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Molodtsov introduced the theory of soft sets, which can be used as a general mathematical tool for
dealing with uncertainty. This paper aims to introduce the concept of the type-2 fuzzy soft set by
integrating the type-2 fuzzy set theory and the soft set theory. Some operations on the type-2 fuzzy
soft sets are given. Furthermore, we investigate the decision making based on type-2 fuzzy soft
sets. By means of level soft sets, we propose an adjustable approach to type-2 fuzzy-soft-set based
decision making and give some illustrative examples. Moreover, we also introduce the weighted
type-2 fuzzy soft set and examine its application to decision making.

1. Introduction

Soft set theory [1], firstly proposed by Molodtsov, is a general mathematical tool for dealing
with uncertainty. Compared with some traditional mathematical tools for dealing with
uncertainties, such as the theory of probability, the theory of fuzzy sets [2], and the theory
of rough sets [3], the advantage of soft set theory is that it is free from the inadequacy of the
parametrization tools of those theories. It has been demonstrated that soft set theory brings
about a rich potential for applications in many fields like functions smoothness, Riemann
integration, decision making, measurement theory, game theory, and so forth [1].

Soft set theory has received much attention since its introduction by Molodtsov.
Maji et al. [4] first defined some operations on soft sets and introduced the soft set into
the decision making problems [5]. Chen et al. [6] proposed a new definition of soft set
parameterization reduction and compared it with attributes reduction in rough set theory
[3]. Kong et al. [7] introduced the definition of normal parameter reduction into soft sets.
Ali et al. [8] gave some new operations in soft set theory. Zou and Xiao [9] presented some
data analysis approaches of soft sets under incomplete information. Çağman and Enginoğlu
[10] defined soft matrices which were a matrix representation of the soft sets. Moreover, they
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[11] redefined the operations of soft sets and constructed a uni-int decision making method.
Herawan and Deris [12] presented an alternative approach for mining regular association
rules and maximal association rules from transactional datasets using soft set theory. Gong
et al. [13] proposed the concept of bijective soft set and defined some operations on it. The
algebraic structure of soft set theories has been investigated in recent years. In [14], Aktaş
and Çağman gave a definition of soft groups and studied their basic properties. Jun [15]
introduced the notion of soft BCK/BCI-algebras and soft subalgebras. Jun and Park [16]
examined the algebraic structure of BCK/BCI-algebras. Feng et al. [17] initiated the study of
soft semirings by using the soft set theory and investigated several related properties. Acar
et al. [18] defined soft rings and introduced their initial basic properties such as soft ideals
and soft homomorphisms. Yamak et al. [19] studied soft hypergroupoids. Anvariyeh et al.
[20] investigated the algebraic hyperstructures of soft sets associated to semihypergroups.

It should be noted that all of above works are based on the classical soft set theory. The
soft set model, however, can also be combined with other mathematical models. Maji et al.
[21] first introduced the concept of fuzzy soft sets by combining the soft sets and fuzzy sets.
Majumdar and Samanta [22] defined generalised fuzzy soft sets and discussed application of
generalised fuzzy soft sets in decision making problem and medical diagnosis. By combining
the vague set and soft set models, Xu et al. [23] introduced the notion of vague soft set. Yang
et al. [24] introduced the concept of the interval-valued fuzzy soft set which is a combination
of the soft set and the interval-valued fuzzy set. Feng et al. [25] focused on a tentative
approach to soft sets combined with fuzzy sets and rough sets and proposed three different
types of hybrid models, which are called rough soft sets, soft rough sets, and soft-rough fuzzy
sets, respectively. Bhattacharya and Davvaz [26] introduced the concepts of intuitionistic
fuzzy lower soft rough approximation and IF upper soft rough approximation space. Maji et
al. [27, 28] proposed the notion of intuitionistic fuzzy soft sets by integrating the soft sets and
intuitionistic fuzzy sets [29]. By combining the interval-valued intuitionistic fuzzy sets and
soft sets, Jiang et al. [30] obtained a new soft set model: interval-valued intuitionistic fuzzy
soft set theory. Aygünoğlu and Aygün [31] focused on fuzzy soft groups, homomorphism of
fuzzy soft groups, and normal fuzzy soft groups.

According to Mendel [32], there exist at least four sources of uncertainties in type-
1 fuzzy logic systems (T1 FLS), which are as follows: (1) meanings of the words that are
used in the antecedents and consequents of rules can be uncertain (words mean different
things to different people); (2) consequents may have a histogram of values associated with
them, especially when knowledge is extracted from a group of experts, all of whom do
not collectively agree; (3) measurements that activate a T1 FLS may be noisy and therefore
uncertain; (4) the data that are used to tune the parameters of a T1 FLS may also be noisy.
All these uncertainties lead to uncertain fuzzy-set membership functions. Ordinary type-1
fuzzy sets cannot model such uncertainties directly, because they are characterized by crisp
membership functions. Type-2 fuzzy sets are capable of modeling the four uncertainties. The
concept of type-2 fuzzy sets, first proposed by Zadeh [33], is an extension of a type-1 fuzzy
set in which its membership function falls into a fuzzy set in the interval [0, 1]. Because type-
2 fuzzy sets can improve certain kinds of inference better than do fuzzy sets with increasing
imprecision, uncertainty, and fuzziness in information, type-2 fuzzy sets are gaining more
and more in popularity. The basic concepts of type-2 fuzzy set theory and its extensions, as
well as some practical applications, can be found in [34–40].

However, in the practical applications, we are often faced with the situation in which
the evaluation of parameters is a fuzzy concept. For instance, when we are going to buy a car,
we need to consider the safety of car. We can provide some linguistic terms, such as good,
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medium, and bad, as the evaluation about the safety of car. Here, good, medium, and bad
are fuzzy concepts and they can be represented by fuzzy sets rather than exact numerical
values, interval numbers, intuitionistic fuzzy numbers, and interval-valued intuitionistic
fuzzy numbers. Obviously, it is very difficult for the classical soft set and its existing
extensions to deal with the above case because the evaluation of parameters of the object
is a fuzzy concept rather than an exact numerical value, an interval number, an intuitionistic
fuzzy number, and an interval-valued intuitionistic fuzzy number. Hence, it is necessary to
extend soft set theory to accommodate the situations in which the evaluation of parameters is
a fuzzy concept. As mentioned above, type-2 fuzzy set can be used to represent the fuzziness
of the above evaluation of parameters directly. Thus, it is very necessary to extend soft set
theory using type-2 fuzzy set. The purpose of this paper is to further extend the concept of soft
set theory by combining type-2 fuzzy set and soft set, from which we can obtain a new soft
set model: type-2 fuzzy soft sets. We present the concept of type-2 fuzzy soft sets and define
some operations on type-2 fuzzy soft sets. Moreover, we also investigate the applications of
type-2 fuzzy soft sets and weighted type-2 fuzzy soft sets in decision making problems.

The remainder of this paper is organized as follows. After recalling some preliminar-
ies, Section 3 presents the concept of the type-2 fuzzy soft set and some operations on type-2
fuzzy soft sets. In the sequel, applications of type-2 fuzzy soft sets and weighted type-2 fuzzy
soft sets in decision making problems are, respectively, shown in Sections 4 and 5. Finally,
conclusions are given in Section 6.

2. Preliminaries

In this section, we will review the concepts of soft set, type-2 fuzzy set, and interval type-2
fuzzy set.

2.1. Soft Sets

Let U be an initial universe of objects and EU (E, for short) the set of parameters in relation
to objects in U. Parameters are often attributes, characteristics, or properties of objects. Let
P(U) denote the power set of U and A ⊆ E. Molodtsov [1] defined a soft set as follows.

Definition 2.1 (see [1]). A pair (F,A) is called a soft set over U, where F is a mapping given
by

F : A −→ P(U). (2.1)

In other words, a soft set over U is a parameterized family of subsets of the universe
U. For ε ∈ A, F(ε) is regarded as the set of ε-approximate elements of the soft set (F,A).
Clearly, a soft set is not a set. For illustration, Molodtsov considered several examples in [1].

Definition 2.2 (see [5]). Let (F,A) be a soft set over U. The choice value of an object hi ∈ U is
ci, given by

ci =
∑

ε∈A
hiε, (2.2)

where if hi ∈ F(ε) then hiε = 1, otherwise hiε = 0.
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Table 1: Tabular representation of (F, A).

U ε1 ε2 ε3 ε4 ε5

h1 0 1 0 1 0
h2 1 0 0 1 1
h3 0 0 1 1 0
h4 0 1 1 0 0
h5 0 1 1 1 0
h6 1 0 1 0 0

As an illustration, let us consider the following example originally introduced by
Molodtsov [1].

Example 2.3 (A house purchase problem). Suppose the following. The universe U =
{h1, h2, h3, h4, h5, h6} is the set of six houses under consideration. A is the set of parameters
that Mr. X is interested in buying a house. A = {ε1, ε2, ε3, ε4, ε5}, where εi (i = 1, 2, 3, 4, 5)
stands for the parameters in a word of “expensive,” “beautiful”, “wooden”, “in the green
surroundings”, and “convenient traffic”, respectively. That means, out of available houses
in U, Mr. X is to select that house which qualifies with all (or with maximum number of)
parameters of the set A. In this case, to define a soft set means to point out expensive houses,
beautiful houses, and so on. The soft set (F,A) describes the “attractiveness of the houses”
which Mr. X (say) is going to buy.

Suppose that

F(ε1) = {h2, h6}, F(ε2) = {h1, h4, h5}, F(ε3) = {h3, h4, h5, h6},
F(ε4) = {h1, h2, h3, h5}, F(ε5) = {h2}.

(2.3)

The soft set (F,A) is a parametrized family {F(εi), i = 1, 2, 3, 4, 5} of subsets of the
set U and gives us a collection of approximate descriptions of an object. Consider the
mapping F which is “houses (·)” where dot (·) is to be filled up by a parameter ε ∈ A.
For instance, F(ε1) means “houses (expensive)” whose functional value is the set {h ∈
U, h is an expensive house} = {h2, h6}. Thus, we can view the soft set (F,A) as a collection
of approximations as below:

(F,A) =
{
expensive houses = {h2, h6}, beautiful houses = {h1, h4, h5},
wooden houses = {h3, h4, h5, h6},
houses in the green surroundings = {h1, h2, h3, h5},
convenient traffic houses = {h2}}.

(2.4)

In order to store a soft set in a computer, we could represent a soft set in the form
of a 0-1 two-dimensional table. Table 1 is the tabular representation of the soft set (F,A). If
hi ∈ F(εj), then hij = 1, otherwise hij = 0, where hij are the entries in Table 1.
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2.2. Type-2 Fuzzy Sets and Interval Type-2 Fuzzy Sets

In the current subsection, we recall the notions of type-2 fuzzy sets and interval type-2 fuzzy
sets from [32, 35, 39].

Definition 2.4. Let U be a finite and nonempty set, which is referred to as the universe. A
type-2 fuzzy set, denoted by Ã, is characterized by a type-2 membership function μÃ(x, u) :
U × I → I, where x ∈ U, I = [0, 1] and u ∈ Jx ⊆ I, that is,

Ã =
{(

(x, u), μÃ(x, u)
) | x ∈ U,u ∈ Jx ⊆ I

}
, (2.5)

where 0 ≤ μÃ(x, u) ≤ 1. Ã can also be expressed as

Ã =
∫

x∈U

∫

u∈Jx

μÃ(x, u)
(x, u)

=
∫

x∈U

[∫
u∈Jx fx(u)/u

]

x
, Jx ⊆ I, (2.6)

where fx(u) = μÃ(x, u).

The class of all type-2 fuzzy sets of the universe U is denoted by FT2(U).

Definition 2.5. At each value of x, say x = x′, the 2D plane whose axes are u and μÃ(x
′, u)

is called the vertical slice of μÃ(x, u). A secondary membership function is a vertical slice of
μÃ(x, u). It is μÃ(x = x′, u) for x′ ∈ U and for all u ∈ Jx′ ⊆ I, that is,

μÃ

(
x = x′, u

)
= μÃ

(
x′) =

∫

u∈Jx′

fx′(u)
u

, ∀u ∈ Jx′ ⊆ I, (2.7)

where 0 ≤ fx′(u) ≤ 1. The amplitude of a secondary membership function is called a
secondary grade. In Definition 2.4, fx(u) and μÃ(x, u) are all secondary grades.

Definition 2.6. The domain of a secondary membership function is called the primary
membership of x. In Definition 2.5, Jx′ is the primary membership of x′.

Definition 2.7. If all the secondary grades of a type-2 fuzzy set Ã are equal to 1, that is,
μÃ(x, u) = 1, for all x ∈ U and for all u ∈ Jx ⊆ I, then Ã is defined as an interval type-2
fuzzy set.
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2.3. Operations of Type-2 Fuzzy Sets

Let U be a nonempty universe, Ã, B̃ ∈ FT2(U):

Ã =
∫

x∈U

μÃ(x)
x

=
∫

x∈U

[∫
u∈Jux fx(u)/u

]

x
, Jux ⊆ I,

B̃ =
∫

x∈U

μB̃(x)
x

=
∫

x∈U

[∫
w∈Jwx gx(w)/w

]

x
, Jwx ⊆ I.

(2.8)

The union, intersection, and complement for type-2 fuzzy sets are defined as follows.

(1) Union of two type-2 fuzzy sets Ã ∪ B̃:

μÃ∪B̃(x) =
∫

u∈Jux

∫

w∈Jwx

[
fx(u) ∧ gx(w)

]

(u ∨w)
= μÃ(x) � μB̃(x), x ∈ U, (2.9)

where ∧ is the minimum operation, ∨ is the maximum operation, � is called the join
operation, μÃ∪B̃(x), μÃ(x), and μB̃(x) are the secondary membership functions, and
all are type-1 fuzzy sets.

(2) Intersection of two type-2 fuzzy sets Ã ∩ B̃:

μÃ∩B̃(x) =
∫

u∈Jux

∫

w∈Jwx

[
fx(u) ∧ gx(w)

]

(u ∧w)
= μÃ(x) 
 μB̃(x), x ∈ U, (2.10)

where ∧ is the minimum operation, 
 is called the meet operation, μÃ∩B̃(x), μÃ(x),
and μB̃(x) are the secondary membership functions, and all are type-1 fuzzy sets.

(3) Complement of a type-2 fuzzy set ∼ Ã:

μ∼Ã(x) = ¬μÃ(x) =
∫

u∈Jux

fx(u)
(1 − u)

. (2.11)

Example 2.8. Let U = {h1, h2, h3, h4, h5, h6} a nonempty universe, and let Ã and B̃ be two
type-2 fuzzy sets over the same universe U.

Suppose that

Ã =
0.3/0.1 + 1/0.5

h1
+
1/0.5 + 0.3/0.6

h2
+
1/0.8
h3

+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
0.3/0.2 + 1/0.6

h6
,
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B̃ =
0.7/0.1 + 1/0.2

h1
+
1/0.6
h2

+
0.6/0.5 + 1/0.9

h3

+
0.4/0.4 + 1.0/0.5

h4
+
0.6/0.9

h5
+
1/0.6 + 0.5/0.8

h6
.

(2.12)

Then, we have that

Ã ∩ B̃ =
0.7/0.1 + 1.0/0.2

h1
+
1.0/0.5 + 0.3/0.6

h2
+
0.6/0.5 + 1/0.8

h3

+
0.4/0.4 + 0.7/0.5

h4
+
0.5/0.9

h5
+
0.3/0.2 + 1.0/0.6

h6
,

Ã ∪ B̃ =
0.3/0.1 + 0.3/0.2 + 1.0/0.5

h1
+
1.0/0.6

h2
+
0.6/0.8 + 1/0.9

h3

+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
1/0.6 + 0.5/0.8

h6
,

∼ Ã =
0.3/0.9 + 1/0.5

h1
+
1/0.5 + 0.3/0.4

h2
+
1/0.2
h3

+
0.7/0.5 + 0.2/0.4

h4
+
0.5/0.1

h5
+
0.3/0.8 + 1/0.4

h6
.

(2.13)

2.4. Cut Sets of Type-2 Fuzzy Sets

Definition 2.9 (see [41, 42]). Let Ã be a type-2 fuzzy set on the universeU, μÃ(x) the secondary
membership function of Ã, and μÃ(x) =

∫
u∈Jx fx(u)/u, x ∈ U, Jx ⊆ I. Then the secondary α-

cut set Ãα of Ã is defined by

Ãα =
∫

x∈U

[∫
u∈Jαx 1/u

]

x
, (2.14)

where Jαx = {u | fx(u) ≥ α, u ∈ Jx} ⊆ [0, 1] and α ∈ [0, 1].

By Definitions 2.7 and 2.9, we can see that the secondary α-cut set Ãα of Ã is an interval
type-2 fuzzy set.

Definition 2.10 (see [41, 42]). Let Ã be an interval type-2 fuzzy set on the universe U, μÃ(x)
the secondary membership function of Ã, and μÃ(x) =

∫
u∈Jx 1/u, x ∈ U, Jx ⊆ I. Then the

primary λ-cut set of Ã is defined by

Ãλ = {x | u(x) ≥ λ, ∀u(x) ∈ Jx}, (2.15)

where Jx ⊆ [0, 1] and λ ∈ [0, 1].

By Definition 2.10, the primary λ-cut set Ãα
λ
of the secondary α-cut set Ãα of the type-2

fuzzy set Ã is defined as follows.
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Definition 2.11 (see [41, 42]). Let Ãα be the secondary α-cut set of the type-2 fuzzy set Ã. Then
the primary λ-cut set of Ãα is defined by

Ãα
λ = {x | u(x) ≥ λ, ∀u(x) ∈ Jαx}, (2.16)

where Jαx ⊆ Jx ⊆ [0, 1], α ∈ [0, 1], and λ ∈ [0, 1].

The cut set of the type-2 fuzzy set contains the secondary cut set and the primary
cut set, and it is the primary λ-cut set of the secondary α-cut set of the type-2 fuzzy set.
Therefore, when we compute the cut set of the type-2 fuzzy set Ã, the first step is to compute
the secondary α-cut set Ãα of Ã, and the second step is to compute the primary λ-cut set Ãα

λ

of Ãα.

3. Type-2 Fuzzy Soft Sets

In this section, we will initiate the study on hybrid structures involving both type-2 fuzzy
sets and soft sets. In Section 3.1, we introduce the concept of the type-2 fuzzy soft set which
is an extension of the soft set [32]. Next, in Section 3.2, we discuss some operations on type-2
fuzzy soft sets.

3.1. Concept of Type-2 Fuzzy Soft Sets

Definition 3.1. Let U be an initial universe and A ⊆ E a set of parameters; a pair (F, A) is
called a type-2 fuzzy soft set over U, where F is a mapping given by

F : A −→ FT2(U). (3.1)

In other words, a type-2 fuzzy soft set is a parameterized family of type-2 fuzzy subsets
of U. For any ε ∈ A, F(ε) is referred as the set of ε-approximate elements of the type-2 fuzzy
soft set (F, A), it is actually a type-2 fuzzy set onU, and it can be written as.

F(ε) =
∫

x∈U

∫

u∈Jx

μF(ε)(x, u)
(x, u)

=
∫

x∈U

[∫
u∈Jx fx(u)/u

]

x
, Jx ⊆ I. (3.2)

Here, u, μF(ε)(x, u) are, respectively, the primary membership degree and secondary
membership degree that object x holds on parameter ε.

To illustrate the idea, let us consider the following example (adapted fromMendel and
Wu [43]).

Example 3.2 (see [43]). Consider a type-2 fuzzy soft set (F, A) over U, where U is a set
of six houses under the consideration of a decision maker to purchase, which is denoted
by U = {h1, h2, h3, h4, h5, h6}, and A is a parameter set, where A = {ε1, ε2, ε3, ε4, ε5} =
{expensive; beautiful; wooden; in the green surroundings; convenient traffic}. The type-2
fuzzy soft set (F, A) describes the “attractiveness of the houses” to this decision maker.
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Suppose that

F(ε1) =
in expensive

h1
+
moderately inexpensive

h2
+
very expensive

h3

+
just right

h4
+
moderately expensive

h5
+
expensive

h6
,

F(ε2) =
moderately beautiful

h1
+
just right

h2
+
very beautiful

h3

+
moderately not beautiful

h4
+
beautiful

h5
+
not beautiful

h6
,

F(ε3) = wooden
h1

+
moderately not wooden

h2
+
not wooden

h3

+
just right

h4
+
moderately wooden

h5
+
very wooden

h6
,

F(ε4) =
in the moderately green surroundings

h1
+
in the green surroundings

h2

+
in the very green surroundings

h3
+
just right

h4

+
not in the green surroundings

h5
+
moderately not in the green surroundings

h6
,

F(ε5) =
very convenient traffic

h1
+
inconvenient traffic

h2
+
moderately convenient traffic

h3

+
convenient traffic

h4
+
moderately inconvenient traffic

h5
+
just right

h6
.

(3.3)

We can convert the above linguistic terms into the corresponding fuzzy sets and obtain
the following results:

F(ε1) = 0.3/0.1 + 1/0.2 + 0.7/0.3
h1

+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.9

h3
+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4
+
0.5/0.7

h5

+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,
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F(ε2) = 0.3/0.1 + 0.6/0.4 + 0.5/0.7 + 0.5/0.8
h1

+
0.1/0.1 + 0.6/0.2 + 0.9/0.6

h2

+
0.7/0.8

h3
+
0.9/0.4

h4
+
0.6/0.5 + 1/0.6

h5
+
0.6/0.1 + 0.7/0.4

h6
,

F(ε3) = 0.2/0.6 + 0.8/0.8 + 0.6/0.9
h1

+
0.6/0.4 + 0.8/0.7

h2
+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

F(ε4) = 0.5/0.7
h1

+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2
+
0.7/0.4 + 0.7/0.8

h3

+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4
+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5

+
0.4/0.5 + 0.3/0.7

h6
,

F(ε5) = 0.9/0.5 + 1/0.8
h1

+
0.1/0.1 + 0.9/0.5 + 0.6/0.6

h2

+
0.3/0.2 + 0.7/0.4 + 0.8/0.5 + 0.9/0.7

h3
+
0.7/0.5 + 1/0.8

h4

+
0.9/0.5

h5
+
0.2/0.6 + 0.5/0.7 + 0.4/0.9

h6
.

(3.4)

The type-2 fuzzy soft set (F, A) is a parameterized family {F(εi), i = 1, 2, 3, 4, 5} of
type-2 fuzzy sets on U, and

(F, A) =
{
expensive houses

=
0.3/0.1 + 1/0.2 + 0.7/0.3

h1
+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2
+
0.6/0.5 + 1/0.9

h3

+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4
+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,

beautiful houses

=
0.3/0.1 + 0.6/0.4 + 0.5/0.7 + 0.5/0.8

h1
+
0.1/0.1 + 0.6/0.2 + 0.9/0.6

h2
+
0.7/0.8

h3

+
0.9/0.4

h4
+
0.6/0.5 + 1/0.6

h5
+
0.6/0.1 + 0.7/0.4

h6
,
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wooden houses

=
0.2/0.6 + 0.8/0.8 + 0.6/0.9

h1
+
0.6/0.4 + 0.8/0.7

h2
+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

in the green surroundings houses

=
0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2
+
0.7/0.4 + 0.7/0.8

h3

+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4
+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5

+
0.4/0.5 + 0.3/0.7

h6
,

convenient traffic houses

=
0.9/0.5 + 1/0.8

h1
+
0.1/0.1 + 0.9/0.5 + 0.6/0.6

h2

+
0.3/0.2 + 0.7/0.4 + 0.8/0.5 + 0.9/0.7

h3
+
0.7/0.5 + 1/0.8

h4
+
0.9/0.5

h5

+
0.2/0.6 + 0.5/0.7 + 0.4/0.9

h6

}
.

(3.5)

Table 2 gives the tabular representation of the type-2 fuzzy soft set (F, A). We can see
that the precise evaluation for each object on each parameter is unknown. For example, we
cannot present the precise degree of how expensive house h1 is; however, we can say that
house h1 is inexpensive.

Definition 3.3. For two type-2 fuzzy soft sets (F, A) and (G, B) over U, one says that (F, A) is
a type-2 fuzzy soft subset of (G, B) if and only if A ⊆ B and for all ε ∈ A, F(ε) ⊆ G(ε). One
denotes this relationship by (F, A)⊆̃(G, B). (F, A) is said to be a type-2 fuzzy soft super set of
(G, B), if (G, B) is a type-2 fuzzy soft subset of (F, A). One denotes it by (F, A)⊇̃(G, B).

Example 3.4. Let (F, A) and (G, B) be two type-2 fuzzy soft sets over the same universe U as
follows:

F(ε1) = 0.3/0.1 + 1/0.2 + 0.7/0.3
h1

+
1/0.5 + 0.3/0.6

h2
+
0.6/0.5 + 1/0.9

h3

+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4
+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.2/0.9

h6
,
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F(ε2) = 0.3/0.6 + 0.9/0.8 + 0.7/0.9
h1

+
0.6/0.4 + 0.9/0.7

h2
+
0.5/0.3 + 1.0/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

G(ε1) = 0.4/0.1 + 1/0.2 + 0.8/0.3
h1

+
0.6/0.2 + 1/0.5 + 0.5/0.6

h2
+
0.6/0.5 + 1/0.9

h3

+
0.4/0.4 + 1.0/0.5 + 0.2/0.6

h4
+
0.6/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.9

h6
,

G(ε2) = 0.4/0.6 + 1.0/0.8 + 0.8/0.9
h1

+
1.0/0.4 + 0.9/0.7

h2
+
0.5/0.3 + 1.0/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 1.0/0.6 + 0.5/0.8

h4
+
0.7/0.5 + 1/0.6

h5
+
0.4/0.6 + 1/0.9

h6
,

G(ε3) = 1/0.8
h1

+
0.1/0.1 + 0.8/0.5 + 0.6/0.6

h2
+
0.3/0.2 + 0.8/0.5 + 0.9/0.7

h3

+
0.7/0.6 + 1/0.8

h4
+
0.9/0.7

h5
+
0.3/0.6 + 1.0/0.7 + 0.6/0.9

h6
,

(3.6)

where U = {h1, h2, h3, h4, h5, h6} is the set of houses, A = {ε1, ε2} = {expensive; wooden},
and B = {ε1, ε2, ε3} = {expensive; wooden; beautiful}.

Clearly, by Definition 3.3, we have (F, A)⊆̃(G, B).

Definition 3.5. Two type-2 fuzzy soft sets (F, A) and (G, B) over a common universe U are
said to be type-2 fuzzy soft equal if (F, A) is a type-2 fuzzy soft subset of (G, B) and (G, B) is
a type-2 fuzzy soft subset of (F, A), which can be denoted by (F, A)=̃(G, B).

3.2. Operations on Type-2 Fuzzy Soft Sets

Definition 3.6 (see [4]). Let E = {ε1, ε2, . . . , εn} be a parameter set. The not set of E, denoted by
¬E, is defined by ¬E = {¬ε1,¬ε2, . . . ,¬εn}, where ¬εi = not εi.

Definition 3.7. The complement of a type-2 fuzzy soft set (F, A) is denoted by (F, A)c, and it
is defined by

(F, A)c = (Fc,¬A), (3.7)

where Fc : ¬A → FT2(U) is a mapping given by Fc(ε) =∼ (F(¬ε)), for all ε ∈ ¬A.
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Example 3.8. Following Example 3.2, the complement (F, A)c = (Fc,¬A) of the type-2 fuzzy
soft set (F, A) is given below:

Fc(not expensive
)

=∼ (F(expensive))

=∼
(
0.3/0.1 + 1/0.2 + 0.7/0.3

h1
+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2
+
0.6/0.5 + 1/0.9

h3

+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4
+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6

)

=
0.3/0.9 + 1/0.8 + 0.7/0.7

h1
+
0.4/0.7 + 1/0.5 + 0.3/0.4

h2
+
0.6/0.5 + 1/0.1

h3

+
0.3/0.6 + 0.8/0.5 + 0.2/0.4

h4
+
0.5/0.3

h5
+
0.3/0.9 + 1/0.4 + 0.5/0.3 + 0.2/0.1

h6
,

Fc(not beautiful)

=∼ (F(beautiful))

=∼
(
0.3/0.1 + 0.6/0.4 + 0.5/0.7 + 0.5/0.8

h1
+
0.1/0.1 + 0.6/0.2 + 0.9/0.6

h2
+
0.7/0.8

h3

+
0.9/0.4

h4
+
0.6/0.5 + 1/0.6

h5
+
0.6/0.1 + 0.7/0.4

h6

)

=
0.3/0.9 + 0.6/0.6 + 0.5/0.3 + 0.5/0.2

h1
+
0.1/0.9 + 0.6/0.8 + 0.9/0.4

h2
+
0.7/0.2

h3

+
0.9/0.6

h4
+
0.6/0.5 + 1/0.4

h5
+
0.6/0.9 + 0.7/0.6

h6
,

Fc(not wooden)

=∼ (F(wooden))

=∼
(
0.2/0.6 + 0.8/0.8 + 0.6/0.9

h1
+
0.6/0.4 + 0.8/0.7

h2
+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

)

=
0.2/0.4 + 0.8/0.2 + 0.6/0.1

h1
+
0.6/0.6 + 0.8/0.3

h2
+
0.5/0.7 + 0.9/0.6 + 0.4/0.4

h3

+
0.3/0.5 + 0.9/0.4 + 0.4/0.2

h4
+
0.6/0.5 + 1/0.4

h5
+
1/0.1
h6

,
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Fc(not in the green surroundings
)

=∼ F(in the green surroundings
)

=∼ F
(
0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2

+
0.7/0.4 + 0.7/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5

+
0.4/0.5 + 0.3/0.7

h6

)

=
0.5/0.3

h1
+
0.3/0.9 + 0.8/0.5 + 0.5/0.2

h2
+
0.7/0.6 + 0.7/0.2

h3

+
0.2/0.6 + 0.7/0.5 + 0.5/0.4

h4
+
0.7/0.9 + 0.6/0.8 + 0.3/0.5 + 0.5/0.4

h5
+
0.4/0.5 + 0.3/0.3

h6
,

Fc(not convenient traffic)

=∼ F(convenient traffic)

=∼ F
(
0.9/0.5 + 1/0.8

h1
+
0.1/0.1 + 0.9/0.5 + 0.6/0.6

h2

+
0.3/0.2 + 0.7/0.4 + 0.8/0.5 + 0.9/0.7

h3
+
0.7/0.5 + 1/0.8

h4

+
0.9/0.5

h5
+
0.2/0.6 + 0.5/0.7 + 0.4/0.9

h6

)

=
0.9/0.5 + 1/0.2

h1
+
0.1/0.9 + 0.9/0.5 + 0.6/0.4

h2
+
0.3/0.8 + 0.7/0.6 + 0.8/0.5 + 0.9/0.3

h3

+
0.7/0.5 + 1/0.2

h4
+
0.9/0.5

h5
+
0.2/0.4 + 0.5/0.3 + 0.4/0.1

h6
.

(3.8)

Definition 3.9. Let (F, A) and (G, B) be two type-2 fuzzy soft sets over U. Then “(F, A) AND
(G, B)” is defined by (F, A)∧ (G, B) = (H, A×B), whereH(α, β) = F(α)∩G(β), for all (α, β) ∈
A × B.

Definition 3.10. Let (F, A) and (G, B) be two type-2 fuzzy soft sets over U. Then “(F, A) OR
(G, B)” is defined by (F, A)∨ (G, B) = (K, A×B), whereK(α, β) = F(α)∪G(β), for all (α, β) ∈
A × B.

Example 3.11. Let (F, A) and (G, B) be two type-2 fuzzy soft sets over the same universe U.
Here U = {h1, h2, h3, h4, h5, h6} is the set of houses, A = {ε1, ε2} = {expensive; wooden}, and
B = {e1, e2} = {beautiful; convenient traffic}.
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Suppose that

F(ε1) = 0.3/0.1 + 1/0.5
h1

+
1/0.5 + 0.3/0.6

h2
+
1/0.8
h3

+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
0.3/0.2 + 1/0.6

h6
,

F(ε2) = 0.3/0.6 + 0.9/0.8
h1

+
0.6/0.4 + 0.9/0.7

h2
+
1.0/0.5

h3

+
0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

G(e1) = 0.7/0.1 + 1/0.2
h1

+
1/0.6
h2

+
0.6/0.5 + 1/0.9

h3

+
0.4/0.4 + 1.0/0.5

h4
+
0.6/0.9

h5
+
1/0.6 + 0.5/0.8

h6
,

G(e2) = 0.5/0.6 + 1.0/0.8
h1

+
1.0/0.4 + 0.9/0.7

h2
+
0.5/0.3 + 1.0/0.4

h3

+
1.0/0.2

h4
+
0.7/0.5 + 1/0.6

h5
+
0.8/0.6

h6
.

(3.9)

Compute the results of the “AND” operation and “OR” operation on (F, A) and (G, B),
respectively. Let (F, A) ∧ (G, B) = (H, A × B). Then, by Definition 3.9, we have that

H(ε1, e1) = F(ε1) ∩ G(e1)

=
0.7/0.1 + 1.0/0.2

h1
+
1.0/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.8

h3
+
0.4/0.4 + 0.7/0.5

h4
+
0.5/0.9

h5
+
0.3/0.2 + 1.0/0.6

h6
,

H(ε1, e2) = F(ε1) ∩ G(e2)

=
0.3/0.1 + 1.0/0.5

h1
+
1.0/0.4 + 0.9/0.5 + 0.3/0.6

h2

+
0.5/0.3 + 1.0/0.4

h3
+
0.7/0.2

h4
+
0.5/0.5 + 0.5/0.6

h5
+
0.3/0.2 + 0.8/0.6

h6
,

H(ε2, e1) = F(ε2) ∩ G(e1)

=
0.7/0.1 + 0.9/0.2

h1
+
0.6/0.4 + 0.9/0.6

h2
+
1.0/0.5

h3

+
0.4/0.4 + 0.9/0.5

h4
+
0.6/0.5 + 0.6/0.6

h5
+
1.0/0.6 + 0.5/0.8

h6
,
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H(ε2, e2) = F(ε2) ∩ G(e2)

=
0.5/0.6 + 0.9/0.8

h1
+
0.9/0.4 + 0.9/0.7

h2

+
0.5/0.3 + 1.0/0.4

h3
+
0.9/0.2

h4
+
0.7/0.5 + 1.0/0.6

h5
+
0.8/0.6

h6
,

(3.10)

That is,

(F, A) ∧ (G, B) =
{
expensive and beautiful houses

=
0.7/0.1 + 1.0/0.2

h1
+
1.0/0.5 + 0.3/0.6

h2
+
0.6/0.5 + 1/0.8

h3

+
0.4/0.4 + 0.7/0.5

h4
+
0.5/0.9

h5
+
0.3/0.2 + 1.0/0.6

h6
,

expensive and convenient traffic houses

=
0.3/0.1 + 1.0/0.5

h1
+
1.0/0.4 + 0.9/0.5 + 0.3/0.6

h2
+
0.5/0.3 + 1.0/0.4

h3

+
0.7/0.2

h4
+
0.5/0.5 + 0.5/0.6

h5
+
0.3/0.2 + 0.8/0.6

h6
,

wooden and beautiful houses

=
0.7/0.1 + 0.9/0.2

h1
+
0.6/0.4 + 0.9/0.6

h2
+
1.0/0.5

h3
+
0.4/0.4 + 0.9/0.5

h4

+
0.6/0.5 + 0.6/0.6

h5
+
1.0/0.6 + 0.5/0.8

h6
,

wooden and convenient traffic houses

=
0.5/0.6 + 0.9/0.8

h1
+
0.9/0.4 + 0.9/0.7

h2
+
0.5/0.3 + 1.0/0.4

h3

+
0.9/0.2

h4
+
0.7/0.5 + 1.0/0.6

h5
+
0.8/0.6

h6

}
.

(3.11)

Let (F, A) ∨ (G, B) = (K, A × B). Then, by Definition 3.10, we have that

K(ε1, e1) = F(ε1) ∪ G(e1)

=
0.3/0.1 + 0.3/0.2 + 1.0/0.5

h1
+
1.0/0.6

h2

+
0.6/0.8 + 1/0.9

h3
+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
1/0.6 + 0.5/0.8

h6
,
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K(ε1, e2) = F(ε1) ∪ G(e2)

=
0.5/0.6 + 1.0/0.8

h1
+
1.0/0.5 + 0.3/0.6 + 0.9/0.7

h2

+
1.0/0.8

h3
+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
0.8/0.6

h6
,

K(ε2, e1) = F(ε2) ∪ G(e1)

=
0.3/0.6 + 0.9/0.8

h1
+
0.6/0.6 + 0.9/0.7

h2

+
0.6/0.5 + 1.0/0.9

h3
+
0.9/0.6 + 0.4/0.8

h4
+
0.6/0.9

h5
+
1/0.9
h6

,

K(ε2, e2) = F(ε2) ∪ G(e2)

=
0.3/0.6 + 0.9/0.8

h1
+
0.6/0.4 + 0.9/0.7

h2
+
1.0/0.5

h3

+
0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1.0/0.6

h5
+
0.8/0.9

h6
.

(3.12)

That is,

(F, A) ∨ (G, B) =
{
expensive and beautiful houses

=
0.3/0.1 + 0.3/0.2 + 1.0/0.5

h1
+
1.0/0.6

h2
+
0.6/0.8 + 1/0.9

h3

+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
1/0.6 + 0.5/0.8

h6
,

expensive and convenient traffic houses

=
0.5/0.6 + 1.0/0.8

h1
+
1.0/0.5 + 0.3/0.6 + 0.9/0.7

h2
+
1.0/0.8

h3

+
0.7/0.5 + 0.2/0.6

h4
+
0.5/0.9

h5
+
0.8/0.6

h6
,

wooden and beautiful houses

=
0.3/0.6 + 0.9/0.8

h1
+
0.6/0.6 + 0.9/0.7

h2
+
0.6/0.5 + 1.0/0.9

h3

+
0.9/0.6 + 0.4/0.8

h4
+
0.6/0.9

h5
+
1/0.9
h6

,
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wooden and convenient traffic houses

=
0.3/0.6 + 0.9/0.8

h1
+
0.6/0.4 + 0.9/0.7

h2
+
1.0/0.5

h3

+
0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1.0/0.6

h5
+
0.8/0.9

h6

}
.

(3.13)

Definition 3.12. The union of two type-2 fuzzy soft sets (F, A) and (G, B) over a common
universe U is the type-2 fuzzy soft set (H, C), where C = A ∪ B, and for all ε ∈ C,

H(ε) =

⎧
⎨

⎩

F(ε), if ε ∈ A − B,
G(ε), if ε ∈ B −A,
F(ε) ∪ G(ε), if ε ∈ A ∩ B.

(3.14)

One denotes it by (F, A)∪̃(G, B) = (H, C).

Definition 3.13. The intersection of two type-2 fuzzy soft sets (F, A) and (G, B) over a common
universe U is the type-2 fuzzy soft set (K, C), where C = A ∪ B, and for all ε ∈ C,

K(ε) =

⎧
⎨

⎩

F(ε), if ε ∈ A − B,
G(ε), if ε ∈ B −A,
F(ε) ∩ G(ε), if ε ∈ A ∩ B.

(3.15)

One denotes it by (F, A)∩̃(G, B) = (K, C).

Example 3.14. Let (F, A) and (G, B) be two type-2 fuzzy soft sets showed in Tables 2 and 3,
where B = {e1, e2, e3} = {beautiful; convenient traffic; modern style}.

The union and intersection of (F, A) and (G, B) are, respectively, given below.
Let (F, A)∪̃(G, B) = (H, A ∪ B). Then by Definition 3.12, we have that

H(
expensive

)
= F(ε1) = 0.3/0.1 + 1/0.2 + 0.7/0.3

h1

+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.9

h3
+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4

+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,
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Table 3: A type-2 fuzzy soft set (G, B).

U e1 e2 e3

h1
0.3
0.4

+
0.7
0.6

+
0.2
0.9

0.3
0.4

+
0.8
0.5

+
0.6
0.9

0.3
0.2

+
0.9
0.4

+
1
0.6

h2
0.2
0.3

+
0.1
0.6

+
0.9
0.7

0.6
0.6

+
0.9
0.7

1.0
0.9

h3
0.7
0.4

0.5
0.1

+
1
0.4

+
0.4
0.5

0.7
0.5

+
1.0
0.8

h4
0.8
1.0

0.9
0.4

0.2
0.4

+
0.7
0.5

+
0.5
0.6

h5
0.3
0.2

+
0.4
0.5

+
1
0.7

+
0.6
0.9

0.7
0.3

+
1
0.6

0.7
0.2

+
0.8
0.3

+
1.0
0.5

+
0.5
0.8

h6
0.6
0.4

+
0.8
0.7

0.1
0.1

+
0.9
0.5

+
0.6
0.6

0.4
0.2

+
1.0
0.5

+
0.6
0.7

H(beautiful) = F(ε2) ∪ G(e1)

=
0.3/0.4 + 0.6/0.6 + 0.5/0.7 + 0.5/0.8 + 0.2/0.9

h1

+
0.2/0.3 + 0.2/0.6 + 0.9/0.7

h2
+
0.7/0.8

h3
+
0.8/1.0

h4

+
0.4/0.5 + 0.4/0.6 + 0.6/0.7 + 0.6/0.9

h5

+
0.6/0.4 + 0.7/0.7

h6
,

H(wooden) = F(ε3) = 0.2/0.6 + 0.8/0.8 + 0.6/0.9
h1

+
0.6/0.4 + 0.8/0.7

h2

+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4

+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

H(
in the green surroundings

)
= F(ε4) = 0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2

+
0.7/0.4 + 0.7/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4
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+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5

+
0.4/0.5 + 0.3/0.7

h6
,

(3.16)

H(convenient traffic) = F(ε5) ∪ G(e2) = 0.8/0.5 + 0.8/0.8 + 0.6/0.9
h1

+
0.6/0.6 + 0.9/0.7

h2

+
0.3/0.2 + 0.7/0.4 + 0.8/0.5 + 0.9/0.7

h3

+
0.7/0.5 + 0.5/0.6 + 0.7/0.8

h4

+
0.9/0.5 + 0.5/0.8

h5
+
0.2/0.6 + 0.5/0.7 + 0.4/0.9

h6
,

(3.17)

H(
modern style

)
= G(e3) = 0.3/0.2 + 0.9/0.4 + 1/0.6

h1
+
1.0/0.9

h2

+
0.7/0.5 + 1.0/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.2 + 0.8/0.3 + 1.0/0.5 + 0.5/0.8

h5

+
0.4/0.2 + 1.0/0.5 + 0.6/0.7

h6
.

(3.18)

That is,

(F, A)∪̃(G, B) =
{
expensive houses

=
0.3/0.1 + 1/0.2 + 0.7/0.3

h1
+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.9

h3
+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4

+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,

beautiful houses

=
0.3/0.4 + 0.6/0.6 + 0.5/0.7 + 0.5/0.8 + 0.2/0.9

h1

+
0.2/0.3 + 0.2/0.6 + 0.9/0.7

h2
+
0.7/0.8

h3
+
0.8/1.0

h4
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+
0.4/0.5 + 0.4/0.6 + 0.6/0.7 + 0.6/0.9

h5
+
0.6/0.4 + 0.7/0.7

h6
,

wooden houses

=
0.2/0.6 + 0.8/0.8 + 0.6/0.9

h1
+
0.6/0.4 + 0.8/0.7

h2

+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3
+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4

+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

in the green surroundings houses

=
0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2

+
0.7/0.4 + 0.7/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5
+
0.4/0.5 + 0.3/0.7

h6
,

convenient traffic houses

=
0.8/0.5 + 0.8/0.8 + 0.6/0.9

h1
+
0.6/0.6 + 0.9/0.7

h2

+
0.3/0.2 + 0.7/0.4 + 0.8/0.5 + 0.9/0.7

h3

+
0.7/0.5 + 0.5/0.6 + 0.7/0.8

h4

+
0.9/0.5 + 0.5/0.8

h5
+
0.2/0.6 + 0.5/0.7 + 0.4/0.9

h6
,

modern style houses

=
0.3/0.2 + 0.9/0.4 + 1/0.6

h1
+
1.0/0.9

h2

+
0.7/0.5 + 1.0/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.2 + 0.8/0.3 + 1.0/0.5 + 0.5/0.8

h5

+
0.4/0.2 + 1.0/0.5 + 0.6/0.7

h6

}
.

(3.19)
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Let (F, A)∩̃(G, B) = (K, A ∪ B). Then by Definition 3.13, we have that

K(
expensive

)
= F(ε1) = 0.3/0.1 + 1/0.2 + 0.7/0.3

h1

+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.9

h3
+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4

+
0.5/0.7

h5
+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,

K(beautiful) = F(ε2) ∩ G(e1)

=
0.3/0.1 + 0.6/0.4 + 0.5/0.6 + 0.2/0.7 + 0.2/0.8

h1

+
0.1/0.1 + 0.6/0.2 + 0.2/0.3 + 0.9/0.6

h2
+
0.7/0.4

h3

+
0.8/0.4

h4
+
0.3/0.2 + 0.6/0.5 + 1/0.6

h5

+
0.6/0.1 + 0.7/0.4

h6
,

K(wooden) = F(ε3) = 0.2/0.6 + 0.8/0.8 + 0.6/0.9
h1

+
0.6/0.4 + 0.8/0.7

h2

+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3

+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4
+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

K(
in the green surroundings

)
= F(ε4) = 0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2

+
0.7/0.4 + 0.7/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5
+
0.4/0.5 + 0.3/0.7

h6
,
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K(convenient traffic) = F(ε5) ∩ G(e2) = 0.3/0.4 + 0.8/0.5 + 0.6/0.8
h1

+
0.1/0.1 + 0.9/0.5 + 0.6/0.6

h2

+
0.5/0.1 + 0.3/0.2 + 0.9/0.4 + 0.4/0.5

h3
+
0.9/0.4

h4

+
0.7/0.3 + 0.9/0.5

h5
+
0.1/0.1 + 0.5/0.5 + 0.5/0.6

h6
,

K(
modern style

)
= G(e3) = 0.3/0.2 + 0.9/0.4 + 1/0.6

h1
+
1.0/0.9

h2

+
0.7/0.5 + 1.0/0.8

h3
+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4

+
0.7/0.2 + 0.8/0.3 + 1.0/0.5 + 0.5/0.8

h5

+
0.4/0.2 + 1.0/0.5 + 0.6/0.7

h6
.

(3.20)

That is,

(F, A)∩̃(G, B) =
{
expensive houses

=
0.3/0.1 + 1/0.2 + 0.7/0.3

h1
+
0.4/0.3 + 1/0.5 + 0.3/0.6

h2

+
0.6/0.5 + 1/0.9

h3
+
0.3/0.4 + 0.8/0.5 + 0.2/0.6

h4
+
0.5/0.7

h5

+
0.3/0.1 + 1/0.6 + 0.5/0.7 + 0.2/0.9

h6
,

beautiful houses

=
0.3/0.1 + 0.6/0.4 + 0.5/0.6 + 0.2/0.7 + 0.2/0.8

h1

+
0.1/0.1 + 0.6/0.2 + 0.2/0.3 + 0.9/0.6

h2
+
0.7/0.4

h3
+
0.8/0.4

h4

+
0.3/0.2 + 0.6/0.5 + 1/0.6

h5
+
0.6/0.1 + 0.7/0.4

h6
,

wooden houses

=
0.2/0.6 + 0.8/0.8 + 0.6/0.9

h1
+
0.6/0.4 + 0.8/0.7

h2
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+
0.5/0.3 + 0.9/0.4 + 0.4/0.6

h3
+
0.3/0.5 + 0.9/0.6 + 0.4/0.8

h4

+
0.6/0.5 + 1/0.6

h5
+
1/0.9
h6

,

in the green surroundings houses

=
0.5/0.7

h1
+
0.3/0.1 + 0.8/0.5 + 0.5/0.8

h2
+
0.7/0.4 + 0.7/0.8

h3

+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4
+
0.7/0.1 + 0.6/0.2 + 0.3/0.5 + 0.5/0.6

h5

+
0.4/0.5 + 0.3/0.7

h6
,

convenient traffic houses

=
0.3/0.4 + 0.8/0.5 + 0.6/0.8

h1
+
0.1/0.1 + 0.9/0.5 + 0.6/0.6

h2

+
0.5/0.1 + 0.3/0.2 + 0.9/0.4 + 0.4/0.5

h3
+
0.9/0.4

h4

+
0.7/0.3 + 0.9/0.5

h5
+
0.1/0.1 + 0.5/0.5 + 0.5/0.6

h6
,

modern style houses

=
0.3/0.2 + 0.9/0.4 + 1/0.6

h1
+
1.0/0.9

h2
+
0.7/0.5 + 1.0/0.8

h3

+
0.2/0.4 + 0.7/0.5 + 0.5/0.6

h4
+
0.7/0.2 + 0.8/0.3 + 1.0/0.5 + 0.5/0.8

h5

+
0.4/0.2 + 1.0/0.5 + 0.6/0.7

h6

}
.

(3.21)

Definition 3.15. A type-2 fuzzy soft set (F, A) over U is said to be a null type-2 fuzzy soft set
denoted by ∅A, if for all ε ∈ A, for all x ∈ U,

μÃ(x, u) =
{

1, u = 0,
0, u /= 0.

(3.22)

Definition 3.16. A type-2 fuzzy soft set (F, A) over U is said to be an absolute type-2 fuzzy
soft set denoted by UA, if for all ε ∈ A, for all x ∈ U,

μÃ(x, u) =
{

1, u = 1,
0, u /= 1.

(3.23)
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4. Type-2 Fuzzy-Soft-Set-Based Decision Making

Since its appearance, soft set theory has a wide application in many practical problems,
especially the use of soft sets in decision making. Maji et al. [5] first introduced the soft set
into the decision making problems. Furthermore, Roy and Maji [44] presented an algorithm
to solve the recognition problem by means of fuzzy soft sets. Later, Kong et al. [45] gave
a counterexample to illustrate that the optimal choice could not be obtained in general by
using Roy and Maji’s algorithm [44] and presented a modified version. Feng et al. [46]
gave more deeper insights into decision making based on fuzzy soft sets. They presented an
adjustable approach to fuzzy-soft-set-based decision making by means of level soft sets. By
generalizing the adjustable approach to fuzzy-soft-set-based decisionmaking [46], Jiang et al.
[47] presented an adjustable approach to intuitionistic fuzzy-soft-set-based decision making
and gave some illustrative examples.

In this section, we will present an adjustable approach to type-2 fuzzy-soft-set-based
decision making problems. This approach is based on the following concept called level soft
sets.

Definition 4.1. Let S = (F, A) be a type-2 fuzzy soft set over U, where A ⊆ E and E is the
parameter set.

For α ∈ [0, 1], λ ∈ [0, 1], the (α, λ)-level soft set of S is a crisp soft set L(S;α, λ) =
(F(α,λ), A) defined as follows: for any ε ∈ A,

F(α,λ)(ε) = F(ε)αλ = {x ∈ U | u(x) ≥ λ, ∀u(x) ∈ Jαx}, (4.1)

where Jαx = {u | μF(ε)(x, u) ≥ α, u ∈ Jx}.
Here, α ∈ [0, 1] can be viewed as a given least threshold on degrees of secondary

membership, and λ ∈ [0, 1] can be viewed as a given least threshold on degrees of primary
membership. In practical applications of type-2 fuzzy-soft-set-based decisionmaking, usually
the thresholds α and λ are in advance given by decision makers, and they represent decision
makers’ requirements on “secondary membership levels” and “primary membership levels,”
respectively.

To illustrate this idea, let us consider the type-2 fuzzy soft set S = (F, A) in
Example 3.2.

Example 4.2. Suppose that we take α = 0.6 and λ = 0.5; then we have the following results:

F(ε1)0.60.5 = {h3, h4}, F(ε2)0.60.5 = {h3, h5},

F(ε3)0.60.5 = {h1, h4, h5, h6}, F(ε4)0.60.5 = {h2, h4}, F(ε5)0.60.5 = {h1, h2, h4, h5}.
(4.2)

Therefore, the (0.6, 0.5)-level soft set of S = (F, A) is a soft set L(S; 0.6, 0.5) =
(F(0.6,0.5), A), where the set-valued mapping F(0.6,0.5) : A → P(U) is defined by F(0.6,0.5)(εi) =
F(εi)0.60.5 for i = 1, 2, 3, 4, 5. Table 4 gives the tabular representation of the (0.6, 0.5)-level soft set
L(S; 0.6, 0.5).

In Definition 4.1 the level pair (or threshold pair) assigned to each parameter is always
the constant value pair (α, λ). However, in some decision making problems, decision makers
would like to impose different threshold pairs on different parameters. To cope with such
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Table 4: Tabular representation of the level soft set L(S; 0.6, 0.5).

U ε1 ε2 ε3 ε4 ε5

h1 0 0 1 0 1
h2 0 0 0 1 1
h3 1 1 0 0 0
h4 1 0 1 1 1
h5 0 1 1 0 1
h6 0 0 1 0 0

Table 5: Tabular representation of the level soft set L(S; α, λ).

U ε1 ε2 ε3 ε4 ε5

h1 0 0 1 0 0
h2 0 0 1 1 0
h3 1 1 0 0 1
h4 1 0 0 1 1
h5 0 0 0 0 0
h6 1 0 1 0 0

problems, we need to use two functions instead of a constant value pair as the thresholds on
secondary membership values and primary membership values, respectively.

Definition 4.3. Let S = (F, A) be a type-2 fuzzy soft set over U, where A ⊆ E and E is the
parameter set.

Let α : A → [0, 1] and λ : A → [0, 1] be, respectively, two fuzzy sets in A which are
called two threshold fuzzy sets. The level soft set of S = (F, A) with respect to α and λ is a
crisp soft set L(S;α, λ) = (F(α,λ), A) defined as follows: for any ε ∈ A,

F(α,λ)(ε) = F(ε)αλ = {x ∈ U | u(x) ≥ λ(ε), ∀u(x) ∈ Jαx}, (4.3)

where Jαx = {u | μF(ε)(x, u) ≥ α(ε), u ∈ Jx}.
To illustrate this idea, let us consider the following examples.

Example 4.4. Let S = (F, A) be a type-2 fuzzy soft set over U, where A ⊆ E and E is a set of
parameters. We define two threshold fuzzy sets α : A → [0, 1] and λ : A → [0, 1] by

α =
0.6
ε1

+
0.6
ε2

+
0.8
ε3

+
0.7
ε4

+
0.9
ε5

, λ =
0.5
ε1

+
0.6
ε2

+
0.7
ε3

+
0.5
ε4

+
0.7
ε5

. (4.4)

Then the level soft set of S = (F, A)with respect to α and λ is a soft set L(S;α, λ)with
its tabular representation given by Table 5.

We redefine two threshold fuzzy sets α′ : A → [0, 1] and λ′ : A → [0, 1] by

α′ =
0.7
ε1

+
0.7
ε2

+
0.8
ε3

+
0.7
ε4

+
0.9
ε5

, λ′ =
0.6
ε1

+
0.6
ε2

+
0.8
ε3

+
0.6
ε4

+
0.7
ε5

. (4.5)
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Table 6: Tabular representation of the level soft set L(S;α′, λ′).

U ε1 ε2 ε3 ε4 ε5

h1 0 0 1 0 0
h2 0 1 0 0 0
h3 1 1 0 0 1
h4 0 0 0 0 1
h5 0 1 0 0 0
h6 1 0 1 0 0

Then the level soft set of S = (F, A) with respect to α′ and λ′ is a soft set L(S;α′, λ′)
with its tabular representation given by Table 6.

In the following we will show an adjustable approach to type-2 fuzzy-soft-set-based
decision making by using the concepts of level soft sets.

Algorithm 4.5. Consider the following.

Step 1: Input the (resultant) type-2 fuzzy soft set S = (F, A).

Step 2: Input two threshold fuzzy sets α : A → [0, 1] and λ : A → [0, 1] for decision
making.

Step 3: Compute the level soft set L(S;α, λ) of S with respect to the two threshold
fuzzy sets α and λ.

Step 4: Present the level soft set L(S;α, λ) in tabular form. For any hi ∈ U, compute
the choice value ci of hi.

Step 5: The optimal decision is to select hk if ck = maxhi∈U{ci}.
Step 6: If k has more than one value then any one of hk may be chosen.

Remark 4.6. In the last step of Algorithm 4.5 given above, one may go back to the second step
and change the thresholds that he/she once used so as to adjust the final optimal decision,
especially when there are too many “optimal choices” to be chosen.

To illustrate the basic idea of Algorithm 4.5, let us consider the following example.

Example 4.7. Suppose that S = (F, A) is a type-2 fuzzy soft set with its tabular representation
given by Table 1.

Following Example 4.4, we deal with the decision making problem involving S =
(F, A) by using the threshold fuzzy sets α and λ and obtain the level soft set L(S;α, λ). Table 7
gives the tabular representation of L(S;α, λ) with choice values.

From Table 7, since the optimal choice value max1≤i≤6{ci} = {c3, c4}, h3 and h4 are the
optimal choice objects.

If we deal with this problem by using the threshold fuzzy sets α′ and λ′, then we obtain
the level soft set L(S;α′, λ′). Table 8 gives the tabular representation of L(S;α′, λ′)with choice
values.

From Table 8, since the optimal choice value max1≤i≤6{ci} = {c3}, h3 is the optimal
choice object.
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Table 7: Tabular representation of L(S;α, λ) with choice values.

U ε1 ε2 ε3 ε4 ε5 Choice value (ci)
h1 0 0 1 0 0 c1 = 1
h2 0 0 1 1 0 c2 = 2
h3 1 1 0 0 1 c3 = 3
h4 1 0 0 1 1 c4 = 3
h5 0 0 0 0 0 c5 = 0
h6 1 0 1 0 0 c6 = 2

Table 8: Tabular representation of L(S;α′, λ′) with choice values.

U ε1 ε2 ε3 ε4 ε5 Choice value (ci)
h1 0 0 1 0 0 c1 = 1
h2 0 1 0 0 0 c2 = 1
h3 1 1 0 0 1 c3 = 3
h4 0 0 0 0 1 c4 = 1
h5 0 1 0 0 0 c5 = 1
h6 1 0 1 0 0 c6 = 2

5. Weighted Type-2 Fuzzy-Soft-Set-Based Decision Making

Maji et al. [5] defined the weighted table of a soft set, which is presented by having dij =
wj × hij instead of 0 and 1 only, where hij are the entries in the table of the soft set and wj are
the weights of the attribute ej . Feng et al. [46] introduced the notion of weighted fuzzy soft
sets and discussed its applications to decision making problems. Recently, Jiang et al. [47]
proposed an adjustable approach to weighted intuitionistic fuzzy soft-sets-based decision
making problems by extending the approach to weighted fuzzy soft-sets-based decision
making [46].

In Section 4, we have examined the application of type-2 fuzzy soft sets in decision
making problems. A further representational capability can be added by associating each
parameter εj with a value wj ∈ [0, 1] called its weight. In the case of multicriteria decision
making, these weights can be used to represent the different importance of the concerned
criteria. In this section, we will investigate the application of weighted type-2 fuzzy soft set
in decision making problems. To begin with, we give the concept of weighted type-2 fuzzy
soft sets.

Definition 5.1. Let E be a set of parameters and A ⊆ E. A weighted type-2 fuzzy soft set is a
triple (F, A,w)where (F, A) is a type-2 fuzzy soft set overU, andw : A → [0, 1] is a weight
function specifying the weight wj = w(εj) for each attribute εj ∈ A.

According to the above definition, every type-2 fuzzy soft set can be considered as
a weighted type-2 fuzzy soft set. The notion of weighted type-2 fuzzy soft sets provides a
mathematical framework formodeling and analyzing the decisionmaking problems inwhich
all the choice parameters may not be of equal importance [46]. These differences between the
importance of parameters are characterized by theweight function in aweighted type-2 fuzzy
soft set [46].

A revised version of Algorithm 4.5 can be proposed to cope with the decision making
problems based on weighted type-2 fuzzy soft sets (see Algorithm 5.2). In the revised
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algorithm, we consider the weights of parameters and compute the weighted choice values
ci instead of choice values ci.

Algorithm 5.2. Consider the following.

Step 1: Input a weighted type-2 fuzzy soft set T = (F, A,w).

Step 2: Input two threshold fuzzy sets α : A → [0, 1] and λ : A → [0, 1] for decision
making.

Step 3: Compute the level soft set L((F, A);α, λ) of T with respect to the two
threshold fuzzy sets α and λ.

Step 4: Present the level soft set L((F, A);α, λ) in tabular form. For each hi ∈ U,
compute the weighted choice value ci of hi, where ci =

∑
ε∈A F(ε)(hi) ·w(ε).

Step 5: The optimal decision is to select hk if ck = maxhi∈U{ci}.
Step 6: If k has more than one value then any one of hk may be chosen.

Remark 5.3. Similar to Algorithm 4.5, in the last step of Algorithm 5.2 given above, onemay go
back to the second step and change the threshold (or decision rule) that he/she once used so
as to adjust the final optimal decision, especially when there are too many “optimal choices”
to be chosen.

To illustrate the basic idea of Algorithm 5.2, let us consider the following example.

Example 5.4. Let S = (F, A) be a type-2 fuzzy soft set shown in Table 1. Now assume that we
have imposed the following weights for the parameters in A: for the parameter “expensive”,
w1 = 0.9; for the parameter “beautiful”, w2 = 0.6; for the parameter “wooden”, w3 = 0.2; for
the parameter “in the green surroundings”, w4 = 0.5; for the parameter “convenient traffic”,
w5 = 0.8. Thus we have a weight function w : A → [0, 1] and the type-2 fuzzy soft set
S = (F, A) in Example 3.2 is changed into a weighted type-2 fuzzy soft set T = (F, A,w).
Table 9 gives the tabular representation of T = (F, A,w).

In the following, we utilize Algorithm 5.2 to find the best object, which involves the
following steps.

Step 1: Input the type-2 fuzzy soft set T = (F, A,w).

Step 2: Input two threshold fuzzy sets α and λ given in Example 4.4.

Step 3: Compute the level soft set L((F, A);α, λ) of T w.r.t. α and λ.

Step 4: For each hi ∈ U, compute the weighted choice value ci of hi. The tabular
representation of L((F, A);α, λ)with weighted choice values is shown in Table 10.

Step 5: From Table 10, since the weighted optimal choice value max1≤i≤6{ci} = c3, h3

is the optimal choice object.

If we deal with this problem by using the threshold fuzzy sets α′ and λ′ given
in Example 4.4, we shall obtain level soft set L((F, A);α′, λ′). Table 11 gives the tabular
representation of L((F, A);α′, λ′)with weighted choice values.

From Table 11, since the weighted optimal choice value max1≤i≤6{ci} = c3, h3 is the
optimal choice object.
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Table 10: Tabular representation of L((F, A);α, λ) with weighted choice values.

U ε1, w1 = 0.9 ε2, w2 = 0.6 ε3, w3 = 0.2 ε4, w4 = 0.5 ε5, w5 = 0.8 Weighted choice value (ci)
h1 0 0 1 0 0 c1 = 0.2
h2 0 0 1 1 0 c2 = 0.7
h3 1 1 0 0 1 c3 = 2.3
h4 1 0 0 1 1 c4 = 2.2
h5 0 0 0 0 0 c5 = 0
h6 1 0 1 0 0 c6 = 1.1

Table 11: Tabular representation of L((F, A);α′, λ′)with weighted choice values.

U ε1, w1 = 0.9 ε2, w2 = 0.6 ε3, w3 = 0.2 ε4, w4 = 0.5 ε5, w5 = 0.8 Weighted choice value (ci)
h1 0 0 1 0 0 c1 = 0.2
h2 0 1 0 0 0 c2 = 0.6
h3 1 1 0 0 1 c3 = 2.3
h4 0 0 0 0 1 c4 = 0.8
h5 0 1 0 0 0 c5 = 0.6
h6 1 0 1 0 0 c6 = 1.1

Remark 5.5. The advantages of Algorithms 4.5 and 5.2 are mainly twofold. First, level soft sets
build bridges between type-2 fuzzy soft sets and crisp soft sets. By using Algorithms 4.5 and
5.2, in decision making process we actually do not work directly on type-2 fuzzy soft sets,
but only need to deal with the crisp level soft sets derived from the initial type-2 fuzzy soft
sets after choosing certain thresholds. This makes our algorithms simpler in computational
complexity and thus easier for application in real life problems. Second, Algorithms 4.5 and
5.2 can be seen as an adjustable approach to (weighted) type-2 fuzzy-soft-set-based decision
making because the final optimal decision is with respect to the (weighted) thresholds. By
choosing different types of thresholds, we can derive different level soft sets from the original
type-2 fuzzy soft set. In general, the final optimal decisions based on different level soft sets
could be different. Thus the newly proposed approach is actually an adjustable methodwhich
captures an important feature for decision making in an imprecise environment: some of
these problems are essentially humanistic and thus subjective in nature; there actually does
not exist a unique or uniform criterion for evaluating the alternatives [46]. This adjustable
feature makes Algorithms 4.5 and 5.2 not only efficient but more appropriate for many real
world applications.

Based on the above analysis, the advantage of Algorithms 4.5 and 5.2 is that they have
great flexibility, less computations, and wide applications. These advantages ensure that we
may use (weighted) type-2 fuzzy soft sets to efficiently address multiple attribute decision
making problems in which the attribute values take the form of fuzzy sets. Because the
attribute values are given in the form of fuzzy sets rather than exact numerical values, interval
numbers, intuitionistic fuzzy numbers, and interval-valued intuitionistic fuzzy number, these
decision making problems cannot be solved by some approaches based on fuzzy sets,
hesitant fuzzy sets, hesitant fuzzy linguistic term sets, intuitionistic fuzzy sets, and interval-
valued intuitionistic fuzzy sets. Though these decision making problems can be soved
by some existing approaches based on types-2 fuzzy sets, these existing approaches may
have some inherent limitations. First, these approaches are not in essence some adjustable
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methods which cannot capture an important feature for decision making in an imprecise
environment: some of these problems are essentially humanistic and thus subjective in nature
(e.g., human understanding and vision systems); there actually does not exist a unique or
uniform criterion for evaluating the alternatives. In addition, these approaches generally use
some aggregation operators to aggregate the characteristics of each alternative under all the
attributes. This means that the computational complexity of these approaches may be high,
especially when the decision problem is associated with a large parameter set or a great
number of objects. The newly proposed approaches in this paper can overcome all the above
difficulties. Therefore, our new proposals are not only more suitable but more feasible for
dealing with multiple attribute decision making problems where the attribute values take the
form of fuzzy sets.

Based on the above discussion, in the following, we point out the differences between
type-2 fuzzy soft set and type-2 fuzzy set in detail.

(1) Through Definition 3.1, the type-2 fuzzy soft set is different from the type-2 fuzzy
set. A type-2 fuzzy soft set is not a type-2 fuzzy set but a parameterized family of
type-2 fuzzy subsets of U.

(2) In Section 3.2, we introduce some computations and operations that can be
performed on type-2 fuzzy soft sets, such as complement, AND, OR, union, and
intersection. These operations are different from the operations on type-2 fuzzy sets.

(3) Through Examples 4.2 and 5.4, our approaches are different from the existing
approaches to multiple attribute decision making (MADM) with type-2 fuzzy
information. Generally speaking, the existing approaches to MADM with type-
2 fuzzy information first utilize some aggregation operators to aggregate all the
individual type-2 fuzzy decision matrices into the collective type-2 fuzzy decision
matrix, then utilize these operators to aggregate all the preference values in the
each line of the collective type-2 fuzzy decision matrix, and derive the collective
overall preference value of each alternative. However, our approaches first utilize
the thresholds to derive level soft set from the original type-2 fuzzy soft set and then
utilize level soft set to calculate the choice values of each alternative with respect to
all the parameters.

6. Conclusion

Considering that soft set and its existing extension modles cannot deal with the situations in
which the evaluations of parameters are fuzzy concepts, we in the current paper introduce
the notion of the type-2 fuzzy soft set as an extension to the soft set model. We also define
some operations on the type-2 fuzzy soft sets. Furthermore, some illustrative examples
are provided to show the validity of type-2 fuzzy soft set and weighted type-2 fuzzy
soft set in decision making problems. Our new proposals can be used to solve multiple
attribute decision making problems in which the attribute values take the form of fuzzy sets,
which cannot be addressed by some approaches based on fuzzy sets, hesitant fuzzy sets,
hesitant fuzzy linguistic term sets, intuitionistic fuzzy sets, and interval-valued intuitionistic
fuzzy sets. Compared with some existing approaches to multiple attribute decision making
problems in which the attribute values take the form of fuzzy sets, our approaches have great
flexibility, less computations, and wide applications.
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For future research, it is desirable to further explore the parameterization reduction of
the type-2 fuzzy soft set.
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