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Let G be an Abelian group, let C be the field of complex numbers, and let f, g : G → C. We
consider the generalized Hyers-Ulam stability for a class of trigonometric functional inequalities,
|f(x−y)−f(x)g(y)+g(x)f(y)| ≤ ψ(y), |g(x−y)−g(x)g(y)−f(x)f(y)| ≤ ψ(y), where ψ : G → R

is an arbitrary nonnegative function.

1. Introduction

The Hyers-Ulam stability problems of functional equations go back to 1940 when S. M. Ulam
proposed a question concerning the approximate homomorphisms from a group to a metric
group (see [1]). A partial answer was given by Hyers et al. [2, 3] under the assumption that
the target space of the involved mappings is a Banach space. After the result of Hyers, Aoki
[4], and Bourgin [5, 6] dealt with this problem, however, there were no other results on this
problem until 1978 when Rassias [7] dealt again with the inequality of Aoki [4]. Following
the Rassias’ result, a great number of papers on the subject have been published concerning
numerous functional equations in various directions [2, 7–21]. The following four functional
equations are called trigonometric functional equations.

f
(
x + y

) − f(x)g(y) − g(x)f(y) = 0 (1.1)

g
(
x + y

) − g(x)g(y) + f(x)f(y) = 0 (1.2)

f
(
x − y) − f(x)g(y) + g(x)f(y) = 0 (1.3)

g
(
x − y) − g(x)g(y) − f(x)f(y) = 0 (1.4)
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The four functional equations have been investigated separately. The general solutions
and regular solutions of the above equations are introduced [22, 23]. In particular, the
last equation (1.4) is most interesting in the sense that (1.4) alone characterizes the two
trigonometric functions f(x) = cos(ax), g(x) = sin(ax) under some regularities of g, which
none of the remaining equations are able to do.

In [19], Székelyhidi developed his idea of using invariant subspaces of functions
defined on a group or semigroup to obtain the Hyers-Ulam stability of the trigonometric
functional equations (1.1) and (1.2). As results, he obtained the Hyers-Ulam stability when
for each fixed y the difference

T1(x) := f
(
x + y

) − f(x)g(y) − g(x)f(y) (1.5)

is a bounded function of x and the Hyers-Ulam stability when for each fixed y the difference

T2(x) := g
(
x + y

) − g(x)g(y) + f(x)f(y) (1.6)

is a bounded function of x, where f, g are mappings from an Abelian (amenable) group G to
the field C of complex numbers.

In this paper, we complete the parallel Hyers-Ulam stability to that of [19] for the
functional equations (1.3) and (1.4). As results, we obtained the Hyers-Ulam stability when
for each fixed y the difference

T3(x) := f
(
x − y) − f(x)g(y) + g(x)f(y) (1.7)

is a bounded function of x and the Hyers-Ulam stability when for each fixed y the difference

T4(x) := g
(
x − y) − g(x)g(y) − f(x)f(y) (1.8)

is a bounded function of x.
In fact, the authors [10] obtained weaker versions of the Hyers-Ulam stability for the

functional equations (1.3) and (1.4), that is, we proved the Hyers-Ulam stability of (1.3)when
the difference

T3
(
x, y

)
:= f

(
x − y) − f(x)g(y) + g(x)f(y) (1.9)

is uniformly bounded for all x and y, and we proved the Hyers-Ulam stability of (1.4) when
the difference

T4
(
x, y

)
:= g

(
x − y) − g(x)g(y) − f(x)f(y) (1.10)

is uniformly bounded for all x and y.
So, the results in this paper would be generalizations of those in [10]. We refer the

reader to [9, 15, 16, 20, 21] for some related Hyers-Ulam stability of functional equations of
trigonometric type.
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2. Main Theorems

A function a from a semigroup 〈S,+〉 to the field C of complex numbers is said to be an
additive function provided that a(x+y) = a(x)+a(y) andm : S → C is said to be an exponential
function provided that m(x + y) = m(x)m(y). Throughout this paper, we denote by G an
Abelian group, C the set of complex numbers, and ψ : G → R a fixed nonnegative function.
For the proof of stabilities of (1.3) and (1.4), we need the following.

Lemma 2.1 (see [2]). Let S be a semigroup. Assume that f, g : S → C satisfy the inequality; for
each y ∈ S, there exists a positive constantMy such that

∣
∣f
(
x + y

) − f(x)g(y)∣∣ ≤My, (2.1)

for all x ∈ S, then either f is a bounded function or g is an exponential function.

Proof. Suppose that g is not exponential, then there are y, z ∈ S such that g(y + z)/= g(y)g(z).
Now we have

f
(
x + y + z

) − f(x + y
)
g(z) =

(
f
(
x + y + z

) − f(x)g(y + z
))

− g(z)(f(x + y
) − f(x)g(y)) + f(x)(g(y + z

) − g(y)g(z)),
(2.2)

and hence,

f(x) =
(
g
(
y + z

) − g(y)g(z))−1

× ((
f
(
x + y + z

) − f(x + y
)
g(z)

) − (
f
(
x + y + z

) − f(x)g(y + z
))

+g(z)
(
f
(
x + y

) − f(x)g(y))).
(2.3)

In view of (2.1), the right hand side of (2.3) is bounded as a function of x.
Consequently, f is bounded.

We discuss the general solutions f, g : G → C of the corresponding trigonometric
functional equations

f
(
x − y) − f(x)g(y) + g(x)f(y) = 0, (2.4)

g
(
x − y) − g(x)g(y) − f(x)f(y) = 0. (2.5)

Lemma 2.2 (see [22, 23]). The general solutions (f, g) of the functional equation (2.4) are given by
one of the following:

(i) f = 0 and g is arbitrary,

(ii) f(x) = λ1(m(x)−m(−x)) and g(x) = λ2f(x)+(1/2)(m(x)+m(−x)) for some λ1, λ2 ∈ C,
wherem is an exponential function,

(iii) f(x) = a(x)m(x), g(x) = (1 + λa(x))m(x) for some λ ∈ C, where a is an additive
function andm is an exponential function satisfyingm2 ≡ 1.
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Also, the general solutions (g, f) of the functional equation (2.5) are given by one of the
following:

(i) g(x) = λ and f(x) = ±
√
λ − λ2 for some λ ∈ C,

(ii) g(x) = (1/2)(m(x) + m(−x)) and f(x) = (1/2i)(m(x) − m(−x)), where m is an
exponential function.

Proof. The solutions of the functional equation (2.4) are given in [23, p. 217, Theorem 11].
For the functional equation (2.5), combining the result of L. Vietoris [22, p. 177] and that of
J. A. Baker [23, p. 220], we obtain that every nonconstant function g satisfying (2.5) has the
form

g(x) =
1
2
(m(x) +m(−x)), (2.6)

for some exponential functionm. Thus, using (2.5), we have

f(x) =
1
2i
(m(x) −m(−x)). (2.7)

This completes the proof.

For the proof of the stability of (1.1), we need the following. Throughout this paper,
we denote by ψ an arbitrary nonnegative function on G.

Lemma 2.3. Let f, g : G → C satisfy the inequality

∣∣f
(
x − y) − f(x)g(y) + g(x)f(y)∣∣ ≤ ψ(y), (2.8)

for all x, y ∈ G, then either there exist λ1, λ2 ∈ C, not both zero, andM > 0 such that

∣∣λ1f(x) − λ2g(x)
∣∣ ≤M, (2.9)

or else

f
(
x − y) − f(x)g(y) + g(x)f(y) = 0, (2.10)

for all x, y ∈ G.

Proof. Suppose that the inequality (2.9) holds only when λ1 = λ2 = 0. Let

k
(
x, y

)
= f

(
x + y

) − f(x)g(−y) + g(x)f(−y), (2.11)

and choose y1 satisfying f(−y1)/= 0. Now it can be easily calculated that

g(x) = λ0f(x) + λ1f
(
x + y1

) − λ1k
(
x, y1

)
, (2.12)
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where λ0 = g(−y1)/f(−y1) and λ1 = −1/f(−y1). By (2.11), we have

f
(
x +

(
y + z

))
= f(x)g

(−y − z) − g(x)f(−y − z) + k(x, y + z
)
. (2.13)

Also by (2.11) and (2.12), we have

f
((
x + y

)
+ z

)
= f

(
x + y

)
g(−z) − g(x + y

)
f(−z) + k(x + y, z

)

=
(
f(x)g

(−y) − g(x)f(−y) + k(x, y))g(−z)
− (

λ0f
(
x + y

)
+ λ1f

(
x + y + y1

) − λ1k
(
x + y, y1

))
f(−z) + k(x + y, z

)

=
(
f(x)g

(−y) − g(x)f(−y) + k(x, y))g(−z)
− λ0

(
f(x)g

(−y) − g(x)f(−y) + k(x, y))f(−z)
− λ1

(
f(x)g

(−y − y1
) − g(x)f(−y − y1

)
+ k

(
x, y + y1

))
f(−z)

+ λ1k
(
x + y, y1

)
f(−z) + k(x + y, z

)
.

(2.14)

From (2.13) and (2.14), we have

(
g
(−y)g(−z) − λ0g

(−y)f(−z) − λ1g
(−y − y1

)
f(−z) − g(−y − z))f(x)

+
(−g(−y)g(−z) + λ0f

(−y)g(−z) + λ1f
(−y − y1

)
f(−z) + f(−y − z))g(x)

= −k(x, y)g(−z) + λ0k
(
x, y

)
f(−z) + λ1k

(
x, y + y1

)
f(−z)

− λ1k
(
x + y, y1

)
f(−z) − k(x + y, z

)
+ k

(
x, y + z

)
.

(2.15)

Since k(x, y) is bounded by ψ(−y), if we fix y, z, the right hand side of (2.15) is
bounded by a constantM, where

M = ψ
(−y)∣∣g(−z)∣∣ + ψ(−y)∣∣λ0f(−z)

∣∣ + ψ
(−y − y1

)∣∣λ1f(−z)
∣∣

+ ψ
(−y1

)∣∣λ1f(−z)
∣∣ + ψ(−z) + ψ(−y − z). (2.16)

So by our assumption, the left hand side of (2.15) vanishes, so does the right hand side.
Thus, we have

(−λ0k
(
x, y

) − λ1k
(
x, y + y1

)
+ λ1k

(
x + y, y1

))
f(−z) + k(x, y)g(−z)

= k
(
x, y + z

) − k(x + y, z
)
.

(2.17)

Now by the definition of k, we have

k
(
x + y, z

) − k(x, y + z
)
= f

(
x + y + z

) − f(x + y
)
g(−z) + g(x + y

)
f(−z)

− f(x + y + z
)
+ f(x)g

(−y − z) − g(x)f(−y − z)

= f
(−y − z − x) − f(−y − z)g(x) + g(−y − z)f(x)

− f(−z − x − y) + f(−z)g(x + y
) − g(−z)f(x + y

)

= k
(−y − z,−x) − k(−z,−x − y).

(2.18)
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Hence, the right hand side of (2.17) is bounded by ψ(x) + ψ(x + y). So if we fix x, y in (2.17),
the left hand side of (2.17) is a bounded function of z. Thus, by our assumption, we conclude
that k(x, y) ≡ 0. This completes the proof.

In the following theorem, we assume that

Φ1(x) :=
∞∑

k=0

2−kψ
(
−2kx

)
<∞, (2.19)

or

Φ2(x) :=
∞∑

k=1

2kψ
(
−2−kx

)
<∞. (2.20)

For the proof, we discuss the following property.

Lemma 2.4. Let m : G → C be a bounded exponential function satisfying m(x)/=m(−x) for some
x ∈ G, then there exists y ∈ G such that

∣∣m
(
y
) −m(−y)∣∣ ≥

√
3. (2.21)

Furthermore, the constant
√
3 is the best one.

Proof. Since m is a bounded exponential, there exists C > 0 such that |m(x)|k = |m(kx)| ≤ C
for all k ∈ Z and x ∈ G, which implies |m(x)| = 1 for all x ∈ G. Assume that m(x0)/=m(−x0),
thenwe havem(x0)/= ±1, andwemay assume thatm(x0) = eiθ, 0 < θ < π . If θ ∈ [π/3, 2π/3],
we have |m(x0) − m(−x0)| = |eiθ − e−iθ| ≥ √

3. If θ ∈ [0, π/3], there exists a positive integer
k such that kθ ∈ [π/3, 2π/3], and we have |m(kx0) −m(−kx0)| = |eik0θ − e−ik0θ| ≥ √

3. If θ ∈
[2π/3, 5π/6], then 2θ ∈ [4π/3, 5π/3], and we have |m(2x0) −m(−2x0)| = |ei2θ − e−i2θ| ≥ √

3.
Finally, if θ ∈ [5π/6, π], there exists a positive integer k such that 2kθ ∈ [−π/3,−2π/3], and
we have |m(2kx0)−m(−2kx0)| = |ei2kθ−e−i2kθ| ≥ √

3. Now definem : Z → C bym(k) = eikπ/3.
Then we have |m(3k + 1) −m(−3k − 1)| = √

3 for all k ∈ Z. Thus,
√
3 is the biggest one. This

completes the proof.

Theorem 2.5. Let f, g : G → C satisfy the inequality

∣∣f
(
x − y) − f(x)g(y) + g(x)f(y)∣∣ ≤ ψ(y), (2.22)

for all x, y ∈ G, then (f, g) satisfies one of the following:

(i) f = 0, g is arbitrary,

(ii) f and g are bounded functions,

(iii) f(x) = λ1(m(x)−m(−x)) and g(x) = λ2f(x)+(1/2)(m(x)+m(−x)) for some λ1, λ2 ∈ C,
wherem is an exponential function,

(iv) there exist λ ∈ C and a bounded exponential functionm such that

g(x) = λf(x) +m(x), (2.23)
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for all x ∈ G, and f satisfies the condition; there exists d ≥ 0 satisfying

∣
∣f(x)

∣
∣ ≤ 2√

3

(
ψ(−x) + d), (2.24)

for all x ∈ G,
(v) there exist λ ∈ C and a bounded exponential functionm satisfyingm2 ≡ 1 such that

g(x) = λf(x) +m(x), (2.25)

for all x ∈ G, and f satisfies one of the following conditions; there exists an additive function
a1 : G → C such that

∣∣f(x) − (
a1(x) + f(0)

)
m(x)

∣∣ ≤ Φ1(x), (2.26)

for all x ∈ G, or there exists an additive function a2 : G → C such that

∣∣f(x) − (
a1(x) + f(0)

)
m(x)

∣∣ ≤ Φ2(x), (2.27)

for all x ∈ G, where Φ1 and Φ2 are the functions given in (2.19) and (2.20).

Proof. In view of Lemma 2.3, we first consider the case when f, g satisfy (2.9). If f = 0, g is
arbitrary which is the case (i). If f is a nontrivial bounded function, in view of (2.22), g is also
bounded which gives the case (ii). If f is unbounded, it follows from (2.9) that λ2 /= 0 and

g(x) = λf(x) +m(x), (2.28)

for some λ ∈ C and a bounded functionm. Putting (2.28) in (2.22), we have

∣∣f
(
x − y) − f(x)m(

y
)
+m(x)f

(
y
)∣∣ ≤ ψ(y), (2.29)

for all x, y ∈ G. Replacing y by −y and using the triangle inequality, we have, for some C > 0,

∣∣f
(
x + y

) − f(x)m(−y)∣∣ ≤ C∣∣f(−y)∣∣ + ψ(−y), (2.30)

for all x, y ∈ G. By Lemma 2.1,m is an exponential function. Ifm = 0, putting y = 0 in (2.29),
we have

∣∣f(x)
∣∣ ≤ ψ(0). (2.31)

Thus, we have m/= 0 since f is unbounded. Since m is a nonzero bounded exponential
function, it follows from the equalities

m(x) = m
(
x − y)m(

y
)
, x, y ∈ G (2.32)
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that m(0) = 1 and m(x)/= 0, for all x ∈ G. Putting x = 0 in (2.29) and replacing y by −y
multiplying |m(x)| in the result, we have

∣
∣m(x)f

(−y) +m(x)f
(
y
) − f(0)m(x)m

(−y)∣∣ ≤ ψ(−y), (2.33)

for all y ∈ G. Replacing y by −y in (2.29) and using (2.33), we have

∣
∣f
(
x + y

) − f(x)m(−y) −m(x)f
(
y
)
+ f(0)m(x)m

(−y)∣∣ ≤ 2ψ
(−y). (2.34)

First we consider the case m(x)/=m(−x) for some x ∈ G. Replacing x by y and y by x
in (2.34), we have

∣
∣f
(
y + x

) − f(y)m(−x) −m(
y
)
f(x) + f(0)m

(
y
)
m(−x)∣∣ ≤ 2ψ(−x), (2.35)

for all x, y ∈ G. From (2.34) and (2.35), using the triangle inequality, putting y = y0 such that
|m(y0) −m(−y0)| ≥

√
3 and dividing |m(y0) −m(−y0)|, we have

∣∣f(x)
∣∣ ≤ 2√

3

(
ψ(−x) + d), (2.36)

for all x ∈ G, where d = ψ(−y0) + |f(y0)| + |f(0)|, which gives (iv). Now we consider the case
m(x) = m(−x), for all x ∈ G. Dividing both the sides of (2.34) bym(x)m(y), we have

∣∣F
(
x + y

) − F(x) − F(y)∣∣ ≤ 2ψ
(−y), (2.37)

for all x, y ∈ G, where F(x) = f(x)/m(x)− f(0). By the well-known results in [4], there exists
a unique additive function a1(x) given by

a1(x) = lim
n→∞

2−nf(2nx) (2.38)

such that

|F(x) − a1(x)| ≤ Φ1(x) (2.39)

if Φ1(x) :=
∑∞

k=0 2
−kψ(−2kx) <∞, and there exists a unique additive function a2(x) given by

a2(x) = lim
n→∞

2nf
(
2−nx

)
(2.40)

such that

|F(x) − a2(x)| ≤ Φ2(x) (2.41)
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ifΦ2(x) :=
∑∞

k=1 2
kψ(−2−kx) <∞. Multiplying |m(x)| in both sides of (2.39) and (2.41), we get

(v). Now we consider the case when f, g satisfy (2.10). In view of Lemma 2.2, the solutions
of (2.10) are given by (i), (iii), or contained in the case (v). This completes the proof.

Let X be a real normed space, and let ψ : X → R be given by ψ(x) = ε‖x‖p, p ≥
0, p /= 1, then ψ satisfies the conditions assumed in Theorem 2.5. In view of (2.19) and (2.20),
we have

Φ1(x) =
2ε‖x‖p
2 − 2p

(2.42)

if 0 < p < 1,

Φ2(x) =
2ε‖x‖p
2p − 2

(2.43)

if p > 1. Thus, as a direct consequence of Theorem 2.5, we have the following.

Corollary 2.6. Let f, g : X → C satisfy the inequality

∣∣f
(
x − y) − f(x)g(y) + g(x)f(y)∣∣ ≤ ε∥∥y∥∥p, p /= 1, p ≥ 0, (2.44)

for all x, y ∈ X, then (f, g) satisfies one of the following:

(i) f = 0, g is arbitrary,

(ii) f and g are bounded functions,

(iii) f(x) = λ1(m(x)−m(−x)) and g(x) = λ2f(x)+(1/2)(m(x)+m(−x)) for some λ1, λ2 ∈ C,
wherem is an exponential function,

(iv) there exist λ ∈ C and a bounded exponential functionm such that

g(x) = λf(x) +m(x), (2.45)

for all x ∈ X, and f satisfies the condition; there exists d ≥ 0 satisfying

∣∣f(x)
∣∣ ≤ 2√

3

(
ψ(−x) + d), (2.46)

for all x ∈ X,

(v) there exist λ ∈ C and a bounded exponential functionm satisfyingm2 ≡ 1 such that

g(x) = λf(x) +m(x), (2.47)
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for all x ∈ X, and f satisfies one of the following conditions; there exists an additive function
a : X → C such that

∣
∣f(x) − (

a(x) + f(0)
)
m(x)

∣
∣ ≤ 2ε‖x‖p

|2 − 2p| , (2.48)

for all x ∈ X.

Now we prove the stability of (1.2). For the proof, we need the following.

Lemma 2.7. Let f, g : G → C satisfy the inequality

∣
∣g
(
x − y) − g(x)g(y) − f(x)f(y)∣∣ ≤ ψ(y), (2.49)

for all x, y ∈ G, then either there exist λ1, λ2 ∈ C, not both zero, andM > 0 such that

∣∣λ1f(x) − λ2g(x)
∣∣ ≤M, (2.50)

or else

g
(
x − y) − g(x)g(y) − f(x)f(y) = 0, (2.51)

for all x, y ∈ G.

Proof. Suppose that λ1f(x) − λ2g(x) is bounded only when λ1 = λ2 = 0, and let

l
(
x, y

)
= g

(
x + y

) − g(x)g(−y) − f(x)f(−y). (2.52)

Since we may assume that f is nonconstant, we can choose y1 satisfying f(−y1)/= 0. Now it
can be easily get that

f(x) = λ0g(x) + λ1g
(
x + y1

) − λ1l
(
x, y1

)
, (2.53)

where λ0 = −g(−y1)/f(−y1) and λ1 = 1/f(−y1). From the definition of l and the use of (2.53),
we have the following two equations:

g
((
x + y

)
+ z

)
= g

(
x + y

)
g(−z) + f(x + y

)
f(−z) + l(x + y, z

)

=
(
g(x)g

(−y) + f(x)f(−y) + l(x, y))g(−z)
+
(
λ0g

(
x + y

)
+ λ1g

(
x + y + y1

) − λ1l
(
x + y, y1

))
f(−z) + l(x + y, z

)

=
(
g(x)g

(−y) + f(x)f(−y) + l(x, y))g(−z)
+ λ0

(
g(x)g

(−y) + f(x)f(−y) + l(x, y))f(−z)
+ λ1

(
g(x)g

(−y − y1
)
+ f(x)f

(−y − y1
)
+ l

(
x, y + y1

))
f(−z)

− λ1l
(
x + y, y1

)
f(−z) + l(x + y, z

)
,

(2.54)

g
(
x +

(
y + z

))
= g(x)g

(−y − z) + f(x)f(−y − z) + l(x, y + z
)
. (2.55)
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Equating (2.54) and (2.55), we have

g(x)
(
g
(−y)g(−z) + λ0g

(−y)f(−z) + λ1g
(−y − y1

)
f(−z) − g(−y − z))

+ f(x)
(
f
(−y)g(−z) + λ0f

(−y)f(−z) + λ1f
(−y − y1

)
f(−z) − f(−y − z))

= −l(x, y)g(−z) − λ0l
(
x, y

)
f(−z) − λ1l

(
x, y + y1

)
f(−z)

+ λ1l
(
x + y, y1

)
f(−z) − l(x + y, z

)
+ l

(
x, y + z

)
.

(2.56)

In (2.56), when y, z are fixed, the right hand side is bounded, so by our assumption, we have

l
(
x, y

)
g(−z) + (

λ0l
(
x, y

)
+ λ1l

(
x, y + y1

) − λ1l
(
x + y, y1

))
f(−z) = l(x, y + z

) − l(x + y, z
)
.

(2.57)

Also we can write

l
(
x, y + z

) − l(x + y, z
)
= g

(
x + y + z

) − g(x)g(y + z
) − f(x)f(y + z

)

− g(x + y + z
)
+ g

(
x + y

)
g(z) + f

(
x + y

)
f(z)

= l
(
y + z, x

) − l(z, x + y
)

≤ ψ(−x) + ψ(−x − y).

(2.58)

Thus, if we fix x, y in (2.57), the right hand side of (2.57) is bounded. By our assumption, we
have l(x, y) ≡ 0. This completes the proof.

Theorem 2.8. Let f, g : G → C satisfy the inequality

∣∣g
(
x − y) − g(x)g(y) − f(x)f(y)∣∣ ≤ ψ(y), (2.59)

for all x, y ∈ G, then (f, g) satisfies one of the following:

(i) f and g are bounded functions,

(ii) g(x) = (1/2)(m(x) + m(−x)) and f(x) = (1/2)(m(x) − m(−x)), where m is an
exponential function,

(iii) f = ±i(g −m) for a bounded exponential functionm, and g satisfies

∣∣∣∣g(x) −
1
2
(
g(0)m(−x) +m(x)

)
∣∣∣∣ ≤

1
2
ψ(x), (2.60)

for all x ∈ G. In particular if ψ(0) = 0, one has g(0) = 1, f(0) = 0.

Proof. In view of Lemma 2.7, we first consider the case when f, g satisfy (2.51). If f is
bounded, then in view of the inequality (2.59), for each y, g(x + y) − g(x)g(−y), is also
bounded. It follows from Lemma 2.1 that g is bounded or a nonzero exponential function.
If g is bounded, the case (i) follows. If g is a nonzero exponential function, from (2.59), using
the triangle inequality, we have for some d ≥ 0,

∣∣g(x)
(
g
(−y) − g(y))∣∣ ≤ ψ(y) + d, (2.61)



12 Journal of Applied Mathematics

for all x, y ∈ G. Thus, it follows that

g
(
y
)
= g

(−y), (2.62)

for all y ∈ G, or else g is bounded, and equality (2.62) implies g2 ≡ 1, which gives the case (i).
If f is unbounded, then in view of (2.59), g is also unbounded, and hence, λ1λ2 /= 0 and

f(x) = λg(x) + r(x), (2.63)

for some λ/= 0 and a bounded function r. Putting (2.63) in (2.59), replacing y by −y, and using
the triangle inequality, we have

∣
∣∣g
(
x + y

) − g(x)
((
λ2 + 1

)
g
(−y) + λr(−y)

)∣∣∣ ≤
∣∣(λg

(−y) + r(−y))r(x)∣∣ + ψ(−y). (2.64)

From Lemma 2.1, we have

(
λ2 + 1

)
g
(
y
)
+ λr

(
y
)
= m

(
y
)
, (2.65)

for some exponential functionm. If λ2 /= − 1, we have

f(x) =
λm(x) + r(x)

λ2 + 1
, g(x) =

m(x) − λr(x)
λ2 + 1

. (2.66)

Putting (2.66) in (2.59), multiplying |λ2 + 1| in the result, and using the triangle inequality, we
have for some d ≥ 0,

∣∣m(x)
(
m
(−y) −m(

y
))∣∣ ≤

∣∣∣λ2 + 1
∣∣∣ψ

(
y
)
+ d, (2.67)

for all x, y ∈ G. Sincem is unbounded, we have

m
(
y
)
= m

(−y), (2.68)

for all y ∈ G, which implies m2 ≡ 1, contradicting to the fact that m is unbounded. Thus, it
follows that λ2 = −1, and we have

f = ±i(g −m)
, (2.69)

wherem is a bounded exponential function. Putting (2.69) in (2.59), we have

∣∣g
(
x − y) − g(x)m(

y
) − g(y)m(x) +m(x)m

(
y
)∣∣ ≤ ψ(y), (2.70)
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for all x, y ∈ G. Replacing y by x in (2.70) and dividing the result by 2m(x), we have

∣
∣
∣
∣g(x) −

1
2
(
g(0)m(−x) +m(x)

)
∣
∣
∣
∣ ≤

1
2
ψ(x), (2.71)

for all x ∈ G. From (2.69), (2.71), we get (iii). Now we consider the case when f, g satisfy
(2.51). In view of Lemma 2.2, the solutions of (2.51) are contained in (i) or given by (ii).
Furthermore, if ψ(0) = 0, then putting x = y = 0 in (2.70), we have g(0) = 1, and from (2.69),
we also have f(0) = 0. This completes the proof.

In particular, if f, g : R
n → C is a continuous function and ψ(x) = ε|x|p, p > 0, p /= 1,

then Theorem 2.8 is reduced as follows.

Corollary 2.9. Let f, g : R
n → C be a continuous function satisfying (2.59) for ψ(x) = ε|x|p, then

(f, g) satisfies one of the following:

(i) f and g are bounded functions,

(ii) g(x) = cos(c · x) and f(x) = sin(c · x) for some c ∈ C
n,

(iii) there exists a ∈ R
n such that

∣∣f(x) − sin(a · x)∣∣ ≤ ε

2
|x|p,

∣∣g(x) − cos(a · x)∣∣ ≤ ε

2
|x|p,

(2.72)

for all x ∈ R
n.
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