposed control algorithm
provides stable behavior when using online adaptive laws. The control performance is
satisfactory and the chattering phenomenon has been successfully improved by using tanh
functions. In addition, it is easy to see that the parameter estimation values approach their
real values in a finite time.
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Figure 6: Curves of parameter estimations for the master system.

5. Conclusions

In this paper, we have studied chaos synchronization of two different chaotic systems with
parameter uncertainties. The two different chaotic systems with parameter uncertainties are
synchronized via robust adaptive control based on the Lyapunov stability theory and finite-
time theory. The proposed method can be applied to a variety of chaos systems. It guarantees
that all the error states are driven to zero in a finite time. Numerical simulations are given to
show the proposed synchronization approach works well for synchronizing two different
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Figure 7: Curves of parameter estimations for the slave system.

chaotic systems in a finite time, even when the parameters of both the master and slave
systems are unknown.
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